A pattern-matching method for flow model calibration under training image constraint

Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditi...

Full description

Saved in:
Bibliographic Details
Published inComputational geosciences Vol. 23; no. 4; pp. 813 - 828
Main Authors Khaninezhad, Reza, Golmohammadi, Azarang, Jafarpour, Behnam
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1420-0597
1573-1499
DOI10.1007/s10596-019-9822-4

Cover

Abstract Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned k -SVD sparse parametrization and l 1 -norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models.
AbstractList Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned k-SVD sparse parametrization and l1-norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models.
Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the grid-level using a training image (TI) that encodes multiple-point statistical (MPS) information. A challenging aspect of using MPS methods is conditioning the resulting models on nonlinear flow data. We develop a pattern-matching method for calibration of MPS-based facies models subject to the TI constraint. Since the exact statistical information in the TI can only be expressed empirically, flow data conditioning and pattern matching are carried out in two iterative steps, using an alternating-direction algorithm. Flow data integration is formulated through a regularized least-squares by taking advantage of learned k -SVD sparse parametrization and l 1 -norm sparsity-promoting regularization methods. The TI constraint is enforced through a MPS-based pattern-matching algorithm that uses the identified model calibration solution to generate a corresponding facies model that is consistent with the TI. The pattern-matching algorithm uses a local search template to scan the TI to find facies patterns with smallest distances from the corresponding local patterns in the parameterized approximate solution. The identified patterns for each location in the model are stored and used to estimate local conditional probabilities for assigning the facies types to each grid cell. The resulting solution is passed to the flow data conditioning step as a regularization term to perform the next iteration. The process is repeated until the MPS facies model provides an acceptable match to the data. Numerical experiments are presented to evaluate the performance of the pattern-matching method for calibration of complex facies models.
Author Jafarpour, Behnam
Golmohammadi, Azarang
Khaninezhad, Reza
Author_xml – sequence: 1
  givenname: Reza
  surname: Khaninezhad
  fullname: Khaninezhad, Reza
  organization: University of Southern California (USA)
– sequence: 2
  givenname: Azarang
  surname: Golmohammadi
  fullname: Golmohammadi, Azarang
  organization: University of Southern California (USA)
– sequence: 3
  givenname: Behnam
  orcidid: 0000-0003-1071-5299
  surname: Jafarpour
  fullname: Jafarpour, Behnam
  email: jafarpou@usc.edu
  organization: University of Southern California (USA)
BookMark eNp9kF1LwzAUhoNMcE5_gHcBr6NJ0ybt5Rh-wcCbeR3S9mTraJOZZIj_3nQVBEHPzTkc3ud8vJdoZp0FhG4YvWOUyvvAaFEJQllFqjLLSH6G5qyQnLC8qmapzjNKkkReoMsQ9pTSSnI2R5slPugYwVsy6NjsOrvFA8Sda7FxHpvefeDBtdDjRvdd7XXsnMVH24LH0evOjkA36C3gxtlwasUrdG50H-D6Oy_Q2-PDZvVM1q9PL6vlmmjOq0iEBGmMrOvWaE6hLjMqRc2pZByEaURZMFYCzU1TcmBgZKllLpmoRStFoUu-QLfT3IN370cIUe3d0du0UmVZnkJkdFSxSdV4F4IHow4-Xew_FaNqNE9N5qlknhrNU3li5C-m6eLp9_HD_l8ym8iQttgt-J-b_oa-AODihe0
CitedBy_id crossref_primary_10_3233_JCM_215741
Cites_doi 10.2118/1307-PA
10.1016/j.advwatres.2016.04.007
10.2118/87820-PA
10.1029/WR022i002p00199
10.1007/BF02066005
10.1016/j.advwatres.2011.09.002
10.1002/2014WR016430
10.1029/WR019i003p00677
10.1002/2016WR019853
10.1017/CBO9780511535642
10.2118/81503-PA
10.1029/2008WR007675
10.2118/106453-PA
10.1029/2011WR011195
10.1007/978-1-4020-3610-1_26
10.1002/wrcr.20545
10.2118/5740-PA
10.1126/science.290.5500.2323
10.1029/2010WR009982
10.1002/0470041080
10.1029/98WR00003
10.1016/B978-008043319-6/50036-4
10.1007/s11004-009-9247-z
10.1190/1.1442644
10.1007/s11004-005-9005-9
10.1002/2017WR022284 10.1002/2017WR022284
10.1029/96WR00160
10.1016/j.advwatres.2013.10.014
10.1016/j.advwatres.2009.02.011
10.1007/s11004-011-9316-y
10.1111/j.1745-6584.2003.tb02580.x
10.1007/s11004-007-9131-7
10.1007/s11004-014-9541-2
10.1023/A:1014009426274
10.1002/2012WR013431
10.1016/0167-2789(92)90242-F
10.1109/MSP.2007.914731
10.1029/2011WR010787
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Computational Geosciences is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Computational Geosciences is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-019-9822-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Statistics
EISSN 1573-1499
EndPage 828
ExternalDocumentID 10_1007_s10596_019_9822_4
GroupedDBID -5D
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BAPOH
CAG
CITATION
COF
H13
HZ~
IHE
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
RNI
RZC
RZE
RZK
S1Z
TEORI
3V.
7SC
7UA
7XB
8AL
8FD
8FK
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a339t-67e7ff7bbdfa30eb82076b30713e6fc685118e04fc83e1ef78a74716b6d765a83
IEDL.DBID U2A
ISSN 1420-0597
IngestDate Sat Jul 26 01:01:18 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Wed Oct 01 04:44:04 EDT 2025
Fri Feb 21 02:36:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Training image
Geologic feasibility
Flow model calibration
Multiple-point statistics
Pattern matching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a339t-67e7ff7bbdfa30eb82076b30713e6fc685118e04fc83e1ef78a74716b6d765a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1071-5299
PQID 2244446208
PQPubID 55381
PageCount 16
ParticipantIDs proquest_journals_2244446208
crossref_primary_10_1007_s10596_019_9822_4
crossref_citationtrail_10_1007_s10596_019_9822_4
springer_journals_10_1007_s10596_019_9822_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References KitanidisPKVomvorisEGA geostatistical approach to the inverse problem in groundwater modeling (steady state) and one- dimensional simulationsWater Resour. Res.198319367769010.1029/WR019i003p00677
VoHXDurlofskyLJA new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological modelsMath. Geosci.2014461177581310.1007/s11004-014-9541-2
SahniIHorneRNMultiresolution wavelet analysis for improved reservoir descriptionSPE Reserv. Eval. Eng.2005801536910.2118/87820-PA
ZhouHGómez-HernándezJJLiLInverse methods in hydrogeology: evolution and recent trendsAdv. Water Resour.201463223710.1016/j.advwatres.2013.10.014ISSN 0309–1708
Khaninezhad, M.-R., Golmohammadi, A., Jafarpour, B.: Discrete regularization for calibration of geologic facies against dynamic flow data. Water Resour. Res, 54. https://doi.org/10.1002/2017WR022284https://doi.org/10.1002/2017WR022284 (2018)
ZimmermanDAde MarsilyGGotwayCAMariettaMGAxnessCLBeauheimRLBrasRLA comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flowWater Resour. Res.19983461373141310.1029/98WR00003
HuLYChugunovaTMultiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive reviewWater Resour. Res.20084411
HuLYJenniSHistory matching of object-based stochastic reservoir modelsSPE J.2005100331232310.2118/81503-PA
JafarpourBMcLaughlinDBReservoir characterization with the discrete cosine transformSPE J.2009140118220110.2118/106453-PA
JafarpourBKhodabakhshiMA probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulationMath. Geosci.201143213316410.1007/s11004-011-9316-y
TikhonovASolution of incorrectly formulated problems and the regularization method. In SovietMath. Dokl1963510351038
CarreraJNeumanSPEstimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior informationWater Resour. Res.198622219921010.1029/WR022i002p00199
FranssenHAlcoleaARivaMBakrMvan der WielNStaufferFGuadagniniAA comparison of seven methods for the inverse modeling of groundwater flow. Application to the characterization of well catchmentsAdv. Water Resour.20093285187210.1016/j.advwatres.2009.02.011
GolmohammadiAJafarpourBSimultaneous geologic scenario identification and flow model calibration with group-sparsity formulationsAdv. Water Resour.20169220822710.1016/j.advwatres.2016.04.007
Hakim-ElahiSJafarpourBA distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibrationWater Resour. Res.201753108226824910.1002/2016WR019853
SarmaPDurlofskyLJAzizKKernel principal component analysis for efficient, differentiable parameterization of multipoint geostatisticsMath. Geosci.200840133210.1007/s11004-007-9131-7
JafarpourBGoyalVKMcLaughlinDBFreemanWTCompressed history matching: Exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problemsMath. Geosci.201042112710.1007/s11004-009-9247-z
Chavent, G, Bissell, R.: Indicators for the refinement of parameterization. In: Tanaka, M., Dulikravich, G.S. (eds.) Inverse Problems in Engineering Mechanics 1998. (Proceedings of the third International Symposium on Inverse Problems ISIP 98 held in Nagano, Japan), pp 309–314. Elsevier (1998)
CardiffMKitanidisPKBayesian inversion for facies detection: an extensible level set frameworkWater Resour. Res.2009451010.1029/2008WR007675
McLaughlinDTownleyLRA reassessment of the groundwater inverse problemWater Resour. Res.199632511316110.1029/96WR00160
KhodabakhshiMJafarpourBA Bayesian mixture-modeling approach for flow-conditioned multiple-point statistical facies simulation from uncertain training imagesWater Resour. Res.201349132834210.1029/2011WR010787
Arpat, G.B., Caers, J.: A multiple-scale, pattern-based approach to sequential simulation. In: Geostatistics Banff 2004, pp 255–264. Springer, Netherlands (2005)
CaersJHoffmanTThe probability perturbation method: A new look at Bayesian inverse modelingMath. Geol.20063818110010.1007/s11004-005-9005-9
LeeJKitanidisPKBayesian inversion with total variation prior for discrete geologic structure identificationWater Resour. Res.201349117658766910.1002/2012WR013431
DohertyJGround water model calibration using pilot points and regularizationGround Water200341217017710.1111/j.1745-6584.2003.tb02580.x
BharkEWJafarpourBDatta-GuptaAA generalized grid connectivity–based parameterization for subsurface flow model calibrationWater Resour. Res.2011471010.1029/2010WR009982
RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience200029055002323232610.1126/science.290.5500.2323
DeutschCVWangLHierarchical object-based stochastic modeling of fluvial reservoirsMath. Geol.199628785788010.1007/BF02066005
KhaninezhadMMJafarpourBLiLSparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulationAdv. Water Resour.20123910612110.1016/j.advwatres.2011.09.002
GolmohammadiAKhaninezhadMRMJafarpourBGroup-sparsity regularization for ill-posed subsurface flow inverse problemsWater Resour. Res.201551108607862610.1002/2014WR016430
ZhouHGómez-HernándezJJLiLA pattern- search- based inverse methodWater Resour. Res.201248310.1029/2011WR011195
CandèsEJWakinMBAn introduction to compressive samplingIEEE Signal Process. Mag.2008252213010.1109/MSP.2007.914731
GavalasGRShahPCSeinfeldJHReservoir history matching by Bayesian estimationSoc. Petrol. Eng. J.1976160633735010.2118/5740-PA
Jacquard, P., Jain, C.: Permeability distribution from field pressure data. Soc. Pet. Eng. J., 281–294 (1965)
LiuEJafarpourBLearning sparse geologic dictionaries from low-rank representations of facies connectivity for flow model calibrationWater Resour. Res.2013497088710110.1002/wrcr.20545
Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley (2006)
StrebelleSConditional simulation of complex geological structures using multiple-point statisticsMathem. Geol.200234112110.1023/A:1014009426274
RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D: Nonlin. Phenom.199260125926810.1016/0167-2789(92)90242-F
BregmanNDBaileyRCChapmanCHCrosshole seismic tomographyGeophysics198954220021510.1190/1.1442644
Oliver, D S, Reynolds, AC, Liu, N: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)
M Cardiff (9822_CR6) 2009; 45
S Hakim-Elahi (9822_CR15) 2017; 53
J Caers (9822_CR4) 2006; 38
EW Bhark (9822_CR2) 2011; 47
CV Deutsch (9822_CR9) 1996; 28
M Khodabakhshi (9822_CR25) 2013; 49
A Golmohammadi (9822_CR14) 2015; 51
P Sarma (9822_CR34) 2008; 40
DA Zimmerman (9822_CR40) 1998; 34
J Carrera (9822_CR7) 1986; 22
E Liu (9822_CR28) 2013; 49
LY Hu (9822_CR17) 2008; 44
9822_CR30
LY Hu (9822_CR18) 2005; 10
PK Kitanidis (9822_CR26) 1983; 19
ST Roweis (9822_CR31) 2000; 290
9822_CR19
9822_CR16
B Jafarpour (9822_CR21) 2009; 14
A Golmohammadi (9822_CR13) 2016; 92
H Zhou (9822_CR38) 2014; 63
A Tikhonov (9822_CR36) 1963; 5
HX Vo (9822_CR37) 2014; 46
J Lee (9822_CR27) 2013; 49
GR Gavalas (9822_CR12) 1976; 16
H Franssen (9822_CR11) 2009; 32
S Strebelle (9822_CR35) 2002; 34
H Zhou (9822_CR39) 2012; 48
I Sahni (9822_CR33) 2005; 8
9822_CR24
D McLaughlin (9822_CR29) 1996; 32
B Jafarpour (9822_CR22) 2010; 42
J Doherty (9822_CR10) 2003; 41
9822_CR8
ND Bregman (9822_CR3) 1989; 54
EJ Candès (9822_CR5) 2008; 25
B Jafarpour (9822_CR20) 2011; 43
MM Khaninezhad (9822_CR23) 2012; 39
9822_CR1
LI Rudin (9822_CR32) 1992; 60
References_xml – reference: CaersJHoffmanTThe probability perturbation method: A new look at Bayesian inverse modelingMath. Geol.20063818110010.1007/s11004-005-9005-9
– reference: Khaninezhad, M.-R., Golmohammadi, A., Jafarpour, B.: Discrete regularization for calibration of geologic facies against dynamic flow data. Water Resour. Res, 54. https://doi.org/10.1002/2017WR022284https://doi.org/10.1002/2017WR022284 (2018)
– reference: TikhonovASolution of incorrectly formulated problems and the regularization method. In SovietMath. Dokl1963510351038
– reference: DohertyJGround water model calibration using pilot points and regularizationGround Water200341217017710.1111/j.1745-6584.2003.tb02580.x
– reference: JafarpourBMcLaughlinDBReservoir characterization with the discrete cosine transformSPE J.2009140118220110.2118/106453-PA
– reference: JafarpourBGoyalVKMcLaughlinDBFreemanWTCompressed history matching: Exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problemsMath. Geosci.201042112710.1007/s11004-009-9247-z
– reference: KitanidisPKVomvorisEGA geostatistical approach to the inverse problem in groundwater modeling (steady state) and one- dimensional simulationsWater Resour. Res.198319367769010.1029/WR019i003p00677
– reference: CardiffMKitanidisPKBayesian inversion for facies detection: an extensible level set frameworkWater Resour. Res.2009451010.1029/2008WR007675
– reference: KhodabakhshiMJafarpourBA Bayesian mixture-modeling approach for flow-conditioned multiple-point statistical facies simulation from uncertain training imagesWater Resour. Res.201349132834210.1029/2011WR010787
– reference: RoweisSTSaulLKNonlinear dimensionality reduction by locally linear embeddingScience200029055002323232610.1126/science.290.5500.2323
– reference: CarreraJNeumanSPEstimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior informationWater Resour. Res.198622219921010.1029/WR022i002p00199
– reference: ZhouHGómez-HernándezJJLiLA pattern- search- based inverse methodWater Resour. Res.201248310.1029/2011WR011195
– reference: ZimmermanDAde MarsilyGGotwayCAMariettaMGAxnessCLBeauheimRLBrasRLA comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flowWater Resour. Res.19983461373141310.1029/98WR00003
– reference: ZhouHGómez-HernándezJJLiLInverse methods in hydrogeology: evolution and recent trendsAdv. Water Resour.201463223710.1016/j.advwatres.2013.10.014ISSN 0309–1708
– reference: Hill, M.C., Tiedeman, C.R.: Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty. Wiley (2006)
– reference: HuLYJenniSHistory matching of object-based stochastic reservoir modelsSPE J.2005100331232310.2118/81503-PA
– reference: Jacquard, P., Jain, C.: Permeability distribution from field pressure data. Soc. Pet. Eng. J., 281–294 (1965)
– reference: JafarpourBKhodabakhshiMA probability conditioning method (PCM) for nonlinear flow data integration into multipoint statistical facies simulationMath. Geosci.201143213316410.1007/s11004-011-9316-y
– reference: StrebelleSConditional simulation of complex geological structures using multiple-point statisticsMathem. Geol.200234112110.1023/A:1014009426274
– reference: VoHXDurlofskyLJA new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological modelsMath. Geosci.2014461177581310.1007/s11004-014-9541-2
– reference: GolmohammadiAKhaninezhadMRMJafarpourBGroup-sparsity regularization for ill-posed subsurface flow inverse problemsWater Resour. Res.201551108607862610.1002/2014WR016430
– reference: SahniIHorneRNMultiresolution wavelet analysis for improved reservoir descriptionSPE Reserv. Eval. Eng.2005801536910.2118/87820-PA
– reference: Chavent, G, Bissell, R.: Indicators for the refinement of parameterization. In: Tanaka, M., Dulikravich, G.S. (eds.) Inverse Problems in Engineering Mechanics 1998. (Proceedings of the third International Symposium on Inverse Problems ISIP 98 held in Nagano, Japan), pp 309–314. Elsevier (1998)
– reference: McLaughlinDTownleyLRA reassessment of the groundwater inverse problemWater Resour. Res.199632511316110.1029/96WR00160
– reference: BharkEWJafarpourBDatta-GuptaAA generalized grid connectivity–based parameterization for subsurface flow model calibrationWater Resour. Res.2011471010.1029/2010WR009982
– reference: BregmanNDBaileyRCChapmanCHCrosshole seismic tomographyGeophysics198954220021510.1190/1.1442644
– reference: CandèsEJWakinMBAn introduction to compressive samplingIEEE Signal Process. Mag.2008252213010.1109/MSP.2007.914731
– reference: FranssenHAlcoleaARivaMBakrMvan der WielNStaufferFGuadagniniAA comparison of seven methods for the inverse modeling of groundwater flow. Application to the characterization of well catchmentsAdv. Water Resour.20093285187210.1016/j.advwatres.2009.02.011
– reference: LeeJKitanidisPKBayesian inversion with total variation prior for discrete geologic structure identificationWater Resour. Res.201349117658766910.1002/2012WR013431
– reference: Arpat, G.B., Caers, J.: A multiple-scale, pattern-based approach to sequential simulation. In: Geostatistics Banff 2004, pp 255–264. Springer, Netherlands (2005)
– reference: Oliver, D S, Reynolds, AC, Liu, N: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)
– reference: Hakim-ElahiSJafarpourBA distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibrationWater Resour. Res.201753108226824910.1002/2016WR019853
– reference: GolmohammadiAJafarpourBSimultaneous geologic scenario identification and flow model calibration with group-sparsity formulationsAdv. Water Resour.20169220822710.1016/j.advwatres.2016.04.007
– reference: SarmaPDurlofskyLJAzizKKernel principal component analysis for efficient, differentiable parameterization of multipoint geostatisticsMath. Geosci.200840133210.1007/s11004-007-9131-7
– reference: LiuEJafarpourBLearning sparse geologic dictionaries from low-rank representations of facies connectivity for flow model calibrationWater Resour. Res.2013497088710110.1002/wrcr.20545
– reference: RudinLIOsherSFatemiENonlinear total variation based noise removal algorithmsPhysica D: Nonlin. Phenom.199260125926810.1016/0167-2789(92)90242-F
– reference: KhaninezhadMMJafarpourBLiLSparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulationAdv. Water Resour.20123910612110.1016/j.advwatres.2011.09.002
– reference: GavalasGRShahPCSeinfeldJHReservoir history matching by Bayesian estimationSoc. Petrol. Eng. J.1976160633735010.2118/5740-PA
– reference: DeutschCVWangLHierarchical object-based stochastic modeling of fluvial reservoirsMath. Geol.199628785788010.1007/BF02066005
– reference: HuLYChugunovaTMultiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive reviewWater Resour. Res.20084411
– ident: 9822_CR19
  doi: 10.2118/1307-PA
– volume: 92
  start-page: 208
  year: 2016
  ident: 9822_CR13
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.04.007
– volume: 8
  start-page: 53
  issue: 01
  year: 2005
  ident: 9822_CR33
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/87820-PA
– volume: 22
  start-page: 199
  issue: 2
  year: 1986
  ident: 9822_CR7
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i002p00199
– volume: 28
  start-page: 857
  issue: 7
  year: 1996
  ident: 9822_CR9
  publication-title: Math. Geol.
  doi: 10.1007/BF02066005
– volume: 39
  start-page: 106
  year: 2012
  ident: 9822_CR23
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.09.002
– volume: 51
  start-page: 8607
  issue: 10
  year: 2015
  ident: 9822_CR14
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016430
– volume: 19
  start-page: 677
  issue: 3
  year: 1983
  ident: 9822_CR26
  publication-title: Water Resour. Res.
  doi: 10.1029/WR019i003p00677
– volume: 53
  start-page: 8226
  issue: 10
  year: 2017
  ident: 9822_CR15
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019853
– ident: 9822_CR30
  doi: 10.1017/CBO9780511535642
– volume: 10
  start-page: 312
  issue: 03
  year: 2005
  ident: 9822_CR18
  publication-title: SPE J.
  doi: 10.2118/81503-PA
– volume: 45
  start-page: 10
  year: 2009
  ident: 9822_CR6
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007675
– volume: 14
  start-page: 182
  issue: 01
  year: 2009
  ident: 9822_CR21
  publication-title: SPE J.
  doi: 10.2118/106453-PA
– volume: 5
  start-page: 1035
  year: 1963
  ident: 9822_CR36
  publication-title: Math. Dokl
– volume: 48
  start-page: 3
  year: 2012
  ident: 9822_CR39
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011195
– ident: 9822_CR1
  doi: 10.1007/978-1-4020-3610-1_26
– volume: 49
  start-page: 7088
  year: 2013
  ident: 9822_CR28
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20545
– volume: 16
  start-page: 337
  issue: 06
  year: 1976
  ident: 9822_CR12
  publication-title: Soc. Petrol. Eng. J.
  doi: 10.2118/5740-PA
– volume: 44
  start-page: 11
  year: 2008
  ident: 9822_CR17
  publication-title: Water Resour. Res.
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 9822_CR31
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 47
  start-page: 10
  year: 2011
  ident: 9822_CR2
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009982
– ident: 9822_CR16
  doi: 10.1002/0470041080
– volume: 34
  start-page: 1373
  issue: 6
  year: 1998
  ident: 9822_CR40
  publication-title: Water Resour. Res.
  doi: 10.1029/98WR00003
– ident: 9822_CR8
  doi: 10.1016/B978-008043319-6/50036-4
– volume: 42
  start-page: 1
  issue: 1
  year: 2010
  ident: 9822_CR22
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-009-9247-z
– volume: 54
  start-page: 200
  issue: 2
  year: 1989
  ident: 9822_CR3
  publication-title: Geophysics
  doi: 10.1190/1.1442644
– volume: 38
  start-page: 81
  issue: 1
  year: 2006
  ident: 9822_CR4
  publication-title: Math. Geol.
  doi: 10.1007/s11004-005-9005-9
– ident: 9822_CR24
  doi: 10.1002/2017WR022284 10.1002/2017WR022284
– volume: 32
  start-page: 1131
  issue: 5
  year: 1996
  ident: 9822_CR29
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR00160
– volume: 63
  start-page: 22
  year: 2014
  ident: 9822_CR38
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.10.014
– volume: 32
  start-page: 851
  year: 2009
  ident: 9822_CR11
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.02.011
– volume: 43
  start-page: 133
  issue: 2
  year: 2011
  ident: 9822_CR20
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-011-9316-y
– volume: 41
  start-page: 170
  issue: 2
  year: 2003
  ident: 9822_CR10
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2003.tb02580.x
– volume: 40
  start-page: 3
  issue: 1
  year: 2008
  ident: 9822_CR34
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-007-9131-7
– volume: 46
  start-page: 775
  issue: 11
  year: 2014
  ident: 9822_CR37
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-014-9541-2
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 9822_CR35
  publication-title: Mathem. Geol.
  doi: 10.1023/A:1014009426274
– volume: 49
  start-page: 7658
  issue: 11
  year: 2013
  ident: 9822_CR27
  publication-title: Water Resour. Res.
  doi: 10.1002/2012WR013431
– volume: 60
  start-page: 259
  issue: 1
  year: 1992
  ident: 9822_CR32
  publication-title: Physica D: Nonlin. Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: 9822_CR5
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914731
– volume: 49
  start-page: 328
  issue: 1
  year: 2013
  ident: 9822_CR25
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010787
SSID ssj0009731
Score 2.196825
Snippet Modern geostatistical modeling techniques are developed to simulate complex geologic connectivity patterns (e.g., curvilinear fluvial systems) at the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 813
SubjectTerms Algorithms
Calibration
Computer simulation
Conditioning
Constraint modelling
Data
Data integration
Earth and Environmental Science
Earth Sciences
Geostatistics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Identification
Iterative methods
Mathematical Modeling and Industrial Mathematics
Original Paper
Parameterization
Pattern matching
Regularization
Regularization methods
Singular value decomposition
Soil Science & Conservation
Statistical analysis
Statistics
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Q9iL6FScv8iDT0qwP9IkfRBRmQ7BIbLB3krSpiDMbc6K-N-bS1uLgutjm4Zylybf5S7fB3CahSbgoWeoL5W0AYriNJaRop7IpNSRiLXCDf3HIR-M2cMkmqzBsD4Lg2WV9ZzoJupsnuIe-YVdauzFA09eLd4oqkZhdrWW0FCVtEJ26SjG1qEdIDNWC9o3_eHTc0PDK5xCoc8CTAHHos5zlofpIizI9WOKnHaU_V6pGvj5J2PqFqK7LdisECS5Ll2-DWtm1oWNe6fQ-9WFDsLHkn15B0bXZOEINGfUIlNXNklKzWhiwSrJp_NP4rRwiHUVBs7oJoLnypakFo8gL692ziEpAkm8VezC-K4_uh3QSkeBqjCMC8qFEXkutM5yZd2i7aIvuA4xPjU8TzmCLmk8lqcyNL7JhVQYqnLNM8EjJcM9aM3mM7MPRCplW0mmchvJeIzpmKUqU8rPNKpgpT3wapslaUUyjt82TRp6ZDRzYs2coJkT1oOzn1cWJcPGqsZHtSOS6md7T5qh0YPz2jnN4387O1jd2SF0AhwNrtrvCFrF8sMcWwRS6JNqWH0D-TvW6g
  priority: 102
  providerName: ProQuest
Title A pattern-matching method for flow model calibration under training image constraint
URI https://link.springer.com/article/10.1007/s10596-019-9822-4
https://www.proquest.com/docview/2244446208
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: U2A
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohuCLeMXpHHnwSQn0kibp45RdUBwiG8ynkrQpCLMb20T89-ZkrVNRwb4U2jSUkzT5Ts853wdwnoUm4KFnqC-VtA6K4jSWkaKeyKTUkYi1wh_6dwPeH7GbcTQu67gXVbZ7FZJ0K_WnYrcIE2b9mCLnHGWbUI-QzctO4lHQXjPtCidC6LMAo7yxqEKZP3XxdTNaI8xvQVG313R3YacEiaS9GtU92DDFPmz1nAjv2wEM22TmaDELavGmS4YkKyVoYiEoySfTV-IUbogdAHSH0fgEq8XmpJKEIE_PdiUhKcJDvLQ8hFG3M7zu01IdgaowjJeUCyPyXGid5coaW9utXHAdotdpeJ5yhFLSeCxPZWh8kwup0AHlmmeCR0qGR1ArpoU5BiKVsq0kU7n1TzzGdMxSlSnlZxq1rdIGeJWZkrSkDsd3myRr0mO0bGItm6BlE9aAi49HZivejL8aNyvbJ-UntEgstrAHDzzZgMtqPNa3f-3s5F-tT2E7wPngUvqaUFvOX8yZhRlL3YJN2e21oN7uPd527PmqM7h_aLnJ9g4CEsza
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUAWXCigVS3n4QC-tLPJwbOeAEO-lwKqqFolbaieOhAS7C7sV2j_X38aMkzQqEtzIMXGsaDzxzHhmvg9gp4hdJOPA8VAbjQGKkTzVieGBKrS2iUqtoQP9q57sXosfN8nNDPxtemGorLLZE_1GXQxzOiPfRVODl4wCvT964MQaRdnVhkLD1NQKxZ6HGKsbOy7c9AlDuPHe-TGu99coOj3pH3V5zTLATRynEy6VU2WprC1Kgx9t0SQqaWOK3pwsc0kuiXaBKHMdu9CVShsK5KSVhZKJ0THOOwvzIhYpBn_zhye9n79a2F_lGRFDEVHKOVVNXrVq3kuoADhMOWHocfG_ZWzd3RcZWm_4TpfgY-2xsoNKxZZhxg1W4MOZZwSersAiuasV2vMn6B-wkQfsHHD0hH2ZJqs4qhk6x6y8Gz4xz73DUDUoUCe1YNTH9sgasgp2e497HMvJcaVbk1W4fheJfoa5wXDg1oBpY3CUFqbEyCkQwqYiN4UxYWGJdSvvQNDILMtrUHP6trushWMmMWco5ozEnIkOfPv3yqhC9Hhr8EazEFn9c4-zVhU78L1ZnPbxq5Otvz3ZNix0-1eX2eV57-ILLEakGb7ScAPmJo9_3CZ6PxO7VasYg9_vrdXPnIET5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEIgL4tGKpRR8KBcqizwc2zmgCgHLq6AeQOKW2oktIcHuAlsh_hq_jhknIaIS3Mgxcaxo_MUz43l8AD-q1CUyjRyPtdHooBjJc50ZHqlKa5up3Bo60D87l0eX4uQqu5qA57YWhtIq2z0xbNTVsKQz8m1UNXjJJNLbvkmL-LPf_zW648QgRZHWlk6jhsipe3pE9-1h53gf13ozSfoHF3tHvGEY4CZN8zGXyinvlbWVN_jBFtWhkjYlz81JX0oyR7SLhC916mLnlTbkxEkrKyUzo1OcdxKmFXVxpyr1_mHX8FcFLsRYJBRszlUbUa3L9jJK_Y1zTt3zuHirEztD97_YbFB5_QWYb2xVtluDaxEm3GAJZg4DF_DTEsyRoVr3eV6Gi102Cq06Bxxt4JCgyWp2aoZmMfM3w0cWWHcYgoJcdAIEowq2e9bSVLDrW9zdWEkmK90af4HLT5HnV5gaDAduBZg2BkdpYTz6TJEQNhelqYyJK0t8W2UPolZmRdm0M6dvuym6Rswk5gLFXJCYC9GDrddXRnUvj48Gr7ULUTS_9UPRgbAHP9vF6R6_O9nqx5NtwCxiufh9fH76DeYSAkZIMVyDqfH9P_cdzZ6xXQ_4YvD3swH9AgZrEX8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pattern-matching+method+for+flow+model+calibration+under+training+image+constraint&rft.jtitle=Computational+geosciences&rft.au=Khaninezhad%2C+Reza&rft.au=Golmohammadi%2C+Azarang&rft.au=Jafarpour%2C+Behnam&rft.date=2019-08-01&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=23&rft.issue=4&rft.spage=813&rft.epage=828&rft_id=info:doi/10.1007%2Fs10596-019-9822-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10596_019_9822_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon