EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network

This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN a...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 21; no. 4; pp. 5712 - 5734
Main Authors Qamar, Hafiz Ghulam Murtza, Qureshi, Muhammad Farrukh, Mushtaq, Zohaib, Zubariah, Zubariah, Rehman, Muhammad Zia ur, Samee, Nagwan Abdel, Mahmoud, Noha F., Gu, Yeong Hyeon, Al-masni, Mohammed A.
Format Journal Article
LanguageEnglish
Published United States AIMS Press 24.04.2024
Subjects
Online AccessGet full text
ISSN1551-0018
1547-1063
1551-0018
DOI10.3934/mbe.2024252

Cover

Abstract This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.
AbstractList This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.
This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.
Author Rehman, Muhammad Zia ur
Qamar, Hafiz Ghulam Murtza
Zubariah, Zubariah
Mahmoud, Noha F.
Samee, Nagwan Abdel
Al-masni, Mohammed A.
Mushtaq, Zohaib
Gu, Yeong Hyeon
Qureshi, Muhammad Farrukh
Author_xml – sequence: 1
  givenname: Hafiz Ghulam Murtza
  surname: Qamar
  fullname: Qamar, Hafiz Ghulam Murtza
  organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066104, China
– sequence: 2
  givenname: Muhammad Farrukh
  surname: Qureshi
  fullname: Qureshi, Muhammad Farrukh
  organization: Department of Electrical Engineering, Riphah International University, Islamabad 44000, Pakistan
– sequence: 3
  givenname: Zohaib
  surname: Mushtaq
  fullname: Mushtaq, Zohaib
  organization: Department of Electrical, Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha, Sargodha 40100, Pakistan
– sequence: 4
  givenname: Zubariah
  surname: Zubariah
  fullname: Zubariah, Zubariah
  organization: Department of Physiotherapy, Isfandyar Bukhari Civil Hospital, District Headquarter Hospital, Attock 43600, Pakistan
– sequence: 5
  givenname: Muhammad Zia ur
  surname: Rehman
  fullname: Rehman, Muhammad Zia ur
  organization: Department of Biomedical Engineering, Riphah International University, Islamabad 44000, Pakistan, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark
– sequence: 6
  givenname: Nagwan Abdel
  surname: Samee
  fullname: Samee, Nagwan Abdel
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 7
  givenname: Noha F.
  surname: Mahmoud
  fullname: Mahmoud, Noha F.
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
– sequence: 8
  givenname: Yeong Hyeon
  surname: Gu
  fullname: Gu, Yeong Hyeon
  organization: Department of Artificial Intelligence Data Science, College of Software & Convergence Technology, Sejong University, Seoul 05006, Republic of Korea
– sequence: 9
  givenname: Mohammed A.
  surname: Al-masni
  fullname: Al-masni, Mohammed A.
  organization: Department of Artificial Intelligence Data Science, College of Software & Convergence Technology, Sejong University, Seoul 05006, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38872555$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQhy1URB9w4o58RIIUv5I4R1SVUqmIC5ytiR_BrTcOdtzV_vck3aVCVSUuHmv0zTfSb07R0RhHi9BbSs55x8WnTW_PGWGC1ewFOqF1TStCqDz653-MTnO-JYQLzsUrdMylbFld1yfo7vLbFR5snkuyOPthhIBheXbZZzzHLSSTsfEwjHHtRIfLNNmEg9_0uGQ_DtgUCNUE868t7LCO430MZfZxNY22pIcyb2O6e41eOgjZvjnUM_Tzy-WPi6_Vzfer64vPNxVwQVil-966pmEajGO6bWwvNHVAHZNASdfI3oHr-k7zxjhnWimMpaanBnQrJGv4Gbree02EWzUlv4G0UxG8emjENChIs9fBqs60jaZdR5kmomEdMA4gWtZKA9KRdnF93LvKOMFuCyE8CilRa_5qyV8d8l_w93t8SvF3WWJVG5-1DQFGG0tWnDSyrTvBVvTdAS39xppH7d_bLMCHPaBTzDlZ95_N9Amt_QzrHeYEPjw78wdqebHI
CitedBy_id crossref_primary_10_3390_s24227147
crossref_primary_10_3390_ani14111690
Cites_doi 10.1038/srep36571
10.1016/j.neuroimage.2019.116093
10.1109/LSP.2022.3184636
10.1109/ICOSST53930.2021.9683956
10.1109/ETECTE59617.2023.10396676
10.1038/sdata.2014.53
10.3390/app13074255
10.3390/s22134972
10.3390/healthcare11101493
10.1371/journal.pone.0206049
10.1109/JSEN.2022.3204121
10.3389/fnins.2017.00379
10.1007/s13042-021-01482-7
10.1109/ETECTE55893.2022.10007103
10.1109/CCHI.2019.8901936
10.1142/S0219843619410044
10.1016/j.bspc.2021.102948
10.1016/j.patrec.2017.12.005
10.1007/s11063-019-10008-w
10.1016/j.rineng.2023.101725
10.3389/fnins.2020.600804
10.1016/j.sbsr.2020.100353
10.1682/JRRD.2014.09.0218
10.1109/JSEN.2023.3255408
10.1109/CCECE.2019.8861835
10.1016/j.artmed.2021.102210
10.3389/fnins.2023.1136609
10.1109/TIE.2023.3310041
10.1016/j.clinph.2019.01.024
10.3389/fphys.2023.1282295
10.1145/3453170
10.1109/BIBE52308.2021.9635461
10.1109/ACCESS.2022.3158667
10.3934/math.20231238
10.1109/TNSRE.2014.2303394
10.1049/ell2.12706
10.1016/j.ymssp.2020.106922
10.1371/journal.pone.0262810
10.1002/cpe.6051
10.1016/j.bspc.2014.07.007
10.1109/TBME.2019.2899222
10.3389/fnbot.2016.00009
10.1155/2019/4159676
10.3389/fnbot.2017.00051
10.1109/LSP.2019.2903334
10.1109/BIBE50027.2020.00072
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.3934/mbe.2024252
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 5734
ExternalDocumentID oai_doaj_org_article_9d76c19912c04629a23aa47278da8f07
10.3934/mbe.2024252
38872555
10_3934_mbe_2024252
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-a3402-cbbef662cadf2c76eb4c1fa1f28a10968bfaf9b9c36dffd784de1db1dac748263
IEDL.DBID UNPAY
ISSN 1551-0018
1547-1063
IngestDate Fri Oct 03 12:45:29 EDT 2025
Mon Sep 15 08:16:00 EDT 2025
Wed Oct 01 14:37:07 EDT 2025
Mon Jul 21 05:58:51 EDT 2025
Tue Jul 01 02:58:40 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords nina pro
upper limb
gesture recognition
log mel spectrogram
convolutional neural network
electromyography
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3402-cbbef662cadf2c76eb4c1fa1f28a10968bfaf9b9c36dffd784de1db1dac748263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/mbe.2024252
PMID 38872555
PQID 3068759422
PQPubID 23479
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_9d76c19912c04629a23aa47278da8f07
unpaywall_primary_10_3934_mbe_2024252
proquest_miscellaneous_3068759422
pubmed_primary_38872555
crossref_primary_10_3934_mbe_2024252
crossref_citationtrail_10_3934_mbe_2024252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Apr-24
PublicationDateYYYYMMDD 2024-04-24
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2024252-26
key-10.3934/mbe.2024252-25
key-10.3934/mbe.2024252-24
key-10.3934/mbe.2024252-23
key-10.3934/mbe.2024252-22
key-10.3934/mbe.2024252-21
key-10.3934/mbe.2024252-20
key-10.3934/mbe.2024252-29
key-10.3934/mbe.2024252-28
key-10.3934/mbe.2024252-27
key-10.3934/mbe.2024252-6
key-10.3934/mbe.2024252-15
key-10.3934/mbe.2024252-5
key-10.3934/mbe.2024252-14
key-10.3934/mbe.2024252-4
key-10.3934/mbe.2024252-13
key-10.3934/mbe.2024252-3
key-10.3934/mbe.2024252-12
key-10.3934/mbe.2024252-11
key-10.3934/mbe.2024252-9
key-10.3934/mbe.2024252-10
key-10.3934/mbe.2024252-8
key-10.3934/mbe.2024252-7
key-10.3934/mbe.2024252-19
key-10.3934/mbe.2024252-18
key-10.3934/mbe.2024252-17
key-10.3934/mbe.2024252-16
key-10.3934/mbe.2024252-2
key-10.3934/mbe.2024252-1
key-10.3934/mbe.2024252-48
key-10.3934/mbe.2024252-47
key-10.3934/mbe.2024252-46
key-10.3934/mbe.2024252-45
key-10.3934/mbe.2024252-44
key-10.3934/mbe.2024252-43
key-10.3934/mbe.2024252-42
key-10.3934/mbe.2024252-41
key-10.3934/mbe.2024252-49
key-10.3934/mbe.2024252-37
key-10.3934/mbe.2024252-36
key-10.3934/mbe.2024252-35
key-10.3934/mbe.2024252-34
key-10.3934/mbe.2024252-33
key-10.3934/mbe.2024252-32
key-10.3934/mbe.2024252-31
key-10.3934/mbe.2024252-30
key-10.3934/mbe.2024252-39
key-10.3934/mbe.2024252-38
key-10.3934/mbe.2024252-40
References_xml – ident: key-10.3934/mbe.2024252-43
  doi: 10.1038/srep36571
– ident: key-10.3934/mbe.2024252-7
  doi: 10.1016/j.neuroimage.2019.116093
– ident: key-10.3934/mbe.2024252-8
  doi: 10.1109/LSP.2022.3184636
– ident: key-10.3934/mbe.2024252-24
  doi: 10.1109/ICOSST53930.2021.9683956
– ident: key-10.3934/mbe.2024252-17
  doi: 10.1109/ETECTE59617.2023.10396676
– ident: key-10.3934/mbe.2024252-35
  doi: 10.1038/sdata.2014.53
– ident: key-10.3934/mbe.2024252-12
  doi: 10.3390/app13074255
– ident: key-10.3934/mbe.2024252-49
  doi: 10.3390/s22134972
– ident: key-10.3934/mbe.2024252-15
  doi: 10.3390/healthcare11101493
– ident: key-10.3934/mbe.2024252-25
  doi: 10.1371/journal.pone.0206049
– ident: key-10.3934/mbe.2024252-31
  doi: 10.1109/JSEN.2022.3204121
– ident: key-10.3934/mbe.2024252-48
  doi: 10.3389/fnins.2017.00379
– ident: key-10.3934/mbe.2024252-46
  doi: 10.1007/s13042-021-01482-7
– ident: key-10.3934/mbe.2024252-22
  doi: 10.1109/ETECTE55893.2022.10007103
– ident: key-10.3934/mbe.2024252-18
  doi: 10.1109/CCHI.2019.8901936
– ident: key-10.3934/mbe.2024252-28
  doi: 10.1142/S0219843619410044
– ident: key-10.3934/mbe.2024252-9
– ident: key-10.3934/mbe.2024252-21
  doi: 10.1016/j.bspc.2021.102948
– ident: key-10.3934/mbe.2024252-44
  doi: 10.1016/j.patrec.2017.12.005
– ident: key-10.3934/mbe.2024252-3
  doi: 10.1007/s11063-019-10008-w
– ident: key-10.3934/mbe.2024252-26
– ident: key-10.3934/mbe.2024252-6
  doi: 10.1016/j.rineng.2023.101725
– ident: key-10.3934/mbe.2024252-2
  doi: 10.3389/fnins.2020.600804
– ident: key-10.3934/mbe.2024252-19
  doi: 10.1016/j.sbsr.2020.100353
– ident: key-10.3934/mbe.2024252-37
  doi: 10.1682/JRRD.2014.09.0218
– ident: key-10.3934/mbe.2024252-30
  doi: 10.1109/JSEN.2023.3255408
– ident: key-10.3934/mbe.2024252-20
  doi: 10.1109/CCECE.2019.8861835
– ident: key-10.3934/mbe.2024252-34
  doi: 10.1016/j.artmed.2021.102210
– ident: key-10.3934/mbe.2024252-33
  doi: 10.3389/fnins.2023.1136609
– ident: key-10.3934/mbe.2024252-42
  doi: 10.1109/TIE.2023.3310041
– ident: key-10.3934/mbe.2024252-32
  doi: 10.1016/j.clinph.2019.01.024
– ident: key-10.3934/mbe.2024252-10
  doi: 10.3389/fphys.2023.1282295
– ident: key-10.3934/mbe.2024252-11
  doi: 10.1145/3453170
– ident: key-10.3934/mbe.2024252-23
  doi: 10.1109/BIBE52308.2021.9635461
– ident: key-10.3934/mbe.2024252-47
  doi: 10.1109/ACCESS.2022.3158667
– ident: key-10.3934/mbe.2024252-16
  doi: 10.3934/math.20231238
– ident: key-10.3934/mbe.2024252-36
  doi: 10.1109/TNSRE.2014.2303394
– ident: key-10.3934/mbe.2024252-13
  doi: 10.1049/ell2.12706
– ident: key-10.3934/mbe.2024252-14
  doi: 10.1016/j.ymssp.2020.106922
– ident: key-10.3934/mbe.2024252-29
  doi: 10.1371/journal.pone.0262810
– ident: key-10.3934/mbe.2024252-27
  doi: 10.1002/cpe.6051
– ident: key-10.3934/mbe.2024252-40
  doi: 10.1016/j.bspc.2014.07.007
– ident: key-10.3934/mbe.2024252-45
  doi: 10.1109/TBME.2019.2899222
– ident: key-10.3934/mbe.2024252-38
  doi: 10.3389/fnbot.2016.00009
– ident: key-10.3934/mbe.2024252-1
  doi: 10.1155/2019/4159676
– ident: key-10.3934/mbe.2024252-39
  doi: 10.3389/fnbot.2017.00051
– ident: key-10.3934/mbe.2024252-4
  doi: 10.1109/LSP.2019.2903334
– ident: key-10.3934/mbe.2024252-5
  doi: 10.1109/BIBE50027.2020.00072
– ident: key-10.3934/mbe.2024252-41
SSID ssj0034334
Score 2.3536355
Snippet This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5712
SubjectTerms Adult
Algorithms
Amputees
convolutional neural network
electromyography
Electromyography - methods
Female
gesture recognition
Gestures
Humans
log mel spectrogram
Male
Middle Aged
Neural Networks, Computer
nina pro
Reproducibility of Results
Signal Processing, Computer-Assisted
Upper Extremity - physiology
upper limb
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA8iiO2D-NV6rUoK-iIsukkumzy24geCPlXwbZl8ldJz7zhvkfvvndnsHRakffFlF5YhCTOTzMzmNzOMHWm0WkE43Ej0UGBcYaBMRQhSJCOj1ED_IW_v9PW9unkYPrxq9UWYsFweODPu1IZKe8LnCE95lBaEBFBodU0Ak3Ie-Zmxi2Aqn8FSSalyNp60Up0-OqqISd61-Mv-dGX63_ItP7L1tpnA_BlGo1f25nKTbfSOIv-eF7jFVmKzzdZy68j5DvtzcXvF6W6onUZOIAykhb7ACJ91WNgnHjKODr-ME28nkzjlo9-PjhPY_RenLKyCOhI_w5wT-rzXQhyJqlx2rw4jvsvuLy9-nl8XfeOEAiTGg4V3LiathYeQhK90dMqXCUUgUA4YsxiXIFlnvdQhpVAZFWIZXBnAVwrjDfmJrTbjJu4xnlKyqTxLIqoKB8H96is7BG-0RetXhgE7WbCz9n1VcWpuMaoxuiDe18j7uuf9gB0tiSe5mMbbZD9ILksSqoDdfUC9qHu9qP-nFwP2bSHVGncMXYNAE8ftU41BEgZpVgmc6HMW93IqiWcuBlnDATteyv9fS_3yHkv9yj7QcHRHJdQ-W51N23iArs7MHXZa_QKguPzt
  priority: 102
  providerName: Directory of Open Access Journals
Title EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/38872555
https://www.proquest.com/docview/3068759422
https://doi.org/10.3934/mbe.2024252
https://doaj.org/article/9d76c19912c04629a23aa47278da8f07
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1551-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0034334
  issn: 1547-1063
  databaseCode: AMVHM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemmxDwwPfH8TEFMV6QOtYklzaPAzYmpE08cNJ4qpyvCe3WO92umo6_HrvtncY0AS9tFbltGtux3Tg_A2wbslpBOlIkPmgsXVZinrIQlEylisog_4c8OjaHY_31ZHSyAW9Xe2GurN8rq_SHc8dYluwX0zy7aUbkcA9gc3z8be9Hi4SqC5pI2nppbPszrjHX7cK7fvcfdqeF57_Jp7wLt5t6hstLnEyu2JmD-_B51cMuveRsp1m4Hf_rGnjjPz7hAdzr_Uyx1wnGQ9iI9SO41VWeXD6Gs_2jL4KXlpp5FJzDQbTY45OIRZtKeyFCl4ZHLdMkmtkszsXk57kTnCt_KngTV8YFjS9xKTh5vRdiehKDZLanNsX8CYwP9r9_Osz6ugsZKgonM-9cTMZIjyFJX5jotM8TcVASGynkKV3CZJ31yoSUQlHqEPPg8oC-0BSuqKcwqKd1fA4ipWRTvptk1AU9hNTdF3aEvjSWjGcehvB-xZXK96DkXBtjUlFwwqNX0ehV_egNYXtNPOuwOG4m-8jsXZMwgHbbQEypen2sbCiM57Qv6Xl7rkWpEDU5c2XAMu0WQ3izEo6KFI5XUbCO0-aiohiLYjyrJb3oWSc161cpmrIpRhsN4d1ajP7W1Rf_SfcS7vAVr2JJ_QoGi3kTX5MztHBb7U-ErV4lfgNeugX8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemmxDsgW_G8aUgxgtSx5rk0uZxwMaEtIkHThpPlfOF0G690-2q6fjrsdveaUwT8NJWkZu2sR3bjfMzwI4hqxWkI0Xig8bSZSXmKQtByVSqqAzyf8jjE3M01l9OR6cb8Ga1F-bK-r2ySr8_d4xlyX4xzbObZkQO9wA2xydf97-3SKi6oImkrZfGtj_jGnPdLrzrd_9hd1p4_pt8yi243dQzXF7iZHLFzhzeg0-rN-zSS852m4Xb9b-ugTf-4xPuw93ezxT7nWA8gI1YP4RbXeXJ5SM4Ozj-LHhpqZlHwTkcRIs9PolYtKm0FyJ0aXjUMk2imc3iXEx-njvBufI_BG_iyrig8SUuBSev90JMPTFIZntqU8wfw_jw4NvHo6yvu5ChonAy887FZIz0GJL0hYlO-zwRByWxkUKe0iVM1lmvTEgpFKUOMQ8uD-gLTeGKegKDelrHpyBSSjble0lGXVAnpO6-sCP0pbFkPPMwhHcrrlS-ByXn2hiTioITHr2KRq_qR28IO2viWYfFcTPZB2bvmoQBtNsGYkrV62NlQ2E8p31Jz9tzLUqFqMmZKwOWaa8YwuuVcFSkcLyKgnWcNhcVxVgU41kt6UHbndSsH6VoyqYYbTSEt2sx-turPvtPuudwh694FUvqFzBYzJv4kpyhhXvVK8NvQJ0FBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMG+gesture+signal+analysis+towards+diagnosis+of+upper+limb+using+dual-pathway+convolutional+neural+network&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Qamar%2C+Hafiz+Ghulam+Murtza&rft.au=Qureshi%2C+Muhammad+Farrukh&rft.au=Mushtaq%2C+Zohaib&rft.au=Zubariah%2C+Zubariah&rft.date=2024-04-24&rft.issn=1551-0018&rft.volume=21&rft.issue=4&rft.spage=5712&rft.epage=5734&rft_id=info:doi/10.3934%2Fmbe.2024252&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2024252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon