Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors

Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape t...

Full description

Saved in:
Bibliographic Details
Published inACS synthetic biology Vol. 6; no. 10; pp. 1851 - 1859
Main Authors Mannan, Ahmad A, Liu, Di, Zhang, Fuzhong, Oyarzún, Diego A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 20.10.2017
Subjects
Online AccessGet full text
ISSN2161-5063
2161-5063
DOI10.1021/acssynbio.7b00172

Cover

Abstract Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose–response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.
AbstractList Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.
Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.
Author Liu, Di
Zhang, Fuzhong
Oyarzún, Diego A
Mannan, Ahmad A
AuthorAffiliation Imperial College London
Department of Mathematics
Washington University in St. Louis
Department of Energy, Environmental & Chemical Engineering
AuthorAffiliation_xml – name: Washington University in St. Louis
– name: Department of Mathematics
– name: Imperial College London
– name: Department of Energy, Environmental & Chemical Engineering
Author_xml – sequence: 1
  givenname: Ahmad A
  surname: Mannan
  fullname: Mannan, Ahmad A
  organization: Imperial College London
– sequence: 2
  givenname: Di
  surname: Liu
  fullname: Liu, Di
  organization: Washington University in St. Louis
– sequence: 3
  givenname: Fuzhong
  orcidid: 0000-0001-6979-7909
  surname: Zhang
  fullname: Zhang, Fuzhong
  email: fzhang@seas.wustl.edu
  organization: Washington University in St. Louis
– sequence: 4
  givenname: Diego A
  orcidid: 0000-0002-0381-5278
  surname: Oyarzún
  fullname: Oyarzún, Diego A
  email: d.oyarzun@imperial.ac.uk
  organization: Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28763198$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLLDEQRoMovn-Am0sv76Y1j066s_Q1KiiK6DqkMxWJ9CRzU-mF_94eZpSLC2tTBXW-gjoHZDumCIScMHrKKGdn1iF-xD6k07anlLV8i-xzplgtqRLb_8175BjxnU4lpZCi2yV7vGuVYLrbJ8-zMc7tAmKxQ3UFGN5i9ZRDdGE5AFY-5eol24guh2UJKdYz60rK9YVFmFcPUGyfhlCguggJIWLKeER2vB0Qjjf9kLzOrl8ub-v7x5u7y_P72gqhS-0F1ZLqjgNI23jlnG9ACaCad7ptrGdCcy67hqte-V51at5oLayWPbDWS3FI_q7vLnP6NwIWswjoYBhshDSiYZpLyWTLV-ifDTr2C5ibZQ4Lmz_Ml4cJaNeAywkxgzcuFLt6uGQbBsOoWUk339LNRvqUZD-SX8d_y9TrzLQy72nMcfL0C_8Jjt2W7w
CitedBy_id crossref_primary_10_1016_j_automatica_2018_10_046
crossref_primary_10_3389_fbioe_2022_821152
crossref_primary_10_1002_bit_26521
crossref_primary_10_1016_j_bios_2022_115035
crossref_primary_10_1021_acssynbio_0c00648
crossref_primary_10_1038_s41589_022_01012_8
crossref_primary_10_1016_j_copbio_2020_06_006
crossref_primary_10_1109_TNB_2022_3156621
crossref_primary_10_1021_acssynbio_9b00348
crossref_primary_10_1016_j_ymben_2023_02_005
crossref_primary_10_1002_smll_201907522
crossref_primary_10_1111_1751_7915_14166
crossref_primary_10_1016_j_procbio_2023_04_021
crossref_primary_10_1021_jacs_3c04807
crossref_primary_10_1016_j_mec_2020_e00150
crossref_primary_10_3389_fbioe_2020_00175
crossref_primary_10_1016_j_biotechadv_2024_108404
crossref_primary_10_3389_fmicb_2018_02460
crossref_primary_10_1049_enb2_12024
crossref_primary_10_1016_j_foodres_2024_114557
crossref_primary_10_1016_j_ifacol_2019_12_251
crossref_primary_10_1021_acssynbio_2c00143
crossref_primary_10_1021_acsomega_3c01164
crossref_primary_10_1038_s41467_020_14941_6
crossref_primary_10_1021_acssensors_7b00931
crossref_primary_10_1016_j_isci_2020_101305
crossref_primary_10_1021_acssynbio_0c00252
crossref_primary_10_3390_ijms25031533
crossref_primary_10_1016_j_copbio_2018_01_011
crossref_primary_10_1021_acssensors_4c01072
crossref_primary_10_1021_acssynbio_3c00344
crossref_primary_10_1080_07388551_2021_1898326
crossref_primary_10_3389_fmicb_2020_01081
crossref_primary_10_1111_1751_7915_13808
crossref_primary_10_15252_msb_20188605
crossref_primary_10_1109_JSEN_2019_2952333
crossref_primary_10_1038_s41589_021_00962_9
crossref_primary_10_1093_synbio_ysac009
crossref_primary_10_3389_fbioe_2020_00834
crossref_primary_10_1007_s10295_018_2004_x
crossref_primary_10_1016_j_ymben_2021_09_011
crossref_primary_10_1016_j_mec_2024_e00250
crossref_primary_10_1093_jimb_kuab049
crossref_primary_10_1021_acssynbio_7b00342
crossref_primary_10_1016_j_biotechadv_2022_107935
crossref_primary_10_3390_biom11030343
crossref_primary_10_1371_journal_pone_0283548
crossref_primary_10_1021_acssynbio_1c00391
crossref_primary_10_1038_s41589_024_01816_w
crossref_primary_10_1016_j_bej_2022_108765
crossref_primary_10_1016_j_ymben_2018_03_019
crossref_primary_10_1186_s12934_024_02523_w
crossref_primary_10_1007_s00253_019_10172_y
crossref_primary_10_1016_j_ymben_2020_08_015
crossref_primary_10_1080_07388551_2022_2040415
crossref_primary_10_1016_j_smaim_2022_10_003
crossref_primary_10_1016_j_mib_2020_07_014
crossref_primary_10_1038_s42003_019_0347_0
crossref_primary_10_1155_2018_7021826
crossref_primary_10_1016_j_biotechadv_2021_107767
crossref_primary_10_1093_jimb_kuac029
crossref_primary_10_34133_2022_9858049
crossref_primary_10_1080_07388551_2021_1982858
crossref_primary_10_1002_biot_202000433
crossref_primary_10_1016_j_ymben_2022_04_003
crossref_primary_10_1021_acssensors_0c00002
crossref_primary_10_1016_j_copbio_2022_102694
crossref_primary_10_1021_acssynbio_3c00120
crossref_primary_10_1016_j_addr_2024_115483
crossref_primary_10_1007_s00253_023_12669_z
crossref_primary_10_1016_j_synbio_2024_05_003
crossref_primary_10_1038_s41467_021_23606_x
crossref_primary_10_3390_md16070227
crossref_primary_10_1128_mBio_03112_19
crossref_primary_10_1186_s12859_023_05538_z
crossref_primary_10_1021_acssynbio_9b00149
crossref_primary_10_1016_j_copbio_2019_02_016
crossref_primary_10_1093_nar_gkz1123
crossref_primary_10_1016_j_ymben_2020_11_009
crossref_primary_10_1016_j_copbio_2022_102753
crossref_primary_10_1093_nar_gkac1248
crossref_primary_10_1016_j_ymben_2024_11_004
crossref_primary_10_1016_j_copbio_2017_10_009
crossref_primary_10_1002_bit_27897
crossref_primary_10_1021_acssynbio_8b00213
crossref_primary_10_1021_acssynbio_8b00057
crossref_primary_10_1039_D2OB00443G
crossref_primary_10_3390_biology11050744
crossref_primary_10_1016_j_ymben_2020_11_012
crossref_primary_10_1021_acssynbio_9b00255
crossref_primary_10_3390_bioengineering10020157
crossref_primary_10_3390_bios12020064
crossref_primary_10_1016_j_ymben_2020_01_002
crossref_primary_10_1093_protein_gzab015
crossref_primary_10_3390_bios13040428
crossref_primary_10_1016_j_ymben_2023_03_011
crossref_primary_10_3389_fbioe_2019_00372
crossref_primary_10_1016_j_biotechadv_2024_108339
crossref_primary_10_3389_fbioe_2023_1118702
crossref_primary_10_1016_j_copbio_2020_07_004
crossref_primary_10_1016_j_isci_2020_101067
crossref_primary_10_1016_j_tibtech_2020_03_013
crossref_primary_10_1021_acssynbio_9b00093
crossref_primary_10_3390_s24020431
crossref_primary_10_1002_cphc_201900739
crossref_primary_10_1042_BST20221542
crossref_primary_10_1016_j_ifacol_2019_12_229
crossref_primary_10_1016_j_gene_2021_146010
crossref_primary_10_34133_bdr_0037
crossref_primary_10_1080_10408398_2021_2009762
crossref_primary_10_1021_acsabm_2c00824
crossref_primary_10_1038_s41589_024_01817_9
crossref_primary_10_1038_s41467_018_05525_6
crossref_primary_10_1021_acsbiomaterials_2c01006
crossref_primary_10_1016_j_bpj_2020_07_020
crossref_primary_10_1016_j_copbio_2020_02_019
crossref_primary_10_1016_j_copbio_2020_04_007
crossref_primary_10_1038_s41573_021_00285_3
crossref_primary_10_1016_j_sbi_2019_01_013
crossref_primary_10_1007_s10295_018_2013_9
crossref_primary_10_1016_j_ymben_2021_10_014
crossref_primary_10_3390_molecules29153512
crossref_primary_10_1016_j_bios_2020_112783
crossref_primary_10_1021_acssynbio_9b00191
crossref_primary_10_3389_fcell_2020_614832
crossref_primary_10_1021_acssynbio_7b00419
crossref_primary_10_3390_ijms21103615
Cites_doi 10.1007/s10295-016-1862-3
10.1371/journal.pcbi.1002811
10.1186/1472-6750-2-20
10.1073/pnas.83.6.1608
10.1016/j.jbiotec.2011.10.009
10.1021/acssynbio.6b00048
10.1038/nchembio.2046
10.1016/j.celrep.2012.06.004
10.1186/1472-6750-10-26
10.1016/j.gde.2005.02.006
10.1021/sb4000564
10.1093/nar/gkv616
10.1016/j.ymben.2015.06.008
10.1021/sb400158w
10.1371/journal.pcbi.1002261
10.1038/ncomms12266
10.1021/sb400110j
10.1002/anie.201006083
10.1128/jb.119.3.736-747.1974
10.1098/rsif.2015.0618
10.1038/nchembio.2177
10.1016/j.gde.2005.02.007
10.1073/pnas.1406401111
10.1007/s11693-010-9052-5
10.1038/ncomms3595
10.1021/acssynbio.5b00230
10.1098/rsif.2012.0671
10.1038/nrmicro3238
10.1016/S0006-3495(71)86192-1
10.1038/msb.2009.30
10.1016/j.copbio.2014.07.014
10.1038/nbt.2149
10.1073/pnas.85.23.8973
10.1002/biot.201200120
10.1021/acssynbio.6b00184
10.1371/journal.pcbi.1000363
10.1038/nmeth.3696
10.1021/cb400623m
10.1007/s00253-015-7090-3
10.1021/sb400126a
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acssynbio.7b00172
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-5063
EndPage 1859
ExternalDocumentID 28763198
10_1021_acssynbio_7b00172
c414064588
Genre Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a339t-f30950982ee5a4f6ccf4e63e0928974af1392258426b6fb686d4993a95be17f53
IEDL.DBID ACS
ISSN 2161-5063
IngestDate Fri Jul 11 08:46:45 EDT 2025
Wed Feb 19 02:42:29 EST 2025
Tue Jul 01 02:19:29 EDT 2025
Thu Apr 24 23:01:45 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords metabolite biosensor
model-based design
metabolic engineering
pathway optimization
dynamic pathway regulation
transcriptional regulator
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a339t-f30950982ee5a4f6ccf4e63e0928974af1392258426b6fb686d4993a95be17f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6979-7909
0000-0002-0381-5278
PMID 28763198
PQID 1925515725
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1925515725
pubmed_primary_28763198
crossref_citationtrail_10_1021_acssynbio_7b00172
crossref_primary_10_1021_acssynbio_7b00172
acs_journals_10_1021_acssynbio_7b00172
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-20
PublicationDateYYYYMMDD 2017-10-20
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS synthetic biology
PublicationTitleAlternate ACS Synth. Biol
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
Neidhardt F. C. (ref41/cit41) 1974; 119
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Bremer H. (ref30/cit30) 1996; 122
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1007/s10295-016-1862-3
– ident: ref36/cit36
  doi: 10.1371/journal.pcbi.1002811
– ident: ref40/cit40
  doi: 10.1186/1472-6750-2-20
– ident: ref21/cit21
  doi: 10.1073/pnas.83.6.1608
– ident: ref31/cit31
  doi: 10.1016/j.jbiotec.2011.10.009
– ident: ref37/cit37
  doi: 10.1021/acssynbio.6b00048
– ident: ref5/cit5
  doi: 10.1038/nchembio.2046
– ident: ref26/cit26
  doi: 10.1016/j.celrep.2012.06.004
– ident: ref35/cit35
  doi: 10.1186/1472-6750-10-26
– ident: ref29/cit29
  doi: 10.1016/j.gde.2005.02.006
– ident: ref24/cit24
  doi: 10.1021/sb4000564
– ident: ref6/cit6
  doi: 10.1093/nar/gkv616
– ident: ref10/cit10
  doi: 10.1016/j.ymben.2015.06.008
– ident: ref16/cit16
  doi: 10.1021/sb400158w
– ident: ref23/cit23
  doi: 10.1371/journal.pcbi.1002261
– ident: ref34/cit34
  doi: 10.1038/ncomms12266
– ident: ref39/cit39
  doi: 10.1021/sb400110j
– ident: ref15/cit15
  doi: 10.1002/anie.201006083
– volume: 119
  start-page: 736
  issue: 3
  year: 1974
  ident: ref41/cit41
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.119.3.736-747.1974
– ident: ref7/cit7
  doi: 10.1098/rsif.2015.0618
– ident: ref13/cit13
  doi: 10.1038/nchembio.2177
– ident: ref22/cit22
  doi: 10.1016/j.gde.2005.02.007
– ident: ref2/cit2
  doi: 10.1073/pnas.1406401111
– ident: ref4/cit4
  doi: 10.1007/s11693-010-9052-5
– ident: ref18/cit18
  doi: 10.1038/ncomms3595
– ident: ref19/cit19
  doi: 10.1021/acssynbio.5b00230
– ident: ref3/cit3
  doi: 10.1098/rsif.2012.0671
– ident: ref12/cit12
  doi: 10.1038/nrmicro3238
– ident: ref27/cit27
  doi: 10.1016/S0006-3495(71)86192-1
– ident: ref28/cit28
  doi: 10.1038/msb.2009.30
– ident: ref9/cit9
  doi: 10.1016/j.copbio.2014.07.014
– ident: ref1/cit1
  doi: 10.1038/nbt.2149
– ident: ref32/cit32
  doi: 10.1073/pnas.85.23.8973
– ident: ref20/cit20
  doi: 10.1002/biot.201200120
– volume: 122
  start-page: 1553
  volume-title: Escherichia coli and Salmonella typhimurium
  year: 1996
  ident: ref30/cit30
– ident: ref33/cit33
  doi: 10.1021/acssynbio.6b00184
– ident: ref8/cit8
  doi: 10.1371/journal.pcbi.1000363
– ident: ref14/cit14
  doi: 10.1038/nmeth.3696
– ident: ref17/cit17
  doi: 10.1021/cb400623m
– ident: ref11/cit11
  doi: 10.1007/s00253-015-7090-3
– ident: ref38/cit38
  doi: 10.1021/sb400126a
SSID ssj0000553538
Score 2.4998798
Snippet Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1851
SubjectTerms Biosensing Techniques - methods
Metabolic Engineering - methods
Promoter Regions, Genetic - genetics
Synthetic Biology - methods
Transcription Factors - genetics
Transcription Factors - metabolism
Title Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors
URI http://dx.doi.org/10.1021/acssynbio.7b00172
https://www.ncbi.nlm.nih.gov/pubmed/28763198
https://www.proquest.com/docview/1925515725
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uFz24L-NGBfEgZEzTpm2OjjqIMCIuMLeSpAmI0orpHPTX-9Jl3AePhSY0yUu_7-XlfQ-hAyJpwhItsBI6xqEOFOZZwnGmSJhlChxn6c47BlfRxX14OWTDD53t7xF86h8LZe1rLh-Kblx7LNNolkaAM44Hnd6OD1QIYwGrKldTYDGYAfa2UczfenFopOxXNPqDYlZQ01-sc7htpVDobpg8dkel7Kq3n_qN_xnFElpoKKd3UtvIMprS-Qqa_yREuIpu-i4hpNb5986qSx3edXsMbz0gtl4Fau0vBverMj24BxiYeQNdgim5ZGav91BYcIyLF7uG7vvnd6cXuKm2gEUQ8BKbANgW4QnVmonQREqZUEeBJhx8sjgUBrgibP4EIF1GRkZJlIG3FAjOpPZjw4J1NJMXud5EnjIciICm0iQkNASeBONSU6c9o0kWdtAhzEfa7BabVoFw6qfjSUqbSeog0i5PqhrNclc642lSk6Nxk-dasGPSy_vtmqewrVysROS6GMEncfC1fBZT1kEbtTGMu6NOxc_nydZ_h7GN5qhjAwB5lOygmfJlpHeBy5Ryr7Lhd1i98Hk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOACHFuiDhdIGCXGo5K3j2El85LXaUhahAhK3KHZsCRUliGQP5dczdpJtqQpqj4liy7HH_r6xPd8A7FLFUpGanOjcJISbSBNZpJIUmvKi0Og4K7ffMTmLx1f85FpczwHrY2GwETXWVPtD_F_qAuEXfFf_LNVNNUxax2UeFkXMY5euYf_wYravQoWIhE9gzZDMEIEQ3B9m_q0WB0q6fgpKzzBNjzij120UoG-rv2jyYzht1FA__CHj-H8_swqvOgIa7LcWswZzplyHld9kCd_A95ELD2lV_4Mjf8UjOO835esAaW7gIa5fcMjIJ-0hB4iIRTAxDRqWC20ODm6qGt3k6r5-C1ej48vDMelyL5A8imRDbITci8qUGSNybmOtLTdxZKhEDy3huUXmiEtBigCvYqviNC7Qd4pyKZQJEyuid7BQVqXZgEBbibTAMGVTyi3Fp1xIZZhTojG04APYw_7IurlTZ_5YnIXZrJOyrpMGQPtRynSnYO4Sady-VOTzrMhdK9_x0sc7_dBnOMncyUlemmqKTZLoeYUiYWIA71ubmFXHnKZfKNPNf_2NT7A0vpycZqdfz75twTJzPAHBkNEPsNDcT802spxGffRm_QiJtPjb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS94wFD6oA9EL3Zyb7-ZcheGFkNc0bdrm0o8V96HInOhdadIEXpRWbN8L_fWepB-obKKXLU1Ik5M8z8lJngPwjUqW8ETnROU6JqEOFBFFIkihaFgUCh1nafc7jo6jw7Pw5wW_mIGovwuDjaixptoF8e2svi5MpzDg7-D7-raUk2oct87LLLxBQuLblA27-6fD3grlPOAuiTVDQkM4wnAf0PxXLRaYVP0YmP7DNh3qpMtwPrTXHTa5HE8bOVZ3T6QcX_9Db2GpI6Lebms572BGlyuw-ECe8D38Se01kVb93ztwRz28k35zvvaQ7noO6vqFh6QueQ_ZQ2QsvCPdoIHZK87e3qSq0V2ubupVOEu__90_JF0OBpIHgWiICZCDUZEwrXkemkgpE-oo0FSgpxaHuUEGiUtCgkAvIyOjJCrQhwpywaX2Y8ODDzBXVqVeA08ZgfRAM2kSGhqKTzkXUjOrSKNpEY5gC_sj6-ZQnbnwOPOzoZOyrpNGQPuRylSnZG4Talw9V2R7KHLdyng89_FmP_wZTjYbQclLXU2xSQI9MJ_HjI_gY2sXQ3XMavv5Ivn00t_4CvMnB2n2-8fxr8-wwCxdQExkdB3mmpup_oJkp5EbzrLvAX0C-1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Design+Principles+for+Transcription-Factor-Based+Metabolite+Biosensors&rft.jtitle=ACS+synthetic+biology&rft.au=Mannan%2C+Ahmad+A&rft.au=Liu%2C+Di&rft.au=Zhang%2C+Fuzhong&rft.au=Oyarz%C3%BAn%2C+Diego+A&rft.date=2017-10-20&rft.issn=2161-5063&rft.eissn=2161-5063&rft.volume=6&rft.issue=10&rft.spage=1851&rft_id=info:doi/10.1021%2Facssynbio.7b00172&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon