EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network
This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN a...
Saved in:
| Published in | Mathematical biosciences and engineering : MBE Vol. 21; no. 4; pp. 5712 - 5734 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
AIMS Press
24.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-0018 1547-1063 1551-0018 |
| DOI | 10.3934/mbe.2024252 |
Cover
| Abstract | This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control. |
|---|---|
| AbstractList | This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control. This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control. |
| Author | Rehman, Muhammad Zia ur Qamar, Hafiz Ghulam Murtza Zubariah, Zubariah Mahmoud, Noha F. Samee, Nagwan Abdel Al-masni, Mohammed A. Mushtaq, Zohaib Gu, Yeong Hyeon Qureshi, Muhammad Farrukh |
| Author_xml | – sequence: 1 givenname: Hafiz Ghulam Murtza surname: Qamar fullname: Qamar, Hafiz Ghulam Murtza organization: School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066104, China – sequence: 2 givenname: Muhammad Farrukh surname: Qureshi fullname: Qureshi, Muhammad Farrukh organization: Department of Electrical Engineering, Riphah International University, Islamabad 44000, Pakistan – sequence: 3 givenname: Zohaib surname: Mushtaq fullname: Mushtaq, Zohaib organization: Department of Electrical, Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha, Sargodha 40100, Pakistan – sequence: 4 givenname: Zubariah surname: Zubariah fullname: Zubariah, Zubariah organization: Department of Physiotherapy, Isfandyar Bukhari Civil Hospital, District Headquarter Hospital, Attock 43600, Pakistan – sequence: 5 givenname: Muhammad Zia ur surname: Rehman fullname: Rehman, Muhammad Zia ur organization: Department of Biomedical Engineering, Riphah International University, Islamabad 44000, Pakistan, Department of Health Science and Technology, Aalborg University, Aalborg 9220, Denmark – sequence: 6 givenname: Nagwan Abdel surname: Samee fullname: Samee, Nagwan Abdel organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 7 givenname: Noha F. surname: Mahmoud fullname: Mahmoud, Noha F. organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia – sequence: 8 givenname: Yeong Hyeon surname: Gu fullname: Gu, Yeong Hyeon organization: Department of Artificial Intelligence Data Science, College of Software & Convergence Technology, Sejong University, Seoul 05006, Republic of Korea – sequence: 9 givenname: Mohammed A. surname: Al-masni fullname: Al-masni, Mohammed A. organization: Department of Artificial Intelligence Data Science, College of Software & Convergence Technology, Sejong University, Seoul 05006, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38872555$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctv1DAQhy1URB9w4o58RIIUv5I4R1SVUqmIC5ytiR_BrTcOdtzV_vck3aVCVSUuHmv0zTfSb07R0RhHi9BbSs55x8WnTW_PGWGC1ewFOqF1TStCqDz653-MTnO-JYQLzsUrdMylbFld1yfo7vLbFR5snkuyOPthhIBheXbZZzzHLSSTsfEwjHHtRIfLNNmEg9_0uGQ_DtgUCNUE868t7LCO430MZfZxNY22pIcyb2O6e41eOgjZvjnUM_Tzy-WPi6_Vzfer64vPNxVwQVil-966pmEajGO6bWwvNHVAHZNASdfI3oHr-k7zxjhnWimMpaanBnQrJGv4Gbree02EWzUlv4G0UxG8emjENChIs9fBqs60jaZdR5kmomEdMA4gWtZKA9KRdnF93LvKOMFuCyE8CilRa_5qyV8d8l_w93t8SvF3WWJVG5-1DQFGG0tWnDSyrTvBVvTdAS39xppH7d_bLMCHPaBTzDlZ95_N9Amt_QzrHeYEPjw78wdqebHI |
| CitedBy_id | crossref_primary_10_3390_s24227147 crossref_primary_10_3390_ani14111690 |
| Cites_doi | 10.1038/srep36571 10.1016/j.neuroimage.2019.116093 10.1109/LSP.2022.3184636 10.1109/ICOSST53930.2021.9683956 10.1109/ETECTE59617.2023.10396676 10.1038/sdata.2014.53 10.3390/app13074255 10.3390/s22134972 10.3390/healthcare11101493 10.1371/journal.pone.0206049 10.1109/JSEN.2022.3204121 10.3389/fnins.2017.00379 10.1007/s13042-021-01482-7 10.1109/ETECTE55893.2022.10007103 10.1109/CCHI.2019.8901936 10.1142/S0219843619410044 10.1016/j.bspc.2021.102948 10.1016/j.patrec.2017.12.005 10.1007/s11063-019-10008-w 10.1016/j.rineng.2023.101725 10.3389/fnins.2020.600804 10.1016/j.sbsr.2020.100353 10.1682/JRRD.2014.09.0218 10.1109/JSEN.2023.3255408 10.1109/CCECE.2019.8861835 10.1016/j.artmed.2021.102210 10.3389/fnins.2023.1136609 10.1109/TIE.2023.3310041 10.1016/j.clinph.2019.01.024 10.3389/fphys.2023.1282295 10.1145/3453170 10.1109/BIBE52308.2021.9635461 10.1109/ACCESS.2022.3158667 10.3934/math.20231238 10.1109/TNSRE.2014.2303394 10.1049/ell2.12706 10.1016/j.ymssp.2020.106922 10.1371/journal.pone.0262810 10.1002/cpe.6051 10.1016/j.bspc.2014.07.007 10.1109/TBME.2019.2899222 10.3389/fnbot.2016.00009 10.1155/2019/4159676 10.3389/fnbot.2017.00051 10.1109/LSP.2019.2903334 10.1109/BIBE50027.2020.00072 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.3934/mbe.2024252 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1551-0018 |
| EndPage | 5734 |
| ExternalDocumentID | oai_doaj_org_article_9d76c19912c04629a23aa47278da8f07 10.3934/mbe.2024252 38872555 10_3934_mbe_2024252 |
| Genre | Journal Article |
| GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-a3402-cbbef662cadf2c76eb4c1fa1f28a10968bfaf9b9c36dffd784de1db1dac748263 |
| IEDL.DBID | UNPAY |
| ISSN | 1551-0018 1547-1063 |
| IngestDate | Fri Oct 03 12:45:29 EDT 2025 Mon Sep 15 08:16:00 EDT 2025 Wed Oct 01 14:37:07 EDT 2025 Mon Jul 21 05:58:51 EDT 2025 Tue Jul 01 02:58:40 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | nina pro upper limb gesture recognition log mel spectrogram convolutional neural network electromyography |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3402-cbbef662cadf2c76eb4c1fa1f28a10968bfaf9b9c36dffd784de1db1dac748263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/mbe.2024252 |
| PMID | 38872555 |
| PQID | 3068759422 |
| PQPubID | 23479 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9d76c19912c04629a23aa47278da8f07 unpaywall_primary_10_3934_mbe_2024252 proquest_miscellaneous_3068759422 pubmed_primary_38872555 crossref_primary_10_3934_mbe_2024252 crossref_citationtrail_10_3934_mbe_2024252 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Apr-24 |
| PublicationDateYYYYMMDD | 2024-04-24 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-Apr-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Mathematical biosciences and engineering : MBE |
| PublicationTitleAlternate | Math Biosci Eng |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/mbe.2024252-26 key-10.3934/mbe.2024252-25 key-10.3934/mbe.2024252-24 key-10.3934/mbe.2024252-23 key-10.3934/mbe.2024252-22 key-10.3934/mbe.2024252-21 key-10.3934/mbe.2024252-20 key-10.3934/mbe.2024252-29 key-10.3934/mbe.2024252-28 key-10.3934/mbe.2024252-27 key-10.3934/mbe.2024252-6 key-10.3934/mbe.2024252-15 key-10.3934/mbe.2024252-5 key-10.3934/mbe.2024252-14 key-10.3934/mbe.2024252-4 key-10.3934/mbe.2024252-13 key-10.3934/mbe.2024252-3 key-10.3934/mbe.2024252-12 key-10.3934/mbe.2024252-11 key-10.3934/mbe.2024252-9 key-10.3934/mbe.2024252-10 key-10.3934/mbe.2024252-8 key-10.3934/mbe.2024252-7 key-10.3934/mbe.2024252-19 key-10.3934/mbe.2024252-18 key-10.3934/mbe.2024252-17 key-10.3934/mbe.2024252-16 key-10.3934/mbe.2024252-2 key-10.3934/mbe.2024252-1 key-10.3934/mbe.2024252-48 key-10.3934/mbe.2024252-47 key-10.3934/mbe.2024252-46 key-10.3934/mbe.2024252-45 key-10.3934/mbe.2024252-44 key-10.3934/mbe.2024252-43 key-10.3934/mbe.2024252-42 key-10.3934/mbe.2024252-41 key-10.3934/mbe.2024252-49 key-10.3934/mbe.2024252-37 key-10.3934/mbe.2024252-36 key-10.3934/mbe.2024252-35 key-10.3934/mbe.2024252-34 key-10.3934/mbe.2024252-33 key-10.3934/mbe.2024252-32 key-10.3934/mbe.2024252-31 key-10.3934/mbe.2024252-30 key-10.3934/mbe.2024252-39 key-10.3934/mbe.2024252-38 key-10.3934/mbe.2024252-40 |
| References_xml | – ident: key-10.3934/mbe.2024252-43 doi: 10.1038/srep36571 – ident: key-10.3934/mbe.2024252-7 doi: 10.1016/j.neuroimage.2019.116093 – ident: key-10.3934/mbe.2024252-8 doi: 10.1109/LSP.2022.3184636 – ident: key-10.3934/mbe.2024252-24 doi: 10.1109/ICOSST53930.2021.9683956 – ident: key-10.3934/mbe.2024252-17 doi: 10.1109/ETECTE59617.2023.10396676 – ident: key-10.3934/mbe.2024252-35 doi: 10.1038/sdata.2014.53 – ident: key-10.3934/mbe.2024252-12 doi: 10.3390/app13074255 – ident: key-10.3934/mbe.2024252-49 doi: 10.3390/s22134972 – ident: key-10.3934/mbe.2024252-15 doi: 10.3390/healthcare11101493 – ident: key-10.3934/mbe.2024252-25 doi: 10.1371/journal.pone.0206049 – ident: key-10.3934/mbe.2024252-31 doi: 10.1109/JSEN.2022.3204121 – ident: key-10.3934/mbe.2024252-48 doi: 10.3389/fnins.2017.00379 – ident: key-10.3934/mbe.2024252-46 doi: 10.1007/s13042-021-01482-7 – ident: key-10.3934/mbe.2024252-22 doi: 10.1109/ETECTE55893.2022.10007103 – ident: key-10.3934/mbe.2024252-18 doi: 10.1109/CCHI.2019.8901936 – ident: key-10.3934/mbe.2024252-28 doi: 10.1142/S0219843619410044 – ident: key-10.3934/mbe.2024252-9 – ident: key-10.3934/mbe.2024252-21 doi: 10.1016/j.bspc.2021.102948 – ident: key-10.3934/mbe.2024252-44 doi: 10.1016/j.patrec.2017.12.005 – ident: key-10.3934/mbe.2024252-3 doi: 10.1007/s11063-019-10008-w – ident: key-10.3934/mbe.2024252-26 – ident: key-10.3934/mbe.2024252-6 doi: 10.1016/j.rineng.2023.101725 – ident: key-10.3934/mbe.2024252-2 doi: 10.3389/fnins.2020.600804 – ident: key-10.3934/mbe.2024252-19 doi: 10.1016/j.sbsr.2020.100353 – ident: key-10.3934/mbe.2024252-37 doi: 10.1682/JRRD.2014.09.0218 – ident: key-10.3934/mbe.2024252-30 doi: 10.1109/JSEN.2023.3255408 – ident: key-10.3934/mbe.2024252-20 doi: 10.1109/CCECE.2019.8861835 – ident: key-10.3934/mbe.2024252-34 doi: 10.1016/j.artmed.2021.102210 – ident: key-10.3934/mbe.2024252-33 doi: 10.3389/fnins.2023.1136609 – ident: key-10.3934/mbe.2024252-42 doi: 10.1109/TIE.2023.3310041 – ident: key-10.3934/mbe.2024252-32 doi: 10.1016/j.clinph.2019.01.024 – ident: key-10.3934/mbe.2024252-10 doi: 10.3389/fphys.2023.1282295 – ident: key-10.3934/mbe.2024252-11 doi: 10.1145/3453170 – ident: key-10.3934/mbe.2024252-23 doi: 10.1109/BIBE52308.2021.9635461 – ident: key-10.3934/mbe.2024252-47 doi: 10.1109/ACCESS.2022.3158667 – ident: key-10.3934/mbe.2024252-16 doi: 10.3934/math.20231238 – ident: key-10.3934/mbe.2024252-36 doi: 10.1109/TNSRE.2014.2303394 – ident: key-10.3934/mbe.2024252-13 doi: 10.1049/ell2.12706 – ident: key-10.3934/mbe.2024252-14 doi: 10.1016/j.ymssp.2020.106922 – ident: key-10.3934/mbe.2024252-29 doi: 10.1371/journal.pone.0262810 – ident: key-10.3934/mbe.2024252-27 doi: 10.1002/cpe.6051 – ident: key-10.3934/mbe.2024252-40 doi: 10.1016/j.bspc.2014.07.007 – ident: key-10.3934/mbe.2024252-45 doi: 10.1109/TBME.2019.2899222 – ident: key-10.3934/mbe.2024252-38 doi: 10.3389/fnbot.2016.00009 – ident: key-10.3934/mbe.2024252-1 doi: 10.1155/2019/4159676 – ident: key-10.3934/mbe.2024252-39 doi: 10.3389/fnbot.2017.00051 – ident: key-10.3934/mbe.2024252-4 doi: 10.1109/LSP.2019.2903334 – ident: key-10.3934/mbe.2024252-5 doi: 10.1109/BIBE50027.2020.00072 – ident: key-10.3934/mbe.2024252-41 |
| SSID | ssj0034334 |
| Score | 2.3536355 |
| Snippet | This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image... |
| SourceID | doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5712 |
| SubjectTerms | Adult Algorithms Amputees convolutional neural network electromyography Electromyography - methods Female gesture recognition Gestures Humans log mel spectrogram Male Middle Aged Neural Networks, Computer nina pro Reproducibility of Results Signal Processing, Computer-Assisted Upper Extremity - physiology upper limb Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA8iiO2D-NV6rUoK-iIsukkumzy24geCPlXwbZl8ldJz7zhvkfvvndnsHRakffFlF5YhCTOTzMzmNzOMHWm0WkE43Ej0UGBcYaBMRQhSJCOj1ED_IW_v9PW9unkYPrxq9UWYsFweODPu1IZKe8LnCE95lBaEBFBodU0Ak3Ie-Zmxi2Aqn8FSSalyNp60Up0-OqqISd61-Mv-dGX63_ItP7L1tpnA_BlGo1f25nKTbfSOIv-eF7jFVmKzzdZy68j5DvtzcXvF6W6onUZOIAykhb7ACJ91WNgnHjKODr-ME28nkzjlo9-PjhPY_RenLKyCOhI_w5wT-rzXQhyJqlx2rw4jvsvuLy9-nl8XfeOEAiTGg4V3LiathYeQhK90dMqXCUUgUA4YsxiXIFlnvdQhpVAZFWIZXBnAVwrjDfmJrTbjJu4xnlKyqTxLIqoKB8H96is7BG-0RetXhgE7WbCz9n1VcWpuMaoxuiDe18j7uuf9gB0tiSe5mMbbZD9ILksSqoDdfUC9qHu9qP-nFwP2bSHVGncMXYNAE8ftU41BEgZpVgmc6HMW93IqiWcuBlnDATteyv9fS_3yHkv9yj7QcHRHJdQ-W51N23iArs7MHXZa_QKguPzt priority: 102 providerName: Directory of Open Access Journals |
| Title | EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38872555 https://www.proquest.com/docview/3068759422 https://doi.org/10.3934/mbe.2024252 https://doaj.org/article/9d76c19912c04629a23aa47278da8f07 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1551-0018 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0034334 issn: 1547-1063 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1551-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0034334 issn: 1547-1063 databaseCode: AMVHM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemmxDwwPfH8TEFMV6QOtYklzaPAzYmpE08cNJ4qpyvCe3WO92umo6_HrvtncY0AS9tFbltGtux3Tg_A2wbslpBOlIkPmgsXVZinrIQlEylisog_4c8OjaHY_31ZHSyAW9Xe2GurN8rq_SHc8dYluwX0zy7aUbkcA9gc3z8be9Hi4SqC5pI2nppbPszrjHX7cK7fvcfdqeF57_Jp7wLt5t6hstLnEyu2JmD-_B51cMuveRsp1m4Hf_rGnjjPz7hAdzr_Uyx1wnGQ9iI9SO41VWeXD6Gs_2jL4KXlpp5FJzDQbTY45OIRZtKeyFCl4ZHLdMkmtkszsXk57kTnCt_KngTV8YFjS9xKTh5vRdiehKDZLanNsX8CYwP9r9_Osz6ugsZKgonM-9cTMZIjyFJX5jotM8TcVASGynkKV3CZJ31yoSUQlHqEPPg8oC-0BSuqKcwqKd1fA4ipWRTvptk1AU9hNTdF3aEvjSWjGcehvB-xZXK96DkXBtjUlFwwqNX0ehV_egNYXtNPOuwOG4m-8jsXZMwgHbbQEypen2sbCiM57Qv6Xl7rkWpEDU5c2XAMu0WQ3izEo6KFI5XUbCO0-aiohiLYjyrJb3oWSc161cpmrIpRhsN4d1ajP7W1Rf_SfcS7vAVr2JJ_QoGi3kTX5MztHBb7U-ErV4lfgNeugX8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLemmxDsgW_G8aUgxgtSx5rk0uZxwMaEtIkHThpPlfOF0G690-2q6fjrsdveaUwT8NJWkZu2sR3bjfMzwI4hqxWkI0Xig8bSZSXmKQtByVSqqAzyf8jjE3M01l9OR6cb8Ga1F-bK-r2ySr8_d4xlyX4xzbObZkQO9wA2xydf97-3SKi6oImkrZfGtj_jGnPdLrzrd_9hd1p4_pt8yi243dQzXF7iZHLFzhzeg0-rN-zSS852m4Xb9b-ugTf-4xPuw93ezxT7nWA8gI1YP4RbXeXJ5SM4Ozj-LHhpqZlHwTkcRIs9PolYtKm0FyJ0aXjUMk2imc3iXEx-njvBufI_BG_iyrig8SUuBSev90JMPTFIZntqU8wfw_jw4NvHo6yvu5ChonAy887FZIz0GJL0hYlO-zwRByWxkUKe0iVM1lmvTEgpFKUOMQ8uD-gLTeGKegKDelrHpyBSSjble0lGXVAnpO6-sCP0pbFkPPMwhHcrrlS-ByXn2hiTioITHr2KRq_qR28IO2viWYfFcTPZB2bvmoQBtNsGYkrV62NlQ2E8p31Jz9tzLUqFqMmZKwOWaa8YwuuVcFSkcLyKgnWcNhcVxVgU41kt6UHbndSsH6VoyqYYbTSEt2sx-turPvtPuudwh694FUvqFzBYzJv4kpyhhXvVK8NvQJ0FBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMG+gesture+signal+analysis+towards+diagnosis+of+upper+limb+using+dual-pathway+convolutional+neural+network&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Qamar%2C+Hafiz+Ghulam+Murtza&rft.au=Qureshi%2C+Muhammad+Farrukh&rft.au=Mushtaq%2C+Zohaib&rft.au=Zubariah%2C+Zubariah&rft.date=2024-04-24&rft.issn=1551-0018&rft.volume=21&rft.issue=4&rft.spage=5712&rft.epage=5734&rft_id=info:doi/10.3934%2Fmbe.2024252&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_mbe_2024252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |