An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints

Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is formulated as an optimization model for minimizing the number of vehicles and the total transpor...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and management optimization Vol. 16; no. 3; pp. 1203 - 1220
Main Authors Li, Jiao-Yan, Hu, Xiao, Wan, Zhong
Format Journal Article
LanguageEnglish
Published Springfield American Institute of Mathematical Sciences 01.05.2020
Subjects
Online AccessGet full text
ISSN1553-166X
1547-5816
1553-166X
DOI10.3934/jimo.2018200

Cover

Abstract Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is formulated as an optimization model for minimizing the number of vehicles and the total transportation cost subject to constraints on loading plan, service time and weight capacity. The transportation cost consists of the rent charge of vehicles, fuel cost, and carbon tax. Owing to complexity of the built model, it is divided into two subproblems by a two-stage optimization approach: at the first stage, the number of vehicles is minimized, then the routing plan is optimized at the second stage. For solving the sequential subproblems, two correlated genetic algorithms are developed, which share the same initial population to reduce their computational costs. Numerical results indicate that the developed algorithms are efficient, and a number of important managerial insights are revealed from the model.
AbstractList Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is formulated as an optimization model for minimizing the number of vehicles and the total transportation cost subject to constraints on loading plan, service time and weight capacity. The transportation cost consists of the rent charge of vehicles, fuel cost, and carbon tax. Owing to complexity of the built model, it is divided into two subproblems by a two-stage optimization approach: at the first stage, the number of vehicles is minimized, then the routing plan is optimized at the second stage. For solving the sequential subproblems, two correlated genetic algorithms are developed, which share the same initial population to reduce their computational costs. Numerical results indicate that the developed algorithms are efficient, and a number of important managerial insights are revealed from the model.
Author Wan, Zhong
Li, Jiao-Yan
Hu, Xiao
Author_xml – sequence: 1
  givenname: Jiao-Yan
  surname: Li
  fullname: Li, Jiao-Yan
  email: wanmath@csu.edu.cn
  organization: School of Mathematics and Statistics, Central South University, Changsha, 410083, China;Hunan University of Commerce, Shool of Computer and Information Engineering, Changsha, 410205, China
– sequence: 2
  givenname: Xiao
  surname: Hu
  fullname: Hu, Xiao
  email: huxiao0813@foxmail.com
  organization: School of Mathematics and Statistics, Central South University, Changsha, 410083, China
– sequence: 3
  givenname: Zhong
  surname: Wan
  fullname: Wan, Zhong
  email: teacherljy@126.com
  organization: School of Mathematics and Statistics, Central South University, Changsha, 410083, China
BookMark eNqFkMtqHDEQRYWxIX7t8gGCrAxpR69-zNKY2A4YsknAu6ZaUxpraEkdSTPG_gn_sjVpQ0yIyapqcepy6xyRfR88EvKRs3O5kOrL2rpwLhjvBGN75JDXtax409ztv9k_kKOU1oxJJaU4JM8XnlqfcRUh45IOtgrDGnW2W6RhytbZJ8g2eOrCEkcKfkmtm2LYFniFHrPVFMZViDbfO2pCpFu8t3pEGsMmW7-iBR5GdIk-FIRmdFOIMCelqWSXXQefcoTSI52QAwNjwtPXeUx-Xn39cXlT3X6__nZ5cVuBlHWuDIO2Hjop21Z1TIACDth2Zqn1MBgoDrBRTdcqIY3mi86AWTClauCiUbIT8phUc-7GT_D4AOPYT9E6iI89Z_3OZr-z2b_aLPynmS_v_Npgyv06bKIvFXtR6IZxznapn2dKx5BSRPO_UPEXrm3-rXtnY3zv6Gw-AuvSnxb_ZF8A-QunOg
CitedBy_id crossref_primary_10_1016_j_egyr_2022_09_018
crossref_primary_10_1109_ACCESS_2024_3368917
crossref_primary_10_1155_2019_9858670
crossref_primary_10_17341_gazimmfd_791935
Cites_doi 10.1016/j.ejor.2013.10.044
10.1016/j.ejor.2016.04.016
10.1287/mnsc.6.1.80
10.1016/j.cam.2016.09.014
10.1016/S0305-0548(03)00158-8
10.1007/s10107-007-0178-5
10.1016/j.cor.2014.10.007
10.3934/jimo.2017009
10.1016/j.apm.2016.06.054
10.1007/s11075-014-9866-4
10.1016/j.cam.2017.09.026
10.3934/jimo.2016.12.1215
ContentType Journal Article
Copyright Copyright American Institute of Mathematical Sciences May 2020
Copyright_xml – notice: Copyright American Institute of Mathematical Sciences May 2020
CorporateAuthor Hunan University of Commerce, Shool of Computer and Information Engineering, Changsha, 410205, China
School of Mathematics and Statistics, Central South University, Changsha, 410083, China
CorporateAuthor_xml – name: Hunan University of Commerce, Shool of Computer and Information Engineering, Changsha, 410205, China
– name: School of Mathematics and Statistics, Central South University, Changsha, 410083, China
DBID RAN
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.3934/jimo.2018200
DatabaseName American Institute of Mathematical Sciences
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1553-166X
EndPage 1220
ExternalDocumentID 10.3934/jimo.2018200
10_3934_jimo_2018200
GroupedDBID .4S
5GY
AENEX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
DU5
E3Z
EBS
EDO
EJD
ITG
ITH
J9A
P2P
PQQKQ
RAN
AAYXX
AMVHM
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-a335t-f0a75b833774802a4a1ae78fdccbbfa201e64687423fc198faf90445a12643823
IEDL.DBID UNPAY
ISSN 1553-166X
1547-5816
IngestDate Tue Aug 19 18:19:05 EDT 2025
Mon Jun 30 03:37:49 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Tue Jul 01 03:06:50 EDT 2025
Wed Jan 15 09:28:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords optimization model
bi-objective optimization
algorithms
carbon emissions
Vehicle routing problems
Language English
License False
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a335t-f0a75b833774802a4a1ae78fdccbbfa201e64687423fc198faf90445a12643823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.aimsciences.org/article/exportPdf?id=7d928d5e-1c20-4d7f-b8e7-179da4019314
PQID 2393601102
PQPubID 836337
PageCount 18
ParticipantIDs unpaywall_primary_10_3934_jimo_2018200
proquest_journals_2393601102
crossref_primary_10_3934_jimo_2018200
crossref_citationtrail_10_3934_jimo_2018200
aims_journals_10_3934_jimo_2018200
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Springfield
PublicationPlace_xml – name: Springfield
PublicationTitle Journal of industrial and management optimization
PublicationTitleAbbrev JIMO
PublicationYear 2020
Publisher American Institute of Mathematical Sciences
Publisher_xml – name: American Institute of Mathematical Sciences
References Bektas Laporte (5) 2011; 45
Miranda Conceic$\tilde{a}$o (27) 2016; 64
Liang W Çatay Eglese (18) 2014; 236
S. Mima and P. Criqui, The future of fuel cells in a long term inter-technology competition framework, The Economic Dynamics of Fuel Cell Technologies, Springer Berlin Heidelberg, 2003, 43–78.
M. Lai, H. Yang, S. Yang, et al., Cyber-physical logistics system-based vehicle routing optimization, Journal of Industrial and Management Optimization, 10 (2014), 701-715.
Jabali Woensel de Kok (14) 2012; 21
Liang Eglese (19) 2015; 56
Arnaout Arnaout EIKhoury (2) 2016; 12
Y. X. Li and Z. Wan, Bi-level programming approach to optimal strategy for VMI problems under random demand, ANZIAM Journal, 59 (2017), 247-270
Huang Wan (11) 2017; 313
A. McKinnon, CO$-2$ emissions from freight transport: An analysis of UK data, Logistics Research Network-2007 Conference Global Supply Chains: Developing Skills, Capabilities and Networks, 2007.
Zhang Huang Wan (34) 2016; 40
Prins (29) 2004; 31
P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, 2014.
I. Kara, B. Y. Kara and M. K. Yetis, Energy minimizing vehicle routing problem, Combinatorial Optimization and Applications, Springer Berlin Heidelberg, 2007, 62-71.
Dantzig Ramser (7) 1959; 6
A. McKinnon, M. Browne, A. Whiteing and M. Piecyk (Eds.), Green Logistics: Improving the environmental sustainability of logistics, Kogan Page Publishers, 2015 (2015), 215-228.
J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, et al. Vehicle routing, Transportation, Handbooks in Operations Research and Management Science, 14 (2006), 367-428.
Huang Wan Chen (12) 2015; 68
Akcelik Besley (1) 2003; 2003
Homberger Gehring (9) 1999; 37
X. Zhang, S. Huang and Z. Wan, Stochastic Programming Approach to Global Supply Chain Management Under Random Additive Demand, Operational Research, 2017.
C. Schreyer, C. Schneider, M. Maibach, et al. External Costs of Transport: Update Study, final report, Infras, 2004.
A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D. thesis, Cranfield University, School of Management, 2007.
Thangiah Nygard Gideon (32) 1991; 1
Homberger Gehring (10) 2005; 162
J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, Mich., 1975
Barth Boriboonsomsin (4) 2008; 2058
M. Maiti M, S. Maity and A. Roy, An improved genetic algorithm and its application in constrained solid TSP in uncertain environments. Facets of Uncertainties and Applications, Springer, New Delhi, 2015,177-200.
Huang Wan Zhang (13) 2018; 330
Männel Bortfeldt (22) 2016; 254
Mardaneh Loxton Lin Schmidli (23) 2017; 13
Baldacci Christofides Mingozzi (3) 2008; 115
P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, Principles and Practice of Constraint Programming-CP98, Springer, Berlin Heidelberg, 1998,417–431.
Maden Eglese Black (20) 2010; 61
References_xml – volume: 37
  start-page: 297
  year: 1999
  end-page: 318
  ident: 9
  article-title: Two evolutionary metaheuristics for the vehicle routing problem with time windows
  publication-title: INFOR: Information Systems and Operational Research
– reference: J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press, Ann Arbor, Mich., 1975
– volume: 236
  start-page: 915
  year: 2014
  end-page: 923
  ident: 18
  article-title: Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.10.044
– reference: A. McKinnon, CO$-2$ emissions from freight transport: An analysis of UK data, Logistics Research Network-2007 Conference Global Supply Chains: Developing Skills, Capabilities and Networks, 2007.
– reference: S. Mima and P. Criqui, The future of fuel cells in a long term inter-technology competition framework, The Economic Dynamics of Fuel Cell Technologies, Springer Berlin Heidelberg, 2003, 43–78.
– reference: C. Schreyer, C. Schneider, M. Maibach, et al. External Costs of Transport: Update Study, final report, Infras, 2004.
– volume: 254
  start-page: 840
  year: 2016
  end-page: 858
  ident: 22
  article-title: A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.04.016
– volume: 45
  start-page: 1232
  year: 2011
  end-page: 1250
  ident: 5
  article-title: The pollution-routing problem
  publication-title: Transportation Research Part B: Methodological
– volume: 6
  start-page: 80
  year: 1959
  end-page: 91
  ident: 7
  article-title: The truck dispatching problem
  publication-title: Management Science
  doi: 10.1287/mnsc.6.1.80
– volume: 313
  start-page: 82
  year: 2017
  end-page: 101
  ident: 11
  article-title: A new nonmonotone spectral residual method for nonsmooth nonlinear equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2016.09.014
– volume: 31
  start-page: 1985
  year: 2004
  end-page: 2002
  ident: 29
  article-title: A simple and effective evolutionary algorithm for the vehicle routing problem
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(03)00158-8
– volume: 21
  start-page: 1060
  year: 2012
  end-page: 1074
  ident: 14
  article-title: Analysis of travel times and CO$_2$ emissions in time-dependent vehicle routing
  publication-title: Production and Operations Management
– reference: P. Shaw, Using constraint programming and local search methods to solve vehicle routing problems, Principles and Practice of Constraint Programming-CP98, Springer, Berlin Heidelberg, 1998,417–431.
– reference: A. Palmer, The Development of an Integrated Routing and Carbon Dioxide Emissions Model for Goods Vehicles, Ph.D. thesis, Cranfield University, School of Management, 2007.
– volume: 115
  start-page: 351
  year: 2008
  end-page: 385
  ident: 3
  article-title: An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-007-0178-5
– volume: 61
  start-page: 515
  year: 2010
  end-page: 522
  ident: 20
  article-title: Vehicle routing and scheduling with time-varying data: A case study
  publication-title: Journal of the Operational Research Society
– reference: I. Kara, B. Y. Kara and M. K. Yetis, Energy minimizing vehicle routing problem, Combinatorial Optimization and Applications, Springer Berlin Heidelberg, 2007, 62-71.
– reference: P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, 2014.
– volume: 56
  start-page: 41
  year: 2015
  end-page: 50
  ident: 19
  article-title: Minimum cost VRP with time-dependent speed data and congestion charge
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2014.10.007
– volume: 13
  start-page: 1601
  year: 2017
  end-page: 1623
  ident: 23
  article-title: A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2017009
– volume: 40
  start-page: 10105
  year: 2016
  end-page: 10130
  ident: 34
  article-title: Optimal pricing and ordering in global supply chain management with constraints under random demand
  publication-title: Appl. Math. Modelling
  doi: 10.1016/j.apm.2016.06.054
– volume: 2058
  start-page: 163
  year: 2008
  end-page: 171
  ident: 4
  article-title: Real-world carbon dioxide impacts of traffic congestion
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– reference: X. Zhang, S. Huang and Z. Wan, Stochastic Programming Approach to Global Supply Chain Management Under Random Additive Demand, Operational Research, 2017.
– volume: 162
  start-page: 220
  year: 2005
  end-page: 238
  ident: 10
  article-title: A two-phase hybrid metaheuristic for the vehicle routing problem with time windows
  publication-title: European Journal of Operational Research
– volume: 1
  start-page: 322
  year: 1991
  end-page: 328
  ident: 32
  article-title: A genetic algorithm system for vehicle routing with time windows
  publication-title: Artificial Intelligence Applications, 1991. Proceedings., Seventh IEEE Conference on IEEE
– reference: Y. X. Li and Z. Wan, Bi-level programming approach to optimal strategy for VMI problems under random demand, ANZIAM Journal, 59 (2017), 247-270,
– volume: 68
  start-page: 671
  year: 2015
  end-page: 689
  ident: 12
  article-title: A new nonmonotone line search technique for unconstrained optimization
  publication-title: Numerical Algorithms
  doi: 10.1007/s11075-014-9866-4
– reference: M. Maiti M, S. Maity and A. Roy, An improved genetic algorithm and its application in constrained solid TSP in uncertain environments. Facets of Uncertainties and Applications, Springer, New Delhi, 2015,177-200.
– volume: 64
  start-page: 104
  year: 2016
  end-page: 116
  ident: 27
  article-title: The vehicle routing problem with hard time windows and stochastic travel and service time
  publication-title: Expert Systems with Applications
– reference: J. F. Cordeau, G. Laporte, M. W. P. Savelsbergh, et al. Vehicle routing, Transportation, Handbooks in Operations Research and Management Science, 14 (2006), 367-428.
– volume: 2003
  start-page: 1
  year: 2003
  end-page: 15
  ident: 1
  article-title: Operating cost, fuel consumption, and emission models in aaSIDRA and aaMOTION
  publication-title: 25th Conference of Australian Institutes of Transport Research (CAITR 2003)
– volume: 330
  start-page: 586
  year: 2018
  end-page: 604
  ident: 13
  article-title: An extended nonmonotone line search technique for large-scale unconstrained optimization
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2017.09.026
– reference: A. McKinnon, M. Browne, A. Whiteing and M. Piecyk (Eds.), Green Logistics: Improving the environmental sustainability of logistics, Kogan Page Publishers, 2015 (2015), 215-228.
– volume: 12
  start-page: 1215
  year: 2016
  end-page: 1225
  ident: 2
  article-title: Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2016.12.1215
– reference: M. Lai, H. Yang, S. Yang, et al., Cyber-physical logistics system-based vehicle routing optimization, Journal of Industrial and Management Optimization, 10 (2014), 701-715.
SSID ssj0034332
Score 2.20614
Snippet Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial...
SourceID unpaywall
proquest
crossref
aims
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1203
SubjectTerms Genetic algorithms
Optimization
Optimization algorithms
Routes
Vehicles
Title An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints
URI http://www.aimsciences.org/article/id/7d928d5e-1c20-4d7f-b8e7-179da4019314
https://www.proquest.com/docview/2393601102
https://www.aimsciences.org/article/exportPdf?id=7d928d5e-1c20-4d7f-b8e7-179da4019314
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1553-166X
  dateEnd: 20221102
  omitProxy: false
  ssIdentifier: ssj0034332
  issn: 1553-166X
  databaseCode: AMVHM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaq5AAceCMKpbIQcEFus7u21z5GiCpCStUDQeEU2Wubpk12q-ymPP4Ef5mZXSctSEUcuO1h5Md6PP7GnvmGkFfS6DwkImdaWQMOinNMFUowLiXe7CODGyYKj4_laMI_TMV0h0w2uTAYVmnmy2j-644puPuHh_4bQtITF_DxNHc6VU54lhTgAHGXB2aVR8JD7Qw4DTrD8tZ9KQCi90h_cnwy_Nxyp_KcCdWWRMWSOSyRctoFxGc644dn8Icw4AsORrTSOJTfT6wrGHprXV6Y71_NYnHtRDq6Ry43c-kCUc4P1o09KH78QfP43yd7n9yNGJYOuzYekB1fPiR3rjEbPiI_hyXdMlE4auessmedbaUVWKllTP-kbSUeakpH5-31BgiDSmNmJTWLL9Vq3pwuKQBreulPsTe6qtYYqU1jJZya4k0yjQxbXUs1RonDd4HYF0tgNPVjMjl6__HdiMXaD8xkmWhYGJhcWJVlAE_VIDXcJMbnKriisDYYWCEvuVT4zhyKRKtggh5wLkwCCA_fNp-QXlmV_imhIs2Nkzn3FpzhAtwtcLEMwBgbtAYVTnfJS1yEWdy89Qz8ItSFGerCLOrCLnm7UYJZEdnTcQaLG6Rfb6UvOtaQG-T2Nvp01T2S0kmEZTCyN1sd-2s7z_5V8Dm5neKFQRuxuUd6zWrtXwCqauw-6Q_Hn0bj_bhXfgFzCCIW
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QE4lPISLQVZCLggt5vEduzjCrWqkKh6YKXlFNmxTbfsJtUm2xb-BH-ZmcS7LUhFHLjlMPIjHo-_sWe-IeSNNDoPiciZVtaAg-IcU6USjEuJN_vI4IaJwp9O5PGYf5yIyQYZr3JhMKzSTOfR_Dc9U3D_Dw_8NULSUxfw8TR3OlVOeJaU4ABxlwdmlUfCQ-0MOA06w_LWm1IARB-QzfHJ6ehLx53KcyZUVxIVS-awRMpJHxCf6YwfnMMfwoAvOBjRSuNQfj-xbmDovWV1Yb5fmdns1ol09JBcrubSB6J821-2dr_88QfN43-f7DbZihiWjvo2HpENXz0mD24xGz4hP0cVXTNROGqnrLbnvW2lNVipeUz_pF0lHmoqR6fd9QYIg0pjZiU1s6_1YtqezSkAa3rpz7A3uqiXGKlNYyWchuJNMo0MW31LDUaJw3eJ2BdLYLTNUzI-Ovz84ZjF2g_MZJloWRiaXFiVZQBP1TA13CTG5yq4srQ2GFghL7lU-M4cykSrYIIeci5MAggP3zafkUFVV_45oSLNjZM59xac4RLcLXCxDMAYG7QGFU53yGtchCJu3qYAvwh1oUBdKKIu7JD3KyUoysiejjOY3SH9di190bOG3CG3t9Knm-6RlE4iLIORvVvr2F_b2f1XwRfkfooXBl3E5h4ZtIulfwmoqrWv4h75BWpjIHo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+bi-objective+optimization+model+and+improved+genetic+algorithm+for+vehicle+routing+problems+with+temporal+and+spatial+constraints&rft.jtitle=Journal+of+industrial+and+management+optimization&rft.au=Li%2C+Jiao-Yan&rft.au=Hu%2C+Xiao&rft.au=Wan%2C+Zhong&rft.date=2020-05-01&rft.pub=American+Institute+of+Mathematical+Sciences&rft.issn=1547-5816&rft.eissn=1553-166X&rft.volume=16&rft.issue=3&rft.spage=1203&rft_id=info:doi/10.3934%2Fjimo.2018200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-166X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-166X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-166X&client=summon