Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity

Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cr...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 15; no. 38; pp. 45167 - 45176
Main Authors Maheshwaran, Athithan, Bae, Hyejeong, Park, Jaehyoung, Jung, Hyeonwoo, Hwang, Youngjun, Kim, Jongyoun, Park, Chaehyun, Kang, Byeongjae, Song, Myungkwan, Lee, Youngu
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.09.2023
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.3c09106

Cover

Abstract Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo­[b,d]­furan-3-yl)-N,N-bis­(4-vinylphenyl)­aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10–4 cm2 V–1 s–1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A–1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A–1, and outstanding CIE­(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
AbstractList Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo­[b,d]­furan-3-yl)-N,N-bis­(4-vinylphenyl)­aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-⁴ cm² V-¹ s-¹), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEₘₐₓ) of 18.59% with a remarkable maximum current efficiency (CEₘₐₓ) of 78.48 cd A-¹. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEₘₐₓ of 15.61%, a CEₘₐₓ of 52.51 cd A-¹, and outstanding CIE­(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo­[b,d]­furan-3-yl)-N,N-bis­(4-vinylphenyl)­aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10–4 cm2 V–1 s–1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A–1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A–1, and outstanding CIE­(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
Author Park, Chaehyun
Kim, Jongyoun
Song, Myungkwan
Kang, Byeongjae
Park, Jaehyoung
Hwang, Youngjun
Lee, Youngu
Bae, Hyejeong
Jung, Hyeonwoo
Maheshwaran, Athithan
AuthorAffiliation Department of Energy Science & Engineering
Department of Energy & Electronic Materials
AuthorAffiliation_xml – name: Department of Energy & Electronic Materials
– name: Department of Energy Science & Engineering
Author_xml – sequence: 1
  givenname: Athithan
  orcidid: 0009-0009-6557-2484
  surname: Maheshwaran
  fullname: Maheshwaran, Athithan
  organization: Department of Energy Science & Engineering
– sequence: 2
  givenname: Hyejeong
  orcidid: 0009-0002-0436-3047
  surname: Bae
  fullname: Bae, Hyejeong
  organization: Department of Energy Science & Engineering
– sequence: 3
  givenname: Jaehyoung
  orcidid: 0000-0002-0617-7654
  surname: Park
  fullname: Park, Jaehyoung
  organization: Department of Energy Science & Engineering
– sequence: 4
  givenname: Hyeonwoo
  orcidid: 0000-0003-0962-6280
  surname: Jung
  fullname: Jung, Hyeonwoo
  organization: Department of Energy Science & Engineering
– sequence: 5
  givenname: Youngjun
  orcidid: 0009-0008-1288-1710
  surname: Hwang
  fullname: Hwang, Youngjun
  organization: Department of Energy Science & Engineering
– sequence: 6
  givenname: Jongyoun
  orcidid: 0000-0002-3599-0919
  surname: Kim
  fullname: Kim, Jongyoun
  organization: Department of Energy Science & Engineering
– sequence: 7
  givenname: Chaehyun
  orcidid: 0009-0001-1810-9528
  surname: Park
  fullname: Park, Chaehyun
  organization: Department of Energy & Electronic Materials
– sequence: 8
  givenname: Byeongjae
  orcidid: 0000-0002-6304-0064
  surname: Kang
  fullname: Kang, Byeongjae
  organization: Department of Energy Science & Engineering
– sequence: 9
  givenname: Myungkwan
  orcidid: 0000-0001-7935-5303
  surname: Song
  fullname: Song, Myungkwan
  organization: Department of Energy & Electronic Materials
– sequence: 10
  givenname: Youngu
  orcidid: 0000-0001-5014-1117
  surname: Lee
  fullname: Lee, Youngu
  email: youngulee@dgist.ac.kr
  organization: Department of Energy Science & Engineering
BookMark eNqFkU1rGzEQhkVJoPnotWcdS2Edfa28PhbHqQtbkhD3vMxqZx2lu5IraQn-O_2llePQQyH0IonR-8ww73tOTpx3SMhHzmacCX4FJsJoZ9KwBWf6HTnjC6WKSpTi5O9bqffkPMYnxrQUrDwjv2v_XGxw3GGANAWky-BjLGrrfkI7IF37fGwCuLjzIdHvkDBYGCLtfaAPfpiS9a64C95gjNjR-wlcmkZ67RMF19HbsAVnDa3t9jEVq9GmZN2WXlvfYaTPNj3Sdf6iq763xqIz-xds6Yfc_24KNu0vyWmfJ-KH1_uC_LhZbZbror79-m35pS5AKpaKstXQ5Q2rlmmm5wDYG2g143OQvCsBtawAhdFyoUxfYt9VrTZCGOyQt4bJC_Lp2HcX_K8JY2pGGw0OAzj0U2wkU0xqXUrxX6motNJ8UfF5ls6OUnMwNmDf7IIdIewbzppDbs0xt-Y1twyofwBjExxsTgHs8Db2-YjlevPkp-CyV2-J_wDNJLG7
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c00727
crossref_primary_10_1021_acsami_4c02073
crossref_primary_10_1021_acsami_4c22232
crossref_primary_10_29026_oea_2024_240036
Cites_doi 10.7536/PC180128
10.1038/s41566-022-00999-9
10.1039/C9MH01053J
10.1002/adma.200502769
10.1002/adma.200700887
10.1007/s13233-022-0053-5
10.1021/acsami.7b00615
10.1007/s13233-021-9097-1
10.1002/adma.202107888
10.1039/C9TC02689D
10.1007/s13233-021-9017-4
10.1016/j.dyepig.2020.109091
10.1002/ejoc.201600407
10.1021/acsami.0c17336
10.1038/nature13829
10.1002/smll.201900111
10.1021/cm071828o
10.1016/j.dyepig.2019.108121
10.1021/acsami.6b05197
10.1080/15980316.2022.2035835
10.1002/adfm.201804714
10.1016/j.orgel.2013.03.028
10.1016/j.synthmet.2006.06.011
10.1016/j.orgel.2019.06.016
10.1039/C9TC03559A
10.1039/D2TC02379B
10.1002/smll.201800265
10.1007/s13233-022-0069-x
10.1039/D0QM00591F
10.1016/j.cej.2019.123479
10.1002/adfm.201401958
10.1021/acsami.1c01835
10.1021/ma060808p
10.1021/cm102401k
10.1016/j.dyepig.2020.108534
10.1038/s41467-020-15481-9
10.1007/s13233-022-0080-2
10.1021/ol061642f
10.1038/s41467-021-24931-x
10.1002/smll.201702433
10.1002/adom.202200935
10.1007/s13233-021-9020-9
10.1002/chem.201603994
10.1039/C8TC04900A
10.1002/jsid.681
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1021/acsami.3c09106
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 45176
ExternalDocumentID 10_1021_acsami_3c09106
c171759512
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
7X8
7S9
L.6
ID FETCH-LOGICAL-a340t-5b6ad8248b06067aaefcab6017a31d5ae638ae2c6394cf5efd8b6c22cede1bc03
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 04:02:17 EDT 2025
Fri Jul 11 14:53:48 EDT 2025
Tue Jul 01 03:31:45 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Thu Sep 28 04:37:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords cross-linkable
hole transport material
quantum dot
solution-processed
light-emitting diode
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a340t-5b6ad8248b06067aaefcab6017a31d5ae638ae2c6394cf5efd8b6c22cede1bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0008-1288-1710
0000-0002-3599-0919
0000-0002-0617-7654
0000-0001-5014-1117
0009-0002-0436-3047
0000-0003-0962-6280
0009-0001-1810-9528
0000-0001-7935-5303
0009-0009-6557-2484
0000-0002-6304-0064
PQID 2864619817
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3040366532
proquest_miscellaneous_2864619817
crossref_primary_10_1021_acsami_3c09106
crossref_citationtrail_10_1021_acsami_3c09106
acs_journals_10_1021_acsami_3c09106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-27
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-27
  day: 27
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.7536/PC180128
– ident: ref3/cit3
  doi: 10.1038/s41566-022-00999-9
– ident: ref19/cit19
  doi: 10.1039/C9MH01053J
– ident: ref33/cit33
  doi: 10.1002/adma.200502769
– ident: ref21/cit21
  doi: 10.1002/adma.200700887
– ident: ref12/cit12
  doi: 10.1007/s13233-022-0053-5
– ident: ref27/cit27
  doi: 10.1021/acsami.7b00615
– ident: ref11/cit11
  doi: 10.1007/s13233-021-9097-1
– ident: ref2/cit2
  doi: 10.1002/adma.202107888
– ident: ref38/cit38
  doi: 10.1039/C9TC02689D
– ident: ref10/cit10
  doi: 10.1007/s13233-021-9017-4
– ident: ref16/cit16
  doi: 10.1016/j.dyepig.2020.109091
– ident: ref44/cit44
  doi: 10.1002/ejoc.201600407
– ident: ref24/cit24
  doi: 10.1021/acsami.0c17336
– ident: ref8/cit8
  doi: 10.1038/nature13829
– ident: ref25/cit25
  doi: 10.1002/smll.201900111
– ident: ref32/cit32
  doi: 10.1021/cm071828o
– ident: ref40/cit40
  doi: 10.1016/j.dyepig.2019.108121
– ident: ref30/cit30
  doi: 10.1021/acsami.6b05197
– ident: ref1/cit1
  doi: 10.1080/15980316.2022.2035835
– ident: ref17/cit17
  doi: 10.1002/adfm.201804714
– ident: ref31/cit31
  doi: 10.1016/j.orgel.2013.03.028
– ident: ref34/cit34
  doi: 10.1016/j.synthmet.2006.06.011
– ident: ref20/cit20
  doi: 10.1016/j.orgel.2019.06.016
– ident: ref18/cit18
  doi: 10.1039/C9TC03559A
– ident: ref41/cit41
  doi: 10.1039/D2TC02379B
– ident: ref6/cit6
  doi: 10.1002/smll.201800265
– ident: ref15/cit15
  doi: 10.1007/s13233-022-0069-x
– ident: ref26/cit26
  doi: 10.1039/D0QM00591F
– ident: ref29/cit29
  doi: 10.1016/j.cej.2019.123479
– ident: ref28/cit28
  doi: 10.1002/adfm.201401958
– ident: ref43/cit43
  doi: 10.1021/acsami.1c01835
– ident: ref45/cit45
  doi: 10.1021/ma060808p
– ident: ref23/cit23
  doi: 10.1021/cm102401k
– ident: ref37/cit37
  doi: 10.1016/j.dyepig.2020.108534
– ident: ref5/cit5
  doi: 10.1038/s41467-020-15481-9
– ident: ref14/cit14
  doi: 10.1007/s13233-022-0080-2
– ident: ref35/cit35
  doi: 10.1021/ol061642f
– ident: ref4/cit4
  doi: 10.1038/s41467-021-24931-x
– ident: ref7/cit7
  doi: 10.1002/smll.201702433
– ident: ref13/cit13
  doi: 10.1002/adom.202200935
– ident: ref9/cit9
  doi: 10.1007/s13233-021-9020-9
– ident: ref22/cit22
  doi: 10.1002/chem.201603994
– ident: ref39/cit39
  doi: 10.1039/C8TC04900A
– ident: ref42/cit42
  doi: 10.1002/jsid.681
SSID ssj0063205
Score 2.4478157
Snippet Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45167
SubjectTerms color
crosslinking
dibenzofuran
electrochemistry
energy
Organic Electronic Devices
phosphorescence
quantum dots
temperature
Title Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity
URI http://dx.doi.org/10.1021/acsami.3c09106
https://www.proquest.com/docview/2864619817
https://www.proquest.com/docview/3040366532
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4XMqBlhZU6EOuWqkng2MnTjhWy6IVgoqqIHGL_JiVUEtSkURI_Jz-0s44CZSiFb1EPowlZzyehz3zDWOf0sQGSP2ccFulSEPmhIWwL6RPPOFROSOp3vnkq5mdp0cX2cX9fce_L_gq2bO-oVY42pNlM8tsVRk0MuQETb6POtdoFZMVMSJPRYEWa4RnfDSfjJBvHhqhhzo4GpbD5z3KURPxCCmf5Mdu17pdf_sYrfHJNb9g64N3yb_04rDBlqB6ydb-whx8xX4f1zfiDNBb7tGU-YSWKCgmpSoqPqvxcwd5zk9s28soR--Wj5doYqgvgMC_dbg33RU_qFtuq8D74k7PjyNCyfTqMiZW84PLOkDD6dqXU24Jn0bsCir8jNMmqISv-WnspbfJzg-nZ5OZGBo1CKtT2YrMGRuQ7YWTGA_l1sLcW9zlJLc6CZkFPOQWlEdvCMUig3konPFKeQiQOC_1Flup6gpeU6YVuELlTu5T7ILemwaXSQAceSvBbLOPyNxyOGhNGd_QVVL2HC8Hjm8zMe5v6Qesc2q58XMh_ec7-l89ysdCyg-juJR4EOl1xVZQd02pCpNiNFok-WIajSpTG5NptfNf__GGPaP29pSfovK3bKW97uAdOkGtex_l_w-wEwXL
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpemhzSN80faq00JMSS7Zl7zFsNmzb3ZDSDeRm9JiF0MYOsU0hPye_NDOyvW1aFtqLMUY249G8JM18w9iHRBoPiVsSbmskEp9aYcCPROSkIzwqqyOqd54f6elJ8vk0Pd1ge0MtDBJR45fqcIj_C11A7uEz6ogTO3Jw-g67m-pEU6-G_fG3wfTqWIWcRVyYJyJHxzWgNP71PvkiV9_2RbdNcfAvhw_Y8YqykFbyfbdt7K67-gO08T9If8i2-1iT73fC8YhtQPmYbf2GQPiEXc-qn2IBGDt32Mp8TJQKWqFSTRWfVnhZAaDzuWk6ieUY6_JhS0301Qbg-dcWZ6o95wdVw03peVfq6fgs4JVMzs9CmjU_OKs81Jw2gTllmvBJQLKgMtDw2hhN8iU_Dp31nrKTw8liPBV92wZh4iRqRGq18cj93Ea4OsqMgaUzOOcyM7H0qQFUeQPKYWyEQpLC0udWO6UceJDWRfEztllWJTynvCuwucpsNKKVDMZyMdg0AsA7ZyLQO-w9Mrfo1a4uwom6kkXH8aLn-A4TwzQXrkc-pwYcP9aO_7gaf9Fhfqwd-W6QmgLVks5aTAlVWxcqR_GUo1xm68fEaEBjrdNYvfin_3jL7k0X81kx-3T05SW7T43vKXNFZa_YZnPZwmsMjxr7JqjEDRv7Di0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF60guiDd7FeVxR82rq7STbpYzkXjnpaKp5C38Je5kDRJqVJEPw5_lJnNsnBKgf0JYQwCZudmZ2Z3ZlvGHubKhsg9WvCbZUiDZkTFsK-kF55wqNyRlK98-GRWZykH0-z06GOm2phcBANfqmJh_ik1RdhPSAMqPf4nLriJJ6MnLnObqA3oqhfw8Hky7j8mkTHvEUMzlNRoPEakRr_ep_skW-u2qOry3G0MfO7bLUZXUwt-brXtW7P__gDuPE_h3-P3Rl8Tn7QC8l9dg2qB-z2b0iED9nPZf1drAB96B5jmU9otIIiVaqt4osaLxsgdH5o215yOfq8fNxaE0PVAQT-uUOOded8WrfcVoH3JZ-eLyNuyez8LKZb8-lZHaDhtBnMKeOEzyKiBZWDxtcmuDRf8uPYYe8RO5nPVpOFGNo3CJukshWZMzYgBwonMUrKrYW1t8h7ldtEhcwCqr4F7dFHQmHJYB0KZ7zWHgIo52XymO1UdQVPKP8KXKFzJ_cpokGfLgGXSQC881aC2WVvcHLLQf2aMp6sa1X2M14OM77LxMjq0g8I6NSI49tW-ncb-ose-2Mr5etRckpUTzpzsRXUXVPqwqQYoxYq306T4EKaGJMl-uk__ccrdvN4Oi-XH44-PWO3NHpdlMCi8-dsp73s4AV6Sa17GbXiF5u2EKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Temperature+Cross-Linkable+Hole+Transport+Materials+for+Solution-Processed+Quantum+Dot+and+Organic+Light-Emitting+Diodes+with+High+Efficiency+and+Color+Purity&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Maheshwaran%2C+Athithan&rft.au=Bae%2C+Hyejeong&rft.au=Park%2C+Jaehyoung&rft.au=Jung%2C+Hyeonwoo&rft.date=2023-09-27&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=38&rft.spage=45167&rft.epage=45176&rft_id=info:doi/10.1021%2Facsami.3c09106&rft.externalDocID=c171759512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon