Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity
Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cr...
Saved in:
Published in | ACS applied materials & interfaces Vol. 15; no. 38; pp. 45167 - 45176 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
27.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1944-8244 1944-8252 1944-8252 |
DOI | 10.1021/acsami.3c09106 |
Cover
Abstract | Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10–4 cm2 V–1 s–1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A–1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A–1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs. |
---|---|
AbstractList | Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-⁴ cm² V-¹ s-¹), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEₘₐₓ) of 18.59% with a remarkable maximum current efficiency (CEₘₐₓ) of 78.48 cd A-¹. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEₘₐₓ of 15.61%, a CEₘₐₓ of 52.51 cd A-¹, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs. Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs. Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10–4 cm2 V–1 s–1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A–1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A–1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs. |
Author | Park, Chaehyun Kim, Jongyoun Song, Myungkwan Kang, Byeongjae Park, Jaehyoung Hwang, Youngjun Lee, Youngu Bae, Hyejeong Jung, Hyeonwoo Maheshwaran, Athithan |
AuthorAffiliation | Department of Energy Science & Engineering Department of Energy & Electronic Materials |
AuthorAffiliation_xml | – name: Department of Energy & Electronic Materials – name: Department of Energy Science & Engineering |
Author_xml | – sequence: 1 givenname: Athithan orcidid: 0009-0009-6557-2484 surname: Maheshwaran fullname: Maheshwaran, Athithan organization: Department of Energy Science & Engineering – sequence: 2 givenname: Hyejeong orcidid: 0009-0002-0436-3047 surname: Bae fullname: Bae, Hyejeong organization: Department of Energy Science & Engineering – sequence: 3 givenname: Jaehyoung orcidid: 0000-0002-0617-7654 surname: Park fullname: Park, Jaehyoung organization: Department of Energy Science & Engineering – sequence: 4 givenname: Hyeonwoo orcidid: 0000-0003-0962-6280 surname: Jung fullname: Jung, Hyeonwoo organization: Department of Energy Science & Engineering – sequence: 5 givenname: Youngjun orcidid: 0009-0008-1288-1710 surname: Hwang fullname: Hwang, Youngjun organization: Department of Energy Science & Engineering – sequence: 6 givenname: Jongyoun orcidid: 0000-0002-3599-0919 surname: Kim fullname: Kim, Jongyoun organization: Department of Energy Science & Engineering – sequence: 7 givenname: Chaehyun orcidid: 0009-0001-1810-9528 surname: Park fullname: Park, Chaehyun organization: Department of Energy & Electronic Materials – sequence: 8 givenname: Byeongjae orcidid: 0000-0002-6304-0064 surname: Kang fullname: Kang, Byeongjae organization: Department of Energy Science & Engineering – sequence: 9 givenname: Myungkwan orcidid: 0000-0001-7935-5303 surname: Song fullname: Song, Myungkwan organization: Department of Energy & Electronic Materials – sequence: 10 givenname: Youngu orcidid: 0000-0001-5014-1117 surname: Lee fullname: Lee, Youngu email: youngulee@dgist.ac.kr organization: Department of Energy Science & Engineering |
BookMark | eNqFkU1rGzEQhkVJoPnotWcdS2Edfa28PhbHqQtbkhD3vMxqZx2lu5IraQn-O_2llePQQyH0IonR-8ww73tOTpx3SMhHzmacCX4FJsJoZ9KwBWf6HTnjC6WKSpTi5O9bqffkPMYnxrQUrDwjv2v_XGxw3GGANAWky-BjLGrrfkI7IF37fGwCuLjzIdHvkDBYGCLtfaAPfpiS9a64C95gjNjR-wlcmkZ67RMF19HbsAVnDa3t9jEVq9GmZN2WXlvfYaTPNj3Sdf6iq763xqIz-xds6Yfc_24KNu0vyWmfJ-KH1_uC_LhZbZbror79-m35pS5AKpaKstXQ5Q2rlmmm5wDYG2g143OQvCsBtawAhdFyoUxfYt9VrTZCGOyQt4bJC_Lp2HcX_K8JY2pGGw0OAzj0U2wkU0xqXUrxX6motNJ8UfF5ls6OUnMwNmDf7IIdIewbzppDbs0xt-Y1twyofwBjExxsTgHs8Db2-YjlevPkp-CyV2-J_wDNJLG7 |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c00727 crossref_primary_10_1021_acsami_4c02073 crossref_primary_10_1021_acsami_4c22232 crossref_primary_10_29026_oea_2024_240036 |
Cites_doi | 10.7536/PC180128 10.1038/s41566-022-00999-9 10.1039/C9MH01053J 10.1002/adma.200502769 10.1002/adma.200700887 10.1007/s13233-022-0053-5 10.1021/acsami.7b00615 10.1007/s13233-021-9097-1 10.1002/adma.202107888 10.1039/C9TC02689D 10.1007/s13233-021-9017-4 10.1016/j.dyepig.2020.109091 10.1002/ejoc.201600407 10.1021/acsami.0c17336 10.1038/nature13829 10.1002/smll.201900111 10.1021/cm071828o 10.1016/j.dyepig.2019.108121 10.1021/acsami.6b05197 10.1080/15980316.2022.2035835 10.1002/adfm.201804714 10.1016/j.orgel.2013.03.028 10.1016/j.synthmet.2006.06.011 10.1016/j.orgel.2019.06.016 10.1039/C9TC03559A 10.1039/D2TC02379B 10.1002/smll.201800265 10.1007/s13233-022-0069-x 10.1039/D0QM00591F 10.1016/j.cej.2019.123479 10.1002/adfm.201401958 10.1021/acsami.1c01835 10.1021/ma060808p 10.1021/cm102401k 10.1016/j.dyepig.2020.108534 10.1038/s41467-020-15481-9 10.1007/s13233-022-0080-2 10.1021/ol061642f 10.1038/s41467-021-24931-x 10.1002/smll.201702433 10.1002/adom.202200935 10.1007/s13233-021-9020-9 10.1002/chem.201603994 10.1039/C8TC04900A 10.1002/jsid.681 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1021/acsami.3c09106 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 45176 |
ExternalDocumentID | 10_1021_acsami_3c09106 c171759512 |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a340t-5b6ad8248b06067aaefcab6017a31d5ae638ae2c6394cf5efd8b6c22cede1bc03 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 04:02:17 EDT 2025 Fri Jul 11 14:53:48 EDT 2025 Tue Jul 01 03:31:45 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Thu Sep 28 04:37:40 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | cross-linkable hole transport material quantum dot solution-processed light-emitting diode |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a340t-5b6ad8248b06067aaefcab6017a31d5ae638ae2c6394cf5efd8b6c22cede1bc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0008-1288-1710 0000-0002-3599-0919 0000-0002-0617-7654 0000-0001-5014-1117 0009-0002-0436-3047 0000-0003-0962-6280 0009-0001-1810-9528 0000-0001-7935-5303 0009-0009-6557-2484 0000-0002-6304-0064 |
PQID | 2864619817 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3040366532 proquest_miscellaneous_2864619817 crossref_primary_10_1021_acsami_3c09106 crossref_citationtrail_10_1021_acsami_3c09106 acs_journals_10_1021_acsami_3c09106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-27 |
PublicationDateYYYYMMDD | 2023-09-27 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.7536/PC180128 – ident: ref3/cit3 doi: 10.1038/s41566-022-00999-9 – ident: ref19/cit19 doi: 10.1039/C9MH01053J – ident: ref33/cit33 doi: 10.1002/adma.200502769 – ident: ref21/cit21 doi: 10.1002/adma.200700887 – ident: ref12/cit12 doi: 10.1007/s13233-022-0053-5 – ident: ref27/cit27 doi: 10.1021/acsami.7b00615 – ident: ref11/cit11 doi: 10.1007/s13233-021-9097-1 – ident: ref2/cit2 doi: 10.1002/adma.202107888 – ident: ref38/cit38 doi: 10.1039/C9TC02689D – ident: ref10/cit10 doi: 10.1007/s13233-021-9017-4 – ident: ref16/cit16 doi: 10.1016/j.dyepig.2020.109091 – ident: ref44/cit44 doi: 10.1002/ejoc.201600407 – ident: ref24/cit24 doi: 10.1021/acsami.0c17336 – ident: ref8/cit8 doi: 10.1038/nature13829 – ident: ref25/cit25 doi: 10.1002/smll.201900111 – ident: ref32/cit32 doi: 10.1021/cm071828o – ident: ref40/cit40 doi: 10.1016/j.dyepig.2019.108121 – ident: ref30/cit30 doi: 10.1021/acsami.6b05197 – ident: ref1/cit1 doi: 10.1080/15980316.2022.2035835 – ident: ref17/cit17 doi: 10.1002/adfm.201804714 – ident: ref31/cit31 doi: 10.1016/j.orgel.2013.03.028 – ident: ref34/cit34 doi: 10.1016/j.synthmet.2006.06.011 – ident: ref20/cit20 doi: 10.1016/j.orgel.2019.06.016 – ident: ref18/cit18 doi: 10.1039/C9TC03559A – ident: ref41/cit41 doi: 10.1039/D2TC02379B – ident: ref6/cit6 doi: 10.1002/smll.201800265 – ident: ref15/cit15 doi: 10.1007/s13233-022-0069-x – ident: ref26/cit26 doi: 10.1039/D0QM00591F – ident: ref29/cit29 doi: 10.1016/j.cej.2019.123479 – ident: ref28/cit28 doi: 10.1002/adfm.201401958 – ident: ref43/cit43 doi: 10.1021/acsami.1c01835 – ident: ref45/cit45 doi: 10.1021/ma060808p – ident: ref23/cit23 doi: 10.1021/cm102401k – ident: ref37/cit37 doi: 10.1016/j.dyepig.2020.108534 – ident: ref5/cit5 doi: 10.1038/s41467-020-15481-9 – ident: ref14/cit14 doi: 10.1007/s13233-022-0080-2 – ident: ref35/cit35 doi: 10.1021/ol061642f – ident: ref4/cit4 doi: 10.1038/s41467-021-24931-x – ident: ref7/cit7 doi: 10.1002/smll.201702433 – ident: ref13/cit13 doi: 10.1002/adom.202200935 – ident: ref9/cit9 doi: 10.1007/s13233-021-9020-9 – ident: ref22/cit22 doi: 10.1002/chem.201603994 – ident: ref39/cit39 doi: 10.1039/C8TC04900A – ident: ref42/cit42 doi: 10.1002/jsid.681 |
SSID | ssj0063205 |
Score | 2.4478157 |
Snippet | Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45167 |
SubjectTerms | color crosslinking dibenzofuran electrochemistry energy Organic Electronic Devices phosphorescence quantum dots temperature |
Title | Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity |
URI | http://dx.doi.org/10.1021/acsami.3c09106 https://www.proquest.com/docview/2864619817 https://www.proquest.com/docview/3040366532 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4XMqBlhZU6EOuWqkng2MnTjhWy6IVgoqqIHGL_JiVUEtSkURI_Jz-0s44CZSiFb1EPowlZzyehz3zDWOf0sQGSP2ccFulSEPmhIWwL6RPPOFROSOp3vnkq5mdp0cX2cX9fce_L_gq2bO-oVY42pNlM8tsVRk0MuQETb6POtdoFZMVMSJPRYEWa4RnfDSfjJBvHhqhhzo4GpbD5z3KURPxCCmf5Mdu17pdf_sYrfHJNb9g64N3yb_04rDBlqB6ydb-whx8xX4f1zfiDNBb7tGU-YSWKCgmpSoqPqvxcwd5zk9s28soR--Wj5doYqgvgMC_dbg33RU_qFtuq8D74k7PjyNCyfTqMiZW84PLOkDD6dqXU24Jn0bsCir8jNMmqISv-WnspbfJzg-nZ5OZGBo1CKtT2YrMGRuQ7YWTGA_l1sLcW9zlJLc6CZkFPOQWlEdvCMUig3konPFKeQiQOC_1Flup6gpeU6YVuELlTu5T7ILemwaXSQAceSvBbLOPyNxyOGhNGd_QVVL2HC8Hjm8zMe5v6Qesc2q58XMh_ec7-l89ysdCyg-juJR4EOl1xVZQd02pCpNiNFok-WIajSpTG5NptfNf__GGPaP29pSfovK3bKW97uAdOkGtex_l_w-wEwXL |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpemhzSN80faq00JMSS7Zl7zFsNmzb3ZDSDeRm9JiF0MYOsU0hPye_NDOyvW1aFtqLMUY249G8JM18w9iHRBoPiVsSbmskEp9aYcCPROSkIzwqqyOqd54f6elJ8vk0Pd1ge0MtDBJR45fqcIj_C11A7uEz6ogTO3Jw-g67m-pEU6-G_fG3wfTqWIWcRVyYJyJHxzWgNP71PvkiV9_2RbdNcfAvhw_Y8YqykFbyfbdt7K67-gO08T9If8i2-1iT73fC8YhtQPmYbf2GQPiEXc-qn2IBGDt32Mp8TJQKWqFSTRWfVnhZAaDzuWk6ieUY6_JhS0301Qbg-dcWZ6o95wdVw03peVfq6fgs4JVMzs9CmjU_OKs81Jw2gTllmvBJQLKgMtDw2hhN8iU_Dp31nrKTw8liPBV92wZh4iRqRGq18cj93Ea4OsqMgaUzOOcyM7H0qQFUeQPKYWyEQpLC0udWO6UceJDWRfEztllWJTynvCuwucpsNKKVDMZyMdg0AsA7ZyLQO-w9Mrfo1a4uwom6kkXH8aLn-A4TwzQXrkc-pwYcP9aO_7gaf9Fhfqwd-W6QmgLVks5aTAlVWxcqR_GUo1xm68fEaEBjrdNYvfin_3jL7k0X81kx-3T05SW7T43vKXNFZa_YZnPZwmsMjxr7JqjEDRv7Di0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF60guiDd7FeVxR82rq7STbpYzkXjnpaKp5C38Je5kDRJqVJEPw5_lJnNsnBKgf0JYQwCZudmZ2Z3ZlvGHubKhsg9WvCbZUiDZkTFsK-kF55wqNyRlK98-GRWZykH0-z06GOm2phcBANfqmJh_ik1RdhPSAMqPf4nLriJJ6MnLnObqA3oqhfw8Hky7j8mkTHvEUMzlNRoPEakRr_ep_skW-u2qOry3G0MfO7bLUZXUwt-brXtW7P__gDuPE_h3-P3Rl8Tn7QC8l9dg2qB-z2b0iED9nPZf1drAB96B5jmU9otIIiVaqt4osaLxsgdH5o215yOfq8fNxaE0PVAQT-uUOOded8WrfcVoH3JZ-eLyNuyez8LKZb8-lZHaDhtBnMKeOEzyKiBZWDxtcmuDRf8uPYYe8RO5nPVpOFGNo3CJukshWZMzYgBwonMUrKrYW1t8h7ldtEhcwCqr4F7dFHQmHJYB0KZ7zWHgIo52XymO1UdQVPKP8KXKFzJ_cpokGfLgGXSQC881aC2WVvcHLLQf2aMp6sa1X2M14OM77LxMjq0g8I6NSI49tW-ncb-ose-2Mr5etRckpUTzpzsRXUXVPqwqQYoxYq306T4EKaGJMl-uk__ccrdvN4Oi-XH44-PWO3NHpdlMCi8-dsp73s4AV6Sa17GbXiF5u2EKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Temperature+Cross-Linkable+Hole+Transport+Materials+for+Solution-Processed+Quantum+Dot+and+Organic+Light-Emitting+Diodes+with+High+Efficiency+and+Color+Purity&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Maheshwaran%2C+Athithan&rft.au=Bae%2C+Hyejeong&rft.au=Park%2C+Jaehyoung&rft.au=Jung%2C+Hyeonwoo&rft.date=2023-09-27&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=15&rft.issue=38&rft.spage=45167&rft.epage=45176&rft_id=info:doi/10.1021%2Facsami.3c09106&rft.externalDocID=c171759512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |