A pattern-matching method for flow model calibration under training image constraint
Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditi...
        Saved in:
      
    
          | Published in | Computational geosciences Vol. 23; no. 4; pp. 813 - 828 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.08.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1420-0597 1573-1499  | 
| DOI | 10.1007/s10596-019-9822-4 | 
Cover
| Abstract | Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned
k
-SVD sparse parametrization and
l
1
-norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models. | 
    
|---|---|
| AbstractList | Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned k-SVD sparse parametrization and l1-norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models. Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned k -SVD sparse parametrization and l 1 -norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models.  | 
    
| Author | Jafarpour, Behnam Golmohammadi, Azarang Khaninezhad, Reza  | 
    
| Author_xml | – sequence: 1 givenname: Reza surname: Khaninezhad fullname: Khaninezhad, Reza organization: University of Southern California (USA) – sequence: 2 givenname: Azarang surname: Golmohammadi fullname: Golmohammadi, Azarang organization: University of Southern California (USA) – sequence: 3 givenname: Behnam orcidid: 0000-0003-1071-5299 surname: Jafarpour fullname: Jafarpour, Behnam email: jafarpou@usc.edu organization: University of Southern California (USA)  | 
    
| BookMark | eNp9kF1LwzAUhoNMcE5_gHcBr6NJ0ybt5Rh-wcCbeR3S9mTraJOZZIj_3nQVBEHPzTkc3ud8vJdoZp0FhG4YvWOUyvvAaFEJQllFqjLLSH6G5qyQnLC8qmapzjNKkkReoMsQ9pTSSnI2R5slPugYwVsy6NjsOrvFA8Sda7FxHpvefeDBtdDjRvdd7XXsnMVH24LH0evOjkA36C3gxtlwasUrdG50H-D6Oy_Q2-PDZvVM1q9PL6vlmmjOq0iEBGmMrOvWaE6hLjMqRc2pZByEaURZMFYCzU1TcmBgZKllLpmoRStFoUu-QLfT3IN370cIUe3d0du0UmVZnkJkdFSxSdV4F4IHow4-Xew_FaNqNE9N5qlknhrNU3li5C-m6eLp9_HD_l8ym8iQttgt-J-b_oa-AODihe0 | 
    
| CitedBy_id | crossref_primary_10_3233_JCM_215741 | 
    
| Cites_doi | 10.2118/1307-PA 10.1016/j.advwatres.2016.04.007 10.2118/87820-PA 10.1029/WR022i002p00199 10.1007/BF02066005 10.1016/j.advwatres.2011.09.002 10.1002/2014WR016430 10.1029/WR019i003p00677 10.1002/2016WR019853 10.1017/CBO9780511535642 10.2118/81503-PA 10.1029/2008WR007675 10.2118/106453-PA 10.1029/2011WR011195 10.1007/978-1-4020-3610-1_26 10.1002/wrcr.20545 10.2118/5740-PA 10.1126/science.290.5500.2323 10.1029/2010WR009982 10.1002/0470041080 10.1029/98WR00003 10.1016/B978-008043319-6/50036-4 10.1007/s11004-009-9247-z 10.1190/1.1442644 10.1007/s11004-005-9005-9 10.1002/2017WR022284 10.1002/2017WR022284 10.1029/96WR00160 10.1016/j.advwatres.2013.10.014 10.1016/j.advwatres.2009.02.011 10.1007/s11004-011-9316-y 10.1111/j.1745-6584.2003.tb02580.x 10.1007/s11004-007-9131-7 10.1007/s11004-014-9541-2 10.1023/A:1014009426274 10.1002/2012WR013431 10.1016/0167-2789(92)90242-F 10.1109/MSP.2007.914731 10.1029/2011WR010787  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature Switzerland AG 2019 Computational Geosciences is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Computational Geosciences is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ JQ2 K7- L.G L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s10596-019-9822-4 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology Statistics  | 
    
| EISSN | 1573-1499 | 
    
| EndPage | 828 | 
    
| ExternalDocumentID | 10_1007_s10596_019_9822_4 | 
    
| GroupedDBID | -5D -5G -BR -EM -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I-F I09 IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- N9A NPVJJ NQJWS NU0 O93 O9J OAM P62 P9R PCBAR PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z81 ZMTXR ~02 ~A9 -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA BAPOH CAG CITATION COF H13 HZ~ IHE N2Q O9- OVD PHGZM PHGZT PQGLB PUEGO RNI RZC RZE RZK S1Z TEORI 3V. 7SC 7UA 7XB 8AL 8FD 8FK C1K F1W H8D H96 JQ2 L.G L7M L~C L~D PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-a339t-67e7ff7bbdfa30eb82076b30713e6fc685118e04fc83e1ef78a74716b6d765a83 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1420-0597 | 
    
| IngestDate | Sat Jul 26 01:01:18 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Wed Oct 01 04:44:04 EDT 2025 Fri Feb 21 02:36:41 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Training image Geologic feasibility Flow model calibration Multiple-point statistics Pattern matching  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a339t-67e7ff7bbdfa30eb82076b30713e6fc685118e04fc83e1ef78a74716b6d765a83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1071-5299 | 
    
| PQID | 2244446208 | 
    
| PQPubID | 55381 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_2244446208 crossref_primary_10_1007_s10596_019_9822_4 crossref_citationtrail_10_1007_s10596_019_9822_4 springer_journals_10_1007_s10596_019_9822_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-08-01 | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Dordrecht  | 
    
| PublicationSubtitle | Modeling, Simulation and Data Analysis | 
    
| PublicationTitle | Computational geosciences | 
    
| PublicationTitleAbbrev | Comput Geosci | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | KitanidisPKVomvorisEGA geostatistical approach to the inverse problem in groundwater modeling (steady state) and one- dimensional simulationsWater Resour. Res.198319367769010.1029/WR019i003p00677 VoHXDurlofskyLJA new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological modelsMath. Geosci.2014461177581310.1007/s11004-014-9541-2 SahniIHorneRNMultiresolution wavelet analysis for improved reservoir descriptionSPE Reserv. Eval. Eng.2005801536910.2118/87820-PA ZhouHGómez-HernándezJJLiLInverse methods in hydrogeology: evolution and recent trendsAdv. Water Resour.201463223710.1016/j.advwatres.2013.10.014ISSN 0309–1708 Khaninezhad, M.-R., Golmohammadi, A., Jafarpour, B.: Discrete regularization for calibration of geologic facies against dynamic flow data. Water Resour. Res, 54. https://doi.org/10.1002/2017WR022284https://doi.org/10.1002/2017WR022284 (2018) ZimmermanDAde MarsilyGGotwayCAMariettaMGAxnessCLBeauheimRLBrasRLA comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flowWater Resour. Res.19983461373141310.1029/98WR00003 HuLYChugunovaTMultiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive reviewWater Resour. Res.20084411 HuLYJenniSHistory matching of object-based stochastic reservoir modelsSPE J.2005100331232310.2118/81503-PA JafarpourBMcLaughlinDBReservoir characterization with the discrete cosine transformSPE J.2009140118220110.2118/106453-PA JafarpourBKhodabakhshiMA probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulationMath. Geosci.201143213316410.1007/s11004-011-9316-y TikhonovASolution of incorrectly formulated problems and the regularization method. In SovietMath. Dokl1963510351038 CarreraJNeumanSPEstimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior informationWater Resour. Res.198622219921010.1029/WR022i002p00199 FranssenHAlcoleaARivaMBakrMvan der WielNStaufferFGuadagniniAA comparison of seven methods for the inverse modeling of groundwater flow. Application to the characterization of well catchmentsAdv. Water Resour.20093285187210.1016/j.advwatres.2009.02.011 GolmohammadiAJafarpourBSimultaneous geologic scenario identification and flow model calibration with group-sparsity formulationsAdv. Water Resour.20169220822710.1016/j.advwatres.2016.04.007 Hakim-ElahiSJafarpourBA distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibrationWater Resour. Res.201753108226824910.1002/2016WR019853 SarmaPDurlofskyLJAzizKKernel principal component analysis for efficient, differentiable parameterization of multipoint geostatisticsMath. Geosci.200840133210.1007/s11004-007-9131-7 JafarpourBGoyalVKMcLaughlinDBFreemanWTCompressed history matching: Exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problemsMath. Geosci.201042112710.1007/s11004-009-9247-z Chavent, G, Bissell, R.: Indicators for the refinement of parameterization. In: Tanaka, M., Dulikravich, G.S. (eds.) Inverse Problems in Engineering Mechanics 1998. (Proceedings of the third International Symposium on Inverse Problems ISIP 98 held in Nagano, Japan), pp 309–314. Elsevier (1998) CardiffMKitanidisPKBayesian inversion for facies detection: an extensible level set frameworkWater Resour. Res.2009451010.1029/2008WR007675 McLaughlinDTownleyLRA reassessment of the groundwater inverse problemWater Resour. Res.199632511316110.1029/96WR00160 KhodabakhshiMJafarpourBA Bayesian mixture-modeling approach for flow-conditioned multiple-point statistical facies simulation from uncertain training imagesWater Resour. Res.201349132834210.1029/2011WR010787 Arpat, G.B., Caers, J.: A multiple-scale, pattern-based approach to sequential simulation. In: Geostatistics Banff 2004, pp 255–264. Springer, Netherlands (2005) CaersJHoffmanTThe probability perturbation method: A new look at Bayesian inverse modelingMath. Geol.20063818110010.1007/s11004-005-9005-9 LeeJKitanidisPKBayesian inversion with total variation prior for discrete geologic structure identificationWater Resour. Res.201349117658766910.1002/2012WR013431 DohertyJGround water model calibration using pilot points and regularizationGround Water200341217017710.1111/j.1745-6584.2003.tb02580.x BharkEWJafarpourBDatta-GuptaAA generalized grid connectivity–based parameterization for subsurface flow model calibrationWater Resour. Res.2011471010.1029/2010WR009982 RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience200029055002323232610.1126/science.290.5500.2323 DeutschCVWangLHierarchical object-based stochastic modeling of fluvial reservoirsMath. Geol.199628785788010.1007/BF02066005 KhaninezhadMMJafarpourBLiLSparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulationAdv. Water Resour.20123910612110.1016/j.advwatres.2011.09.002 GolmohammadiAKhaninezhadMRMJafarpourBGroup-sparsity regularization for ill-posed subsurface flow inverse problemsWater Resour. Res.201551108607862610.1002/2014WR016430 ZhouHGómez-HernándezJJLiLA pattern- search- based inverse methodWater Resour. Res.201248310.1029/2011WR011195 CandèsEJWakinMBAn introduction to compressive samplingIEEE Signal Process. Mag.2008252213010.1109/MSP.2007.914731 GavalasGRShahPCSeinfeldJHReservoir history matching by Bayesian estimationSoc. Petrol. Eng. J.1976160633735010.2118/5740-PA Jacquard, P., Jain, C.: Permeability distribution from field pressure data. Soc. Pet. Eng. J., 281–294 (1965) LiuEJafarpourBLearning sparse geologic dictionaries from low-rank representations of facies connectivity for flow model calibrationWater Resour. Res.2013497088710110.1002/wrcr.20545 Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley (2006) StrebelleSConditional simulation of complex geological structures using multiple-point statisticsMathem. Geol.200234112110.1023/A:1014009426274 RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D: Nonlin. Phenom.199260125926810.1016/0167-2789(92)90242-F BregmanNDBaileyRCChapmanCHCrosshole seismic tomographyGeophysics198954220021510.1190/1.1442644 Oliver, D S, Reynolds, AC, Liu, N: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008) M Cardiff (9822_CR6) 2009; 45 S Hakim-Elahi (9822_CR15) 2017; 53 J Caers (9822_CR4) 2006; 38 EW Bhark (9822_CR2) 2011; 47 CV Deutsch (9822_CR9) 1996; 28 M Khodabakhshi (9822_CR25) 2013; 49 A Golmohammadi (9822_CR14) 2015; 51 P Sarma (9822_CR34) 2008; 40 DA Zimmerman (9822_CR40) 1998; 34 J Carrera (9822_CR7) 1986; 22 E Liu (9822_CR28) 2013; 49 LY Hu (9822_CR17) 2008; 44 9822_CR30 LY Hu (9822_CR18) 2005; 10 PK Kitanidis (9822_CR26) 1983; 19 ST Roweis (9822_CR31) 2000; 290 9822_CR19 9822_CR16 B Jafarpour (9822_CR21) 2009; 14 A Golmohammadi (9822_CR13) 2016; 92 H Zhou (9822_CR38) 2014; 63 A Tikhonov (9822_CR36) 1963; 5 HX Vo (9822_CR37) 2014; 46 J Lee (9822_CR27) 2013; 49 GR Gavalas (9822_CR12) 1976; 16 H Franssen (9822_CR11) 2009; 32 S Strebelle (9822_CR35) 2002; 34 H Zhou (9822_CR39) 2012; 48 I Sahni (9822_CR33) 2005; 8 9822_CR24 D McLaughlin (9822_CR29) 1996; 32 B Jafarpour (9822_CR22) 2010; 42 J Doherty (9822_CR10) 2003; 41 9822_CR8 ND Bregman (9822_CR3) 1989; 54 EJ Candès (9822_CR5) 2008; 25 B Jafarpour (9822_CR20) 2011; 43 MM Khaninezhad (9822_CR23) 2012; 39 9822_CR1 LI Rudin (9822_CR32) 1992; 60  | 
    
| References_xml | – reference: CaersJHoffmanTThe probability perturbation method: A new look at Bayesian inverse modelingMath. Geol.20063818110010.1007/s11004-005-9005-9 – reference: Khaninezhad, M.-R., Golmohammadi, A., Jafarpour, B.: Discrete regularization for calibration of geologic facies against dynamic flow data. Water Resour. Res, 54. https://doi.org/10.1002/2017WR022284https://doi.org/10.1002/2017WR022284 (2018) – reference: TikhonovASolution of incorrectly formulated problems and the regularization method. In SovietMath. Dokl1963510351038 – reference: DohertyJGround water model calibration using pilot points and regularizationGround Water200341217017710.1111/j.1745-6584.2003.tb02580.x – reference: JafarpourBMcLaughlinDBReservoir characterization with the discrete cosine transformSPE J.2009140118220110.2118/106453-PA – reference: JafarpourBGoyalVKMcLaughlinDBFreemanWTCompressed history matching: Exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problemsMath. Geosci.201042112710.1007/s11004-009-9247-z – reference: KitanidisPKVomvorisEGA geostatistical approach to the inverse problem in groundwater modeling (steady state) and one- dimensional simulationsWater Resour. Res.198319367769010.1029/WR019i003p00677 – reference: CardiffMKitanidisPKBayesian inversion for facies detection: an extensible level set frameworkWater Resour. Res.2009451010.1029/2008WR007675 – reference: KhodabakhshiMJafarpourBA Bayesian mixture-modeling approach for flow-conditioned multiple-point statistical facies simulation from uncertain training imagesWater Resour. Res.201349132834210.1029/2011WR010787 – reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience200029055002323232610.1126/science.290.5500.2323 – reference: CarreraJNeumanSPEstimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior informationWater Resour. Res.198622219921010.1029/WR022i002p00199 – reference: ZhouHGómez-HernándezJJLiLA pattern- search- based inverse methodWater Resour. Res.201248310.1029/2011WR011195 – reference: ZimmermanDAde MarsilyGGotwayCAMariettaMGAxnessCLBeauheimRLBrasRLA comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flowWater Resour. Res.19983461373141310.1029/98WR00003 – reference: ZhouHGómez-HernándezJJLiLInverse methods in hydrogeology: evolution and recent trendsAdv. Water Resour.201463223710.1016/j.advwatres.2013.10.014ISSN 0309–1708 – reference: Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley (2006) – reference: HuLYJenniSHistory matching of object-based stochastic reservoir modelsSPE J.2005100331232310.2118/81503-PA – reference: Jacquard, P., Jain, C.: Permeability distribution from field pressure data. Soc. Pet. Eng. J., 281–294 (1965) – reference: JafarpourBKhodabakhshiMA probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulationMath. Geosci.201143213316410.1007/s11004-011-9316-y – reference: StrebelleSConditional simulation of complex geological structures using multiple-point statisticsMathem. Geol.200234112110.1023/A:1014009426274 – reference: VoHXDurlofskyLJA new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological modelsMath. Geosci.2014461177581310.1007/s11004-014-9541-2 – reference: GolmohammadiAKhaninezhadMRMJafarpourBGroup-sparsity regularization for ill-posed subsurface flow inverse problemsWater Resour. Res.201551108607862610.1002/2014WR016430 – reference: SahniIHorneRNMultiresolution wavelet analysis for improved reservoir descriptionSPE Reserv. Eval. Eng.2005801536910.2118/87820-PA – reference: Chavent, G, Bissell, R.: Indicators for the refinement of parameterization. In: Tanaka, M., Dulikravich, G.S. (eds.) Inverse Problems in Engineering Mechanics 1998. (Proceedings of the third International Symposium on Inverse Problems ISIP 98 held in Nagano, Japan), pp 309–314. Elsevier (1998) – reference: McLaughlinDTownleyLRA reassessment of the groundwater inverse problemWater Resour. Res.199632511316110.1029/96WR00160 – reference: BharkEWJafarpourBDatta-GuptaAA generalized grid connectivity–based parameterization for subsurface flow model calibrationWater Resour. Res.2011471010.1029/2010WR009982 – reference: BregmanNDBaileyRCChapmanCHCrosshole seismic tomographyGeophysics198954220021510.1190/1.1442644 – reference: CandèsEJWakinMBAn introduction to compressive samplingIEEE Signal Process. Mag.2008252213010.1109/MSP.2007.914731 – reference: FranssenHAlcoleaARivaMBakrMvan der WielNStaufferFGuadagniniAA comparison of seven methods for the inverse modeling of groundwater flow. Application to the characterization of well catchmentsAdv. Water Resour.20093285187210.1016/j.advwatres.2009.02.011 – reference: LeeJKitanidisPKBayesian inversion with total variation prior for discrete geologic structure identificationWater Resour. Res.201349117658766910.1002/2012WR013431 – reference: Arpat, G.B., Caers, J.: A multiple-scale, pattern-based approach to sequential simulation. In: Geostatistics Banff 2004, pp 255–264. Springer, Netherlands (2005) – reference: Oliver, D S, Reynolds, AC, Liu, N: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008) – reference: Hakim-ElahiSJafarpourBA distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibrationWater Resour. Res.201753108226824910.1002/2016WR019853 – reference: GolmohammadiAJafarpourBSimultaneous geologic scenario identification and flow model calibration with group-sparsity formulationsAdv. Water Resour.20169220822710.1016/j.advwatres.2016.04.007 – reference: SarmaPDurlofskyLJAzizKKernel principal component analysis for efficient, differentiable parameterization of multipoint geostatisticsMath. Geosci.200840133210.1007/s11004-007-9131-7 – reference: LiuEJafarpourBLearning sparse geologic dictionaries from low-rank representations of facies connectivity for flow model calibrationWater Resour. Res.2013497088710110.1002/wrcr.20545 – reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D: Nonlin. Phenom.199260125926810.1016/0167-2789(92)90242-F – reference: KhaninezhadMMJafarpourBLiLSparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulationAdv. Water Resour.20123910612110.1016/j.advwatres.2011.09.002 – reference: GavalasGRShahPCSeinfeldJHReservoir history matching by Bayesian estimationSoc. Petrol. Eng. J.1976160633735010.2118/5740-PA – reference: DeutschCVWangLHierarchical object-based stochastic modeling of fluvial reservoirsMath. Geol.199628785788010.1007/BF02066005 – reference: HuLYChugunovaTMultiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive reviewWater Resour. Res.20084411 – ident: 9822_CR19 doi: 10.2118/1307-PA – volume: 92 start-page: 208 year: 2016 ident: 9822_CR13 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.04.007 – volume: 8 start-page: 53 issue: 01 year: 2005 ident: 9822_CR33 publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/87820-PA – volume: 22 start-page: 199 issue: 2 year: 1986 ident: 9822_CR7 publication-title: Water Resour. Res. doi: 10.1029/WR022i002p00199 – volume: 28 start-page: 857 issue: 7 year: 1996 ident: 9822_CR9 publication-title: Math. Geol. doi: 10.1007/BF02066005 – volume: 39 start-page: 106 year: 2012 ident: 9822_CR23 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.09.002 – volume: 51 start-page: 8607 issue: 10 year: 2015 ident: 9822_CR14 publication-title: Water Resour. Res. doi: 10.1002/2014WR016430 – volume: 19 start-page: 677 issue: 3 year: 1983 ident: 9822_CR26 publication-title: Water Resour. Res. doi: 10.1029/WR019i003p00677 – volume: 53 start-page: 8226 issue: 10 year: 2017 ident: 9822_CR15 publication-title: Water Resour. Res. doi: 10.1002/2016WR019853 – ident: 9822_CR30 doi: 10.1017/CBO9780511535642 – volume: 10 start-page: 312 issue: 03 year: 2005 ident: 9822_CR18 publication-title: SPE J. doi: 10.2118/81503-PA – volume: 45 start-page: 10 year: 2009 ident: 9822_CR6 publication-title: Water Resour. Res. doi: 10.1029/2008WR007675 – volume: 14 start-page: 182 issue: 01 year: 2009 ident: 9822_CR21 publication-title: SPE J. doi: 10.2118/106453-PA – volume: 5 start-page: 1035 year: 1963 ident: 9822_CR36 publication-title: Math. Dokl – volume: 48 start-page: 3 year: 2012 ident: 9822_CR39 publication-title: Water Resour. Res. doi: 10.1029/2011WR011195 – ident: 9822_CR1 doi: 10.1007/978-1-4020-3610-1_26 – volume: 49 start-page: 7088 year: 2013 ident: 9822_CR28 publication-title: Water Resour. Res. doi: 10.1002/wrcr.20545 – volume: 16 start-page: 337 issue: 06 year: 1976 ident: 9822_CR12 publication-title: Soc. Petrol. Eng. J. doi: 10.2118/5740-PA – volume: 44 start-page: 11 year: 2008 ident: 9822_CR17 publication-title: Water Resour. Res. – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 9822_CR31 publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 47 start-page: 10 year: 2011 ident: 9822_CR2 publication-title: Water Resour. Res. doi: 10.1029/2010WR009982 – ident: 9822_CR16 doi: 10.1002/0470041080 – volume: 34 start-page: 1373 issue: 6 year: 1998 ident: 9822_CR40 publication-title: Water Resour. Res. doi: 10.1029/98WR00003 – ident: 9822_CR8 doi: 10.1016/B978-008043319-6/50036-4 – volume: 42 start-page: 1 issue: 1 year: 2010 ident: 9822_CR22 publication-title: Math. Geosci. doi: 10.1007/s11004-009-9247-z – volume: 54 start-page: 200 issue: 2 year: 1989 ident: 9822_CR3 publication-title: Geophysics doi: 10.1190/1.1442644 – volume: 38 start-page: 81 issue: 1 year: 2006 ident: 9822_CR4 publication-title: Math. Geol. doi: 10.1007/s11004-005-9005-9 – ident: 9822_CR24 doi: 10.1002/2017WR022284 10.1002/2017WR022284 – volume: 32 start-page: 1131 issue: 5 year: 1996 ident: 9822_CR29 publication-title: Water Resour. Res. doi: 10.1029/96WR00160 – volume: 63 start-page: 22 year: 2014 ident: 9822_CR38 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.10.014 – volume: 32 start-page: 851 year: 2009 ident: 9822_CR11 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.02.011 – volume: 43 start-page: 133 issue: 2 year: 2011 ident: 9822_CR20 publication-title: Math. Geosci. doi: 10.1007/s11004-011-9316-y – volume: 41 start-page: 170 issue: 2 year: 2003 ident: 9822_CR10 publication-title: Ground Water doi: 10.1111/j.1745-6584.2003.tb02580.x – volume: 40 start-page: 3 issue: 1 year: 2008 ident: 9822_CR34 publication-title: Math. Geosci. doi: 10.1007/s11004-007-9131-7 – volume: 46 start-page: 775 issue: 11 year: 2014 ident: 9822_CR37 publication-title: Math. Geosci. doi: 10.1007/s11004-014-9541-2 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 9822_CR35 publication-title: Mathem. Geol. doi: 10.1023/A:1014009426274 – volume: 49 start-page: 7658 issue: 11 year: 2013 ident: 9822_CR27 publication-title: Water Resour. Res. doi: 10.1002/2012WR013431 – volume: 60 start-page: 259 issue: 1 year: 1992 ident: 9822_CR32 publication-title: Physica D: Nonlin. Phenom. doi: 10.1016/0167-2789(92)90242-F – volume: 25 start-page: 21 issue: 2 year: 2008 ident: 9822_CR5 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.914731 – volume: 49 start-page: 328 issue: 1 year: 2013 ident: 9822_CR25 publication-title: Water Resour. Res. doi: 10.1029/2011WR010787  | 
    
| SSID | ssj0009731 | 
    
| Score | 2.196825 | 
    
| Snippet | Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 813 | 
    
| SubjectTerms | Algorithms Calibration Computer simulation Conditioning Constraint modelling Data Data integration Earth and Environmental Science Earth Sciences Geostatistics Geotechnical Engineering & Applied Earth Sciences Hydrogeology Identification Iterative methods Mathematical Modeling and Industrial Mathematics Original Paper Parameterization Pattern matching Regularization Regularization methods Singular value decomposition Soil Science & Conservation Statistical analysis Statistics Training  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Q9iL6FScv8iDT0qwP9IkfRBRmQ7BIbLB3krSpiDMbc6K-N-bS1uLgutjm4Zylybf5S7fB3CahSbgoWeoL5W0AYriNJaRop7IpNSRiLXCDf3HIR-M2cMkmqzBsD4Lg2WV9ZzoJupsnuIe-YVdauzFA09eLd4oqkZhdrWW0FCVtEJ26SjG1qEdIDNWC9o3_eHTc0PDK5xCoc8CTAHHos5zlofpIizI9WOKnHaU_V6pGvj5J2PqFqK7LdisECS5Ll2-DWtm1oWNe6fQ-9WFDsLHkn15B0bXZOEINGfUIlNXNklKzWhiwSrJp_NP4rRwiHUVBs7oJoLnypakFo8gL692ziEpAkm8VezC-K4_uh3QSkeBqjCMC8qFEXkutM5yZd2i7aIvuA4xPjU8TzmCLmk8lqcyNL7JhVQYqnLNM8EjJcM9aM3mM7MPRCplW0mmchvJeIzpmKUqU8rPNKpgpT3wapslaUUyjt82TRp6ZDRzYs2coJkT1oOzn1cWJcPGqsZHtSOS6md7T5qh0YPz2jnN4387O1jd2SF0AhwNrtrvCFrF8sMcWwRS6JNqWH0D-TvW6g priority: 102 providerName: ProQuest  | 
    
| Title | A pattern-matching method for flow model calibration under training image constraint | 
    
| URI | https://link.springer.com/article/10.1007/s10596-019-9822-4 https://www.proquest.com/docview/2244446208  | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: U2A dateStart: 19970401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohuCLeMXpHHnwSQn0kibp45RdUBwiG8ynkrQpCLMb20T89-ZkrVNRwb4U2jSUkzT5Ts853wdwnoUm4KFnqC-VtA6K4jSWkaKeyKTUkYi1wh_6dwPeH7GbcTQu67gXVbZ7FZJ0K_WnYrcIE2b9mCLnHGWbUI-QzctO4lHQXjPtCidC6LMAo7yxqEKZP3XxdTNaI8xvQVG313R3YacEiaS9GtU92DDFPmz1nAjv2wEM22TmaDELavGmS4YkKyVoYiEoySfTV-IUbogdAHSH0fgEq8XmpJKEIE_PdiUhKcJDvLQ8hFG3M7zu01IdgaowjJeUCyPyXGid5coaW9utXHAdotdpeJ5yhFLSeCxPZWh8kwup0AHlmmeCR0qGR1ArpoU5BiKVsq0kU7n1TzzGdMxSlSnlZxq1rdIGeJWZkrSkDsd3myRr0mO0bGItm6BlE9aAi49HZivejL8aNyvbJ-UntEgstrAHDzzZgMtqPNa3f-3s5F-tT2E7wPngUvqaUFvOX8yZhRlL3YJN2e21oN7uPd527PmqM7h_aLnJ9g4CEsza | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUAWXCigVS3n4QC-tLPJwbOeAEO-lwKqqFolbaieOhAS7C7sV2j_X38aMkzQqEtzIMXGsaDzxzHhmvg9gp4hdJOPA8VAbjQGKkTzVieGBKrS2iUqtoQP9q57sXosfN8nNDPxtemGorLLZE_1GXQxzOiPfRVODl4wCvT964MQaRdnVhkLD1NQKxZ6HGKsbOy7c9AlDuPHe-TGu99coOj3pH3V5zTLATRynEy6VU2WprC1Kgx9t0SQqaWOK3pwsc0kuiXaBKHMdu9CVShsK5KSVhZKJ0THOOwvzIhYpBn_zhye9n79a2F_lGRFDEVHKOVVNXrVq3kuoADhMOWHocfG_ZWzd3RcZWm_4TpfgY-2xsoNKxZZhxg1W4MOZZwSersAiuasV2vMn6B-wkQfsHHD0hH2ZJqs4qhk6x6y8Gz4xz73DUDUoUCe1YNTH9sgasgp2e497HMvJcaVbk1W4fheJfoa5wXDg1oBpY3CUFqbEyCkQwqYiN4UxYWGJdSvvQNDILMtrUHP6trushWMmMWco5ozEnIkOfPv3yqhC9Hhr8EazEFn9c4-zVhU78L1ZnPbxq5Otvz3ZNix0-1eX2eV57-ILLEakGb7ScAPmJo9_3CZ6PxO7VasYg9_vrdXPnIET5Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEIgL4tGKpRR8KBcqizwc2zmgCgHLq6AeQOKW2oktIcHuAlsh_hq_jhknIaIS3Mgxcaxo_MUz43l8AD-q1CUyjRyPtdHooBjJc50ZHqlKa5up3Bo60D87l0eX4uQqu5qA57YWhtIq2z0xbNTVsKQz8m1UNXjJJNLbvkmL-LPf_zW648QgRZHWlk6jhsipe3pE9-1h53gf13ozSfoHF3tHvGEY4CZN8zGXyinvlbWVN_jBFtWhkjYlz81JX0oyR7SLhC916mLnlTbkxEkrKyUzo1OcdxKmFXVxpyr1_mHX8FcFLsRYJBRszlUbUa3L9jJK_Y1zTt3zuHirEztD97_YbFB5_QWYb2xVtluDaxEm3GAJZg4DF_DTEsyRoVr3eV6Gi102Cq06Bxxt4JCgyWp2aoZmMfM3w0cWWHcYgoJcdAIEowq2e9bSVLDrW9zdWEkmK90af4HLT5HnV5gaDAduBZg2BkdpYTz6TJEQNhelqYyJK0t8W2UPolZmRdm0M6dvuym6Rswk5gLFXJCYC9GDrddXRnUvj48Gr7ULUTS_9UPRgbAHP9vF6R6_O9nqx5NtwCxiufh9fH76DeYSAkZIMVyDqfH9P_cdzZ6xXQ_4YvD3swH9AgZrEX8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pattern-matching+method+for+flow+model+calibration+under+training+image+constraint&rft.jtitle=Computational+geosciences&rft.au=Khaninezhad%2C+Reza&rft.au=Golmohammadi%2C+Azarang&rft.au=Jafarpour%2C+Behnam&rft.date=2019-08-01&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=23&rft.issue=4&rft.spage=813&rft.epage=828&rft_id=info:doi/10.1007%2Fs10596-019-9822-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10596_019_9822_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon |