Reshaping the Binding Pocket of Cellobiose 2‑Epimerase for Improved Substrate Affinity and Isomerization Activity for Enabling Green Synthesis of Lactulose

Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 70; no. 50; pp. 15879 - 15893
Main Authors Wang, Lu, Gu, Jiali, Zhao, Wei, Wang, Mingming, Ng, Kuan Rei, Lyu, Xiaomei, Yang, Ruijin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.12.2022
Subjects
Online AccessGet full text
ISSN0021-8561
1520-5118
1520-5118
DOI10.1021/acs.jafc.2c06980

Cover

Abstract Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (K m, 269.65 mM vs K m, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site–substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
AbstractList Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (K m, 269.65 mM vs K m, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site–substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the -acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CE/Q371E had significantly enhanced substrate affinity ( , 269.65 mM vs , 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site-substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (Km, 269.65 mM vs Km, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site-substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of lactulose, a valuable food prebiotic. However, poor substrate affinity for lactose and preference for epimerization over isomerization hinder this application. Previous studies on CE improvement have focused on random mutagenesis or active site rational design; little is known about the relationship between substrate binding and enzyme efficacy, which was hence the subject of this study. First, residues 372W and 308W were identified as key for disaccharide recognition in CEs based on crystal structure alignment of the N-acetyl-glucosamine 2-epimerase superfamily and site-directed mutation. This binding domain was then reshaped through site saturation mutagenesis, resulting in seven mutants with enhanced isomerization activity. The optimal mutant CsCE/Q371E had significantly enhanced substrate affinity (Km, 269.65 mM vs Km, 417.5 mM), reduced epimerization activity, and 3.3-fold increased isomerization activity over the original CsCE. Molecular dynamics simulation further revealed that substituting Gln-371 with Glu strengthened the hydrogen-bonding network and altered the active site-substrate interactions, increasing the substrate stability and shifting the catalytic direction. This study uncovered new information about the substrate binding region and its mechanisms and impact on CE catalytic performance, paving the way for potential commercial applications.
Author Zhao, Wei
Yang, Ruijin
Wang, Mingming
Wang, Lu
Gu, Jiali
Ng, Kuan Rei
Lyu, Xiaomei
AuthorAffiliation College of Food Science and Engineering
State Key Laboratory of Food Science and Technology, School of Food Science and Technology
School of Chemical and Biomedical Engineering
College of Life Sciences
AuthorAffiliation_xml – name: State Key Laboratory of Food Science and Technology, School of Food Science and Technology
– name: College of Life Sciences
– name: College of Food Science and Engineering
– name: School of Chemical and Biomedical Engineering
Author_xml – sequence: 1
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology
– sequence: 2
  givenname: Jiali
  surname: Gu
  fullname: Gu, Jiali
  organization: College of Life Sciences
– sequence: 3
  givenname: Wei
  orcidid: 0000-0001-9495-8508
  surname: Zhao
  fullname: Zhao, Wei
  organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology
– sequence: 4
  givenname: Mingming
  surname: Wang
  fullname: Wang, Mingming
  organization: College of Food Science and Engineering
– sequence: 5
  givenname: Kuan Rei
  orcidid: 0000-0003-3373-2243
  surname: Ng
  fullname: Ng, Kuan Rei
  organization: School of Chemical and Biomedical Engineering
– sequence: 6
  givenname: Xiaomei
  orcidid: 0000-0002-9008-6121
  surname: Lyu
  fullname: Lyu, Xiaomei
  email: xmlyu@jiangnan.edu.cn
  organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology
– sequence: 7
  givenname: Ruijin
  surname: Yang
  fullname: Yang, Ruijin
  email: yrj@jiangnan.edu.cn
  organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36475670$$D View this record in MEDLINE/PubMed
BookMark eNp9kcGO0zAURS00iOkM7FkhL1mQYiexkyxLVYZKlUAMrKMX55nxkNjFdkYqK36BD-Dn-BKcaWGBBCvbeuf66t17Qc6ss0jIU86WnOX8JaiwvAWtlrlisqnZA7LgImeZ4Lw-IwuWmKwWkp-TixBuGWO1qNgjcl7IshKyYgvy4z2GG9gb-4nGG6SvjO3n-zunPmOkTtM1DoPrjAtI85_fvm_2ZkQP6aWdp9tx790d9vR66kL0EJGutDbWxAMF29NtcIk2XyEaZ-lKRXM3j2bpxkI3zFZXHtHS64NN_sGE2XMHKk5DsnxMHmoYAj45nZfk4-vNh_WbbPf2arte7TIoChkzjlKh6vuy66DEuq870D2AYKUAqKpc5Ap5U4AqGqFrKTUKUFLUpeg5b5AVl-T58d-0zpcJQ2xHE1TaHCy6KbR5SkvKuimahD47oVM3Yt_uvRnBH9rfkSaAHQHlXQge9R-Es3ZurU2ttXNr7am1JJF_SZSJ95mlTM3wP-GLo_B-4iZvU0r_xn8Bxkyxrg
CitedBy_id crossref_primary_10_1021_acs_jafc_4c08453
crossref_primary_10_1016_j_ijbiomac_2025_141283
crossref_primary_10_1021_acs_jafc_4c04060
crossref_primary_10_1016_j_ijbiomac_2024_131518
crossref_primary_10_1016_j_fbio_2024_105232
crossref_primary_10_1016_j_ijbiomac_2024_134202
crossref_primary_10_1016_j_mcat_2024_114439
crossref_primary_10_1021_acs_jafc_4c02395
crossref_primary_10_1016_j_fbio_2025_106094
crossref_primary_10_1016_j_ijbiomac_2025_140974
crossref_primary_10_1016_j_ijbiomac_2025_142205
crossref_primary_10_1007_s00253_023_12751_6
crossref_primary_10_3390_foods12234317
Cites_doi 10.1016/j.tifs.2007.03.005
10.1021/ct700301q
10.1016/j.idairyj.2016.10.001
10.1016/j.jcis.2018.02.039
10.1016/j.biortech.2011.11.016
10.1016/j.ymben.2020.04.010
10.1016/j.biotechadv.2011.08.008
10.1021/ar300024d
10.1107/S0907444904011679
10.1016/j.jmb.2008.01.090
10.1016/j.ijbiomac.2019.11.015
10.1016/0020-711x(72)90063-8
10.1006/jmbi.2000.4188
10.1021/cs500497f
10.1016/j.bbamem.2017.05.014
10.1186/s12934-017-0841-3
10.1074/jbc.m113.531251
10.1016/j.biochi.2017.10.016
10.1039/c7cp07079a
10.1016/j.molcatb.2015.07.007
10.1007/s11274-016-2103-7
10.1007/s11947-015-1572-2
10.1002/jsfa.8148
10.1016/j.foodchem.2016.02.067
10.1016/j.jbc.2021.100270
10.1111/j.1365-2621.2009.02129.x
10.1007/s10529-012-0999-z
10.1021/acs.jafc.0c07073
10.1107/s205979832001222x
10.1016/j.str.2019.06.009
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jafc.2c06980
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1520-5118
EndPage 15893
ExternalDocumentID 36475670
10_1021_acs_jafc_2c06980
b828610626
Genre Journal Article
GroupedDBID ---
-~X
.K2
4.4
55A
5GY
5VS
7~N
85S
8W4
AABXI
ABFLS
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED~
F5P
GGK
GNL
GX1
IH9
JG~
LG6
P2P
ROL
TWZ
UI2
VF5
VG9
W1F
WH7
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a336t-1e6cecdd4bba4e8d8bafdaa5045aa77252ce193ac395f866fe5ac65845d119e03
IEDL.DBID ACS
ISSN 0021-8561
1520-5118
IngestDate Fri Jul 11 05:03:55 EDT 2025
Thu Jan 02 22:54:54 EST 2025
Thu Apr 24 23:03:33 EDT 2025
Tue Jul 01 01:40:16 EDT 2025
Fri Dec 23 04:37:03 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords binding region
cellobiose 2-epimerase
substrate affinity
isomerization activity
molecular dynamics simulation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a336t-1e6cecdd4bba4e8d8bafdaa5045aa77252ce193ac395f866fe5ac65845d119e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9495-8508
0000-0002-9008-6121
0000-0003-3373-2243
PMID 36475670
PQID 2756668939
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2756668939
pubmed_primary_36475670
crossref_primary_10_1021_acs_jafc_2c06980
crossref_citationtrail_10_1021_acs_jafc_2c06980
acs_journals_10_1021_acs_jafc_2c06980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221221
2022-12-21
2022-Dec-21
PublicationDateYYYYMMDD 2022-12-21
PublicationDate_xml – month: 12
  year: 2022
  text: 20221221
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of agricultural and food chemistry
PublicationTitleAlternate J. Agric. Food Chem
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Chen Y. (ref31/cit31) 2009; 26
ref32/cit32
ref23/cit23
ref8/cit8
ref5/cit5
ref2/cit2
Hess B. (ref19/cit19) 2008; 4
ref34/cit34
ref28/cit28
ref20/cit20
ref10/cit10
ref26/cit26
ref21/cit21
ref12/cit12
Schuttelkopf A. W. (ref17/cit17) 2004; 60
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
Feng Y. (ref14/cit14) 2020; 161
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1016/j.tifs.2007.03.005
– volume: 4
  start-page: 435
  year: 2008
  ident: ref19/cit19
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– ident: ref4/cit4
  doi: 10.1016/j.idairyj.2016.10.001
– ident: ref30/cit30
  doi: 10.1016/j.jcis.2018.02.039
– ident: ref6/cit6
  doi: 10.1016/j.biortech.2011.11.016
– ident: ref34/cit34
  doi: 10.1016/j.ymben.2020.04.010
– ident: ref2/cit2
  doi: 10.1016/j.biotechadv.2011.08.008
– ident: ref25/cit25
  doi: 10.1021/ar300024d
– volume: 60
  start-page: 1355
  year: 2004
  ident: ref17/cit17
  publication-title: Acta Chrystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904011679
– ident: ref20/cit20
  doi: 10.1016/j.jmb.2008.01.090
– ident: ref9/cit9
  doi: 10.1016/j.ijbiomac.2019.11.015
– ident: ref27/cit27
  doi: 10.1016/0020-711x(72)90063-8
– ident: ref21/cit21
  doi: 10.1006/jmbi.2000.4188
– ident: ref24/cit24
  doi: 10.1021/cs500497f
– ident: ref18/cit18
– ident: ref28/cit28
  doi: 10.1016/j.bbamem.2017.05.014
– ident: ref10/cit10
  doi: 10.1186/s12934-017-0841-3
– ident: ref22/cit22
  doi: 10.1074/jbc.m113.531251
– volume: 161
  start-page: 1
  year: 2020
  ident: ref14/cit14
  publication-title: Biochem. Eng. J.
– volume: 26
  start-page: 67
  year: 2009
  ident: ref31/cit31
  publication-title: Comput. Appl. Chem.
– ident: ref23/cit23
– ident: ref15/cit15
  doi: 10.1016/j.biochi.2017.10.016
– ident: ref16/cit16
  doi: 10.1039/c7cp07079a
– ident: ref12/cit12
  doi: 10.1016/j.molcatb.2015.07.007
– ident: ref5/cit5
  doi: 10.1007/s11274-016-2103-7
– ident: ref3/cit3
  doi: 10.1007/s11947-015-1572-2
– ident: ref8/cit8
  doi: 10.1002/jsfa.8148
– ident: ref11/cit11
  doi: 10.1016/j.foodchem.2016.02.067
– ident: ref29/cit29
  doi: 10.1016/j.jbc.2021.100270
– ident: ref26/cit26
  doi: 10.1111/j.1365-2621.2009.02129.x
– ident: ref7/cit7
  doi: 10.1007/s10529-012-0999-z
– ident: ref13/cit13
  doi: 10.1021/acs.jafc.0c07073
– ident: ref32/cit32
  doi: 10.1107/s205979832001222x
– ident: ref33/cit33
  doi: 10.1016/j.str.2019.06.009
SSID ssj0008570
Score 2.4948258
Snippet Enzymatic isomerization of lactose into lactulose via cellobiose 2-epimerase (CE) could provide an eco-friendly route for the industrial production of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15879
SubjectTerms Biotechnology and Biological Transformations
Cellobiose - metabolism
Isomerism
Lactose - chemistry
Lactulose - chemistry
Racemases and Epimerases - genetics
Racemases and Epimerases - metabolism
Substrate Specificity
Title Reshaping the Binding Pocket of Cellobiose 2‑Epimerase for Improved Substrate Affinity and Isomerization Activity for Enabling Green Synthesis of Lactulose
URI http://dx.doi.org/10.1021/acs.jafc.2c06980
https://www.ncbi.nlm.nih.gov/pubmed/36475670
https://www.proquest.com/docview/2756668939
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQucCB92MpICPBgYO3ayc2yXFZbVUQIESp1Fs08QMFqqSqs4dy6l_oD-if45cw46SLeFU9Joo98sSe-ezxfMPYc-kt5JlXIoRSiRwdpKidyYU1Hj2C1aV2lOD8_oPZ2cvf7uv9XzQ5f0bwldwCG6dfIdipsjNTFrg9v6oMuhmCQYvdtdUlovbhOocUBYKCMST5rx7IEdn4uyP6D7pMXmb75lCuKCZyQrpc8m266uup_f43deMlBnCL3RjBJp8Ps-M2u-LbO-z6_MvRSLjh77KzTxTzoaQpjlCQv25Slgv_iGbS97wLfEHRmbrpoufqx8np8rChYyx8QrTLhyMJ7zjZn8Rzy-chNGgmjjm0jr-JHUWEhlRPPrdDqYrUdElJWyQq3fzhu8ctyo9NJJnvwParAxR5j-1tLz8vdsRYskFAlpleSG-st87ldQ25L1xRQ3AAGoEjAAJ5raxHyAg2K3UojAlegyUQpJ2UpZ9l99lG27X-IeMug8zS9s2Cz4mVTALtf7R2ELTJ1IS9QM1W45KLVYqmK1mll6jualT3hG2d_-fKjrznVH7j4IIWL9ctDgfOjwu-fXY-dSpcmBRtgdZ3q1gRr74xCAfLCXswzKl1b0Tar82r2aNLjmGTXVOUdiGVUPIx2-iPVv4JgqG-fppWwU8egwh1
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqcgAOvCnL00hw4ODt2olNcgyrrbawrVAfUm-R4wcKVElVZw_lxF_gB_Dn-CXMONlFIKjgGCv2xI4989nj-YaQF9wZnSZOMO9zwVIwkKyyKmVGObAIRubSYoDz3r6aH6dvT-TJBuGrWBj4iAAthejE_8kuwLex7KP2ZizMROUZ7NKvSJUqzNZQTA_Xyhf52vtbHZxlgA0Gz-SfWkB7ZMKv9ugvIDMam52b5GD9mfGOyafxsqvG5vNvDI7_1Y9b5MYAPWnRz5XbZMM1d8j14sP5QL_h7pJvB-gBwhAqCsCQvqljzAt9D0rTdbT1dIq-mqpug6Pi-5evs7MaD7XgCbAv7Q8onKWojSLrLS28r0FpXFDdWLobWvQP9YGftDB94opYdYYhXCgq3gOihxcNyA91QJkLbbrlKYi8R453ZkfTORsSODCdJKpj3CnjjLVpVenUZTartLdaS4CRWgOsl8I4AJDaJLn0mVLeSW0QEknLee4myX2y2bSNe0CoTXRicDNntEuRo4xr3A1JabWXKhEj8hJGthwWYCijb13wMhbCcJfDcI_I9up3l2ZgQcdkHKeX1Hi1rnHWM4Bc8u7z1QwqYZmi70U3rl2GEln2lQJwmI_IVj-11q0hhb9UrycP_7EPz8jV-dHeolzs7r97RK4JDMjgggn-mGx250v3BGBSVz2NC-MHyvEQ1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiE48H4sTyPBgYO3ayc2yTEsu2qhVBWlqLfI8QOlrZJVnT2UE3-BH8Cf45cw42RXAkEFx1ixJ3Y8M589ns-EPOfO6DRxgnmfC5aCg2SVVSkzyoFHMDKXFhOc3--p7cP07ZE82iBylQsDHxGgpRCD-KjVC-sHhgG-heXH2puxMBOVZ7BSvwR4hOONDcX0YG2AkbO9P9nBWQb4YIhO_qkF9Ekm_OqT_gI0o8OZXyef1p8az5mcjJddNTZffmNx_O--3CDXBghKi37O3CQbrrlFrhafzwYaDnebfP-AkSBMpaIAEOnrOua-0H0wnq6jradTjNlUdRscFT--fpstatzcgifAwLTfqHCWolWK7Le08L4G43FOdWPpTmgxTtQngNLC9BdYxKozTOVCUfE8ED04b0B-qAPK3NWmW56CyDvkcD77ON1mw0UOTCeJ6hh3yjhjbVpVOnWZzSrtrdYS4KTWAO-lMA6ApDZJLn2mlHdSG4RG0nKeu0lyl2w2bePuE2oTnRhc1BntUuQq4xpXRVJa7aVKxIi8gJEtB0UMZYyxC17GQhjuchjuEdla_fLSDGzoeCnH6QU1Xq5rLHomkAvefbaaRSWoK8ZgdOPaZSiRbV8pAIn5iNzrp9e6NaTyl-rV5ME_9uEpubz_Zl7u7uy9e0iuCMzL4IIJ_ohsdmdL9xjQUlc9ibrxE1nXE1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reshaping+the+Binding+Pocket+of+Cellobiose+2-Epimerase+for+Improved+Substrate+Affinity+and+Isomerization+Activity+for+Enabling+Green+Synthesis+of+Lactulose&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Wang%2C+Lu&rft.au=Gu%2C+Jiali&rft.au=Zhao%2C+Wei&rft.au=Wang%2C+Mingming&rft.date=2022-12-21&rft.eissn=1520-5118&rft.volume=70&rft.issue=50&rft.spage=15879&rft_id=info:doi/10.1021%2Facs.jafc.2c06980&rft_id=info%3Apmid%2F36475670&rft.externalDocID=36475670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon