PSO-SLIC algorithm: A novel automated method for the generation of high-homogeneity slope units using DEM data
The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and effici...
Saved in:
| Published in | Geomorphology (Amsterdam, Netherlands) Vol. 463; p. 109367 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-555X |
| DOI | 10.1016/j.geomorph.2024.109367 |
Cover
| Abstract | The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and efficient segmentation of slope units remains a major challenge. To address this, the PSO-SLIC algorithm, an innovative method that integrates the Simple Linear Iterative Clustering (SLIC) and Particle Swarm Optimizing (PSO) algorithms for slope unit generation, is proposed. Specifically, SLIC is adopted as the basic slope unit generation method, wherein the embedded PSO is designed to optimize the essential parameter combinations for SLIC. Additionally, a new fitness function for PSO is proposed to comprehensively consider the homogeneity, heterogeneity, and shape requirements of slope units during the generation process. Notably, the proposed PSO-SLIC algorithm is parameter-free and enables adaptive selection of the optimal parameters without empirical adjusting. In this study, two separate study areas are employed to validate the performance of the proposed method. Specifically, in site A, our method generated a lower percentage (5.16 %) of highly heterogeneous slope units, compared to the hydrological method (15.77 %) and the multi-resolution segmentation method (11.10 %). The statistical results in site B further validate the superiority of our proposed method. Moreover, the proposed PSO-SLIC method effectively reduces the required number of units for terrain representation and decreases subsequent computational demands. Results demonstrate that the proposed PSO-SLIC algorithm can be used for refined terrain segmentation reliably, providing a practical solution for terrain analysis and related applications.
•A parameter-free slope units generation method is proposed.•The homogeneity, heterogeneity, and squareness is fully accounts in this method.•Our proposed method can be used for automated and efficient terrain segmentation. |
|---|---|
| AbstractList | The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and efficient segmentation of slope units remains a major challenge. To address this, the PSO-SLIC algorithm, an innovative method that integrates the Simple Linear Iterative Clustering (SLIC) and Particle Swarm Optimizing (PSO) algorithms for slope unit generation, is proposed. Specifically, SLIC is adopted as the basic slope unit generation method, wherein the embedded PSO is designed to optimize the essential parameter combinations for SLIC. Additionally, a new fitness function for PSO is proposed to comprehensively consider the homogeneity, heterogeneity, and shape requirements of slope units during the generation process. Notably, the proposed PSO-SLIC algorithm is parameter-free and enables adaptive selection of the optimal parameters without empirical adjusting. In this study, two separate study areas are employed to validate the performance of the proposed method. Specifically, in site A, our method generated a lower percentage (5.16 %) of highly heterogeneous slope units, compared to the hydrological method (15.77 %) and the multi-resolution segmentation method (11.10 %). The statistical results in site B further validate the superiority of our proposed method. Moreover, the proposed PSO-SLIC method effectively reduces the required number of units for terrain representation and decreases subsequent computational demands. Results demonstrate that the proposed PSO-SLIC algorithm can be used for refined terrain segmentation reliably, providing a practical solution for terrain analysis and related applications.
•A parameter-free slope units generation method is proposed.•The homogeneity, heterogeneity, and squareness is fully accounts in this method.•Our proposed method can be used for automated and efficient terrain segmentation. |
| ArticleNumber | 109367 |
| Author | Chen, Guangqi Fang, Zhenxiong Chen, Ningsheng Hu, Guisheng Wang, Weidong Fu, Bangjie Li, Yange Han, Zheng |
| Author_xml | – sequence: 1 givenname: Yange surname: Li fullname: Li, Yange organization: School of Civil Engineering, Central South University, Changsha 410075, China – sequence: 2 givenname: Bangjie surname: Fu fullname: Fu, Bangjie organization: School of Civil Engineering, Central South University, Changsha 410075, China – sequence: 3 givenname: Zheng surname: Han fullname: Han, Zheng email: zheng_han@csu.edu.cn organization: School of Civil Engineering, Central South University, Changsha 410075, China – sequence: 4 givenname: Zhenxiong surname: Fang fullname: Fang, Zhenxiong organization: School of Civil Engineering, Central South University, Changsha 410075, China – sequence: 5 givenname: Ningsheng surname: Chen fullname: Chen, Ningsheng organization: Key Lab of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China – sequence: 6 givenname: Guisheng surname: Hu fullname: Hu, Guisheng organization: Key Lab of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China – sequence: 7 givenname: Weidong surname: Wang fullname: Wang, Weidong organization: School of Civil Engineering, Central South University, Changsha 410075, China – sequence: 8 givenname: Guangqi surname: Chen fullname: Chen, Guangqi organization: Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan |
| BookMark | eNqFkMtKAzEUhrOoYFt9BckLTE1mJnMRF5ZatVCpUAV3IU5OZlJmkpKkhb69U6sbN10d-A_fuXwjNDDWAEI3lEwoodntZlKD7azbNpOYxGkflkmWD9Cwb5YRY-zzEo283xBC0rwkQ2Te1qtovVzMsGhr63Roujs8xcbuocViF2wnAkjcQWisxMo6HBrANRhwImhrsFW40XUTNf3aY6zDAfvWbgHvjA4e77w2NX6cv2IpgrhCF0q0Hq5_6xh9PM3fZy_RcvW8mE2XkUgSFiIp47JgtEpLlQNTRZJApihjSglBQWaVKCsJBSUJxAWNpVJlKhL2RWicZ0VBkjG6P82tnPXegeKVDj8HByd0yynhR198w_988aMvfvLV49k_fOt0J9zhPPhwAqF_bq_BcV9pMBVI7aAKXFp9bsQ3oUePGg |
| CitedBy_id | crossref_primary_10_1080_19475705_2024_2398103 crossref_primary_10_1016_j_envsoft_2024_106261 crossref_primary_10_1016_j_ige_2024_10_003 |
| Cites_doi | 10.1007/s10064-018-1389-0 10.1023/B:NHAZ.0000037036.01850.0d 10.1007/s10346-016-0790-7 10.3390/rs14143444 10.1007/s11119-019-09696-0 10.1109/JSTARS.2021.3101203 10.1080/10106049.2019.1582716 10.1016/j.jrmge.2022.07.009 10.5194/gmd-9-3975-2016 10.1007/s11069-014-1524-6 10.1007/s10346-021-01756-9 10.1016/j.swevo.2021.100868 10.1016/j.compgeo.2012.04.007 10.1016/j.scitotenv.2020.139937 10.1016/j.geomorph.2020.107084 10.1016/j.swevo.2018.12.009 10.1109/ICNN.1995.488968 10.1016/j.robot.2018.10.008 10.1080/01431160600617194 10.1016/j.geomorph.2020.107432 10.1109/TGRS.2020.3047126 10.1007/s11721-017-0150-9 10.1016/j.earscirev.2018.03.001 10.1109/LGRS.2019.2945546 10.1016/j.scitotenv.2019.02.263 10.1016/j.enggeo.2022.106615 10.1016/j.media.2022.102488 10.1007/s12145-018-0335-9 10.1016/j.gsf.2020.09.004 10.1016/j.envsoft.2016.07.016 10.1191/0309133305pp462ra 10.1007/s10462-013-9400-4 10.1016/j.earscirev.2016.08.011 10.1016/j.geomorph.2020.107124 10.1109/TPAMI.2012.120 10.1016/j.energy.2017.12.057 10.1016/j.enggeo.2021.106103 10.1016/j.gsf.2020.07.012 10.1214/aoms/1177729694 10.1016/j.enggeo.2016.02.009 10.1016/j.swevo.2020.100718 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.geomorph.2024.109367 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| ExternalDocumentID | 10_1016_j_geomorph_2024_109367 S0169555X24003179 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABMAC ABQEM ABQYD ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSE SSZ T5K XPP ZCA ZMT ~02 ~G- 29H 9M8 AATTM AAYWO AAYXX ABEFU ABJNI ABXDB ACLOT ACVFH ADCNI ADVLN ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 OHT R2- SEP VH1 WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-a335t-dd29851c49f7e5f833e6f155ffaa1ed6ca9cde8103e2812dff94a35b012768803 |
| IEDL.DBID | .~1 |
| ISSN | 0169-555X |
| IngestDate | Thu Apr 24 23:01:43 EDT 2025 Wed Oct 01 02:40:24 EDT 2025 Sat Sep 14 18:09:29 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | High-homogeneity Slope units SLIC DEM PSO Terrain segmentation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a335t-dd29851c49f7e5f833e6f155ffaa1ed6ca9cde8103e2812dff94a35b012768803 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_geomorph_2024_109367 crossref_primary_10_1016_j_geomorph_2024_109367 elsevier_sciencedirect_doi_10_1016_j_geomorph_2024_109367 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-15 |
| PublicationDateYYYYMMDD | 2024-10-15 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Geomorphology (Amsterdam, Netherlands) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (bb0010) 2012; 34 Hong, Liu, Bui, Pradhan, Acharya, Pham, Zhu, Chen, Ahmad (bb0110) 2018; 163 Chen, Liang, Ke, Yang, Zhao (bb0070) 2020; 35 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bb0180) 2018 Jia, Mitani, Xie, Tong, Yang (bb0145) 2015; 76 Ali, Parvin, Vojteková, Costache, Linh, Pham, Vojtek, Gigović, Ahmad, Ghorbani (bb0015) 2021; 12 Turel, Frost (bb0205) 2011 Houssein, Gad, Hussain, Suganthan (bb0115) 2021; 63 Jia, Mitani, Xie, Djamaluddin (bb0140) 2012; 45 Harrison, Engelbrecht, Ombuki-Berman (bb0105) 2018; 12 Gariano, Guzzetti (bb0095) 2016 Huabin, Gangjun, Weiya, Gonghui (bb0120) 2005 Piotrowski, Napiorkowski, Piotrowska (bb0175) 2020; 58 Chen, Oguchi, Hayakawa, Saito, Chen (bb0050) 2017; 14 Alvioli, Guzzetti, Marchesini (bb0025) 2020; 358 Ba, Chen, Deng, Yang, Li (bb0035) 2018; 11 Chang, Catani, Huang, Liu, Meena, Huang, Zhou (bb0045) 2023; 15 Xie, Esaki, Zhou (bb0230) 2004; 33 Li, He, Chen, Han, Wang, Chen, Huang (bb0165) 2021; 13 Vallentin, Dobers, Itzerott, Kleinschmit, Spengler (bb0210) 2020; 21 Jacobs, Kervyn, Reichenbach, Rossi, Marchesini, Alvioli, Dewitte (bb0130) 2020; 356 Dou, Yunus, Bui, Merghadi, Sahana, Zhu, Chen, Han, Pham (bb0075) 2020; 17 Chen, Li (bb0055) 2020; 195 Zhang, Liu, Dong, Wu, Hu (bb0250) 2020; 17 Alvioli, Marchesini, Reichenbach, Rossi, Ardizzone, Fiorucci, Guzzetti (bb0020) 2016; 9 Abdelsamea, Zidan, Senousy, Gaber, Rakha, Ilyas (bb0005) 2022; 12 Bălteanu, Micu, Jurchescu, Malet, Sima, Kucsicsa, Dumitrică, Petrea, Mărgărint, Bilaşco, Dobrescu, Călăraşu, Olinic, Boți, Senzaconi (bb0040) 2020; 371 Sun, Chen, Han, Bao, Zhan, Peng (bb0195) 2020; 79 Wang, Zhang, DelgadoTéllez, Wei (bb0220) 2019; 78 Esmin, Coelho, Matwin (bb0080) 2015; 44 Romstad, Etzelmüller (bb0185) 2012; 139–140 Zhou, Yin, Cao, Ahmed (bb0260) 2016; 204 Huang, Tao, Chang, Huang, Fan, Jiang, Li (bb0125) 2021; 18 Xu, Cui, Shi, Ge, Zhan, Lee, Liang, Tai, Wu (bb0235) 2019; 45 Seidlitz, Sellner, Odenthal, Özdemir, Studier-Fischer, Knödler, Ayala, Adler, Kenngott, Tizabi (bb0190) 2022; 80 Yin, Wang, Du, Liu, Zhou, Yang (bb0245) 2022; 60 Arnone, Francipane, Scarbaci, Puglisi, Noto (bb0030) 2016; 84 Zhao, Wang, Jiang, Liu, Wei (bb0255) 2019; 259 Ghorbani, Kasaeian, Toopshekan, Bahrami, Maghami (bb0100) 2018; 154 Panahi, Gayen, Pourghasemi, Rezaie, Lee (bb0170) 2020; 741 Chen, Chen, Peng, Panahi, Lee (bb0065) 2021; 12 Gao, Chen, Niu, Plaza (bb0090) 2021; 14 Kullback, Leibler (bb0155) 1951; 22 Wang, Zhang, Luo, He, Cheung (bb0215) 2021; 288 Lan, Sekiyama (bb0160) 2019; 111 Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948. Yang, Wei, Deng, Zhao (bb0240) 2022; 14 Espindola, Camara, Reis, Bins, Monteiro (bb0085) 2006; 27 Wang, Fang, Hong (bb0225) 2019; 666 Janowski, Wroblewski, Rucinska, Kubowicz-Grajewska, Tysiac (bb0135) 2022; 301 Thomas, Jordan, Shine, Fenton, Mellander, Dunlop, Murphy (bb0200) 2017; 54 Alvioli (10.1016/j.geomorph.2024.109367_bb0020) 2016; 9 Alvioli (10.1016/j.geomorph.2024.109367_bb0025) 2020; 358 Huang (10.1016/j.geomorph.2024.109367_bb0125) 2021; 18 Chen (10.1016/j.geomorph.2024.109367_bb0065) 2021; 12 Jia (10.1016/j.geomorph.2024.109367_bb0145) 2015; 76 Xu (10.1016/j.geomorph.2024.109367_bb0235) 2019; 45 Lan (10.1016/j.geomorph.2024.109367_bb0160) 2019; 111 Achanta (10.1016/j.geomorph.2024.109367_bb0010) 2012; 34 Bălteanu (10.1016/j.geomorph.2024.109367_bb0040) 2020; 371 Espindola (10.1016/j.geomorph.2024.109367_bb0085) 2006; 27 Harrison (10.1016/j.geomorph.2024.109367_bb0105) 2018; 12 Li (10.1016/j.geomorph.2024.109367_bb0165) 2021; 13 Chang (10.1016/j.geomorph.2024.109367_bb0045) 2023; 15 Jacobs (10.1016/j.geomorph.2024.109367_bb0130) 2020; 356 Ghorbani (10.1016/j.geomorph.2024.109367_bb0100) 2018; 154 Chen (10.1016/j.geomorph.2024.109367_bb0070) 2020; 35 Zhou (10.1016/j.geomorph.2024.109367_bb0260) 2016; 204 Janowski (10.1016/j.geomorph.2024.109367_bb0135) 2022; 301 Yang (10.1016/j.geomorph.2024.109367_bb0240) 2022; 14 Jia (10.1016/j.geomorph.2024.109367_bb0140) 2012; 45 Zhang (10.1016/j.geomorph.2024.109367_bb0250) 2020; 17 Zhao (10.1016/j.geomorph.2024.109367_bb0255) 2019; 259 Ba (10.1016/j.geomorph.2024.109367_bb0035) 2018; 11 Panahi (10.1016/j.geomorph.2024.109367_bb0170) 2020; 741 Wang (10.1016/j.geomorph.2024.109367_bb0215) 2021; 288 Huabin (10.1016/j.geomorph.2024.109367_bb0120) 2005 Abdelsamea (10.1016/j.geomorph.2024.109367_bb0005) 2022; 12 Sun (10.1016/j.geomorph.2024.109367_bb0195) 2020; 79 Reichenbach (10.1016/j.geomorph.2024.109367_bb0180) 2018 Seidlitz (10.1016/j.geomorph.2024.109367_bb0190) 2022; 80 Dou (10.1016/j.geomorph.2024.109367_bb0075) 2020; 17 Piotrowski (10.1016/j.geomorph.2024.109367_bb0175) 2020; 58 Arnone (10.1016/j.geomorph.2024.109367_bb0030) 2016; 84 Kullback (10.1016/j.geomorph.2024.109367_bb0155) 1951; 22 Xie (10.1016/j.geomorph.2024.109367_bb0230) 2004; 33 Vallentin (10.1016/j.geomorph.2024.109367_bb0210) 2020; 21 Chen (10.1016/j.geomorph.2024.109367_bb0050) 2017; 14 Hong (10.1016/j.geomorph.2024.109367_bb0110) 2018; 163 Houssein (10.1016/j.geomorph.2024.109367_bb0115) 2021; 63 Esmin (10.1016/j.geomorph.2024.109367_bb0080) 2015; 44 Turel (10.1016/j.geomorph.2024.109367_bb0205) 2011 Wang (10.1016/j.geomorph.2024.109367_bb0220) 2019; 78 Wang (10.1016/j.geomorph.2024.109367_bb0225) 2019; 666 Thomas (10.1016/j.geomorph.2024.109367_bb0200) 2017; 54 Ali (10.1016/j.geomorph.2024.109367_bb0015) 2021; 12 Gao (10.1016/j.geomorph.2024.109367_bb0090) 2021; 14 Gariano (10.1016/j.geomorph.2024.109367_bb0095) 2016 Chen (10.1016/j.geomorph.2024.109367_bb0055) 2020; 195 Yin (10.1016/j.geomorph.2024.109367_bb0245) 2022; 60 10.1016/j.geomorph.2024.109367_bb0150 Romstad (10.1016/j.geomorph.2024.109367_bb0185) 2012; 139–140 |
| References_xml | – volume: 741 year: 2020 ident: bb0170 article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms publication-title: Sci. Total Environ. – volume: 76 year: 2015 ident: bb0145 article-title: GIS deterministic model-based 3D large-scale artificial slope stability analysis along a highway using a new slope unit division method publication-title: Nat. Hazards – volume: 139–140 year: 2012 ident: bb0185 article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units publication-title: Geomorphology – volume: 45 year: 2012 ident: bb0140 article-title: Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area publication-title: Comput. Geotech. – volume: 45 year: 2019 ident: bb0235 article-title: Particle swarm optimization based on dimensional learning strategy publication-title: Swarm Evol. Comput. – volume: 288 year: 2021 ident: bb0215 article-title: AI-powered landslide susceptibility assessment in Hong Kong publication-title: Eng. Geol. – volume: 12 year: 2021 ident: bb0015 article-title: GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms publication-title: Geosci. Front. – volume: 11 year: 2018 ident: bb0035 article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment publication-title: Earth Sci. Inf. – volume: 154 year: 2018 ident: bb0100 article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability publication-title: Energy – volume: 44 year: 2015 ident: bb0080 article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data publication-title: Artif. Intell. Rev. – volume: 15 year: 2023 ident: bb0045 article-title: Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors publication-title: J. Rock Mech. Geotech. Eng. – volume: 12 year: 2021 ident: bb0065 article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer publication-title: Geosci. Front. – year: 2011 ident: bb0205 article-title: Delineation of Slope Profiles From Digital Elevation Models for Landslide Hazard Analysis – volume: 14 year: 2017 ident: bb0050 article-title: Relationship between landslide size and rainfall conditions in Taiwan publication-title: Landslides – volume: 18 year: 2021 ident: bb0125 article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments publication-title: Landslides – volume: 356 year: 2020 ident: bb0130 article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach publication-title: Geomorphology – volume: 80 year: 2022 ident: bb0190 article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images publication-title: Med. Image Anal. – volume: 14 start-page: 3444 year: 2022 ident: bb0240 article-title: An improved method for the evaluation and local multi-scale optimization of the automatic extraction of slope units in complex terrains publication-title: Remote Sens. – volume: 60 year: 2022 ident: bb0245 article-title: SLIC superpixel segmentation for polarimetric SAR images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 22 year: 1951 ident: bb0155 article-title: On Information and Sufficiency publication-title: Ann. Math. Stat. – volume: 33 year: 2004 ident: bb0230 article-title: GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model publication-title: Nat. Hazards – volume: 17 year: 2020 ident: bb0075 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed publication-title: Japan. Landslides – volume: 666 year: 2019 ident: bb0225 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County publication-title: China. Sci. Total Environ. – volume: 21 year: 2020 ident: bb0210 article-title: Delineation of management zones with spatial data fusion and belief theory publication-title: Precis. Agric. – volume: 14 year: 2021 ident: bb0090 article-title: Recognition and mapping of landslide using a fully convolutional densenet and influencing factors publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 35 year: 2020 ident: bb0070 article-title: Landslide susceptibility assessment using different slope units based on the evidential belief function model publication-title: Geocarto Int. – year: 2016 ident: bb0095 article-title: Landslides in a changing climate publication-title: Earth Sci. Rev. – volume: 84 year: 2016 ident: bb0030 article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping publication-title: Environ. Model. Softw. – volume: 111 year: 2019 ident: bb0160 article-title: Autonomous robot photographer with KL divergence optimization of image composition and human facial direction publication-title: Robot. Auton. Syst. – volume: 259 year: 2019 ident: bb0255 article-title: GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing publication-title: Southeastern China. Eng. Geol. – volume: 12 year: 2022 ident: bb0005 article-title: A survey on artificial intelligence in histopathology image analysis publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery – year: 2018 ident: bb0180 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. – volume: 195 year: 2020 ident: bb0055 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: Catena (Amst) – volume: 12 year: 2018 ident: bb0105 article-title: Self-adaptive particle swarm optimization: a review and analysis of convergence publication-title: Swarm Intell. – volume: 9 year: 2016 ident: bb0020 article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling publication-title: Geosci. Model Dev. – volume: 78 year: 2019 ident: bb0220 article-title: A new slope unit extraction method for regional landslide analysis based on morphological image analysis publication-title: Bull. Eng. Geol. Environ. – volume: 17 year: 2020 ident: bb0250 article-title: Semisupervised classification based on SLIC segmentation for hyperspectral image publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 371 year: 2020 ident: bb0040 article-title: National-scale landslide susceptibility map of Romania in a European methodological framework publication-title: Geomorphology – volume: 54 year: 2017 ident: bb0200 article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 34 year: 2012 ident: bb0010 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 79 year: 2020 ident: bb0195 article-title: Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China publication-title: Bull. Eng. Geol. Environ. – volume: 204 year: 2016 ident: bb0260 article-title: Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China publication-title: Eng. Geol. – volume: 358 year: 2020 ident: bb0025 article-title: Parameter-free delineation of slope units and terrain subdivision of Italy publication-title: Geomorphology – volume: 63 year: 2021 ident: bb0115 article-title: Major advances in particle swarm optimization: theory, analysis, and application publication-title: Swarm Evol. Comput. – volume: 301 year: 2022 ident: bb0135 article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry publication-title: Eng. Geol. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948. – volume: 58 year: 2020 ident: bb0175 article-title: Population size in particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 163 year: 2018 ident: bb0110 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena (Amst) – year: 2005 ident: bb0120 article-title: GIS-based landslide hazard assessment: an overview publication-title: Prog. Phys. Geogr. – volume: 27 year: 2006 ident: bb0085 article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation publication-title: Int. J. Remote Sens. – volume: 13 start-page: 3422 year: 2021 ident: bb0165 article-title: Generation of homogeneous slope units using a novel object-oriented multi-resolution segmentation method publication-title: Water (Basel) – volume: 163 year: 2018 ident: 10.1016/j.geomorph.2024.109367_bb0110 article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China) publication-title: Catena (Amst) – volume: 78 year: 2019 ident: 10.1016/j.geomorph.2024.109367_bb0220 article-title: A new slope unit extraction method for regional landslide analysis based on morphological image analysis publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-018-1389-0 – volume: 33 year: 2004 ident: 10.1016/j.geomorph.2024.109367_bb0230 article-title: GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model publication-title: Nat. Hazards doi: 10.1023/B:NHAZ.0000037036.01850.0d – volume: 12 year: 2022 ident: 10.1016/j.geomorph.2024.109367_bb0005 article-title: A survey on artificial intelligence in histopathology image analysis publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery – volume: 14 year: 2017 ident: 10.1016/j.geomorph.2024.109367_bb0050 article-title: Relationship between landslide size and rainfall conditions in Taiwan publication-title: Landslides doi: 10.1007/s10346-016-0790-7 – year: 2011 ident: 10.1016/j.geomorph.2024.109367_bb0205 – volume: 14 start-page: 3444 year: 2022 ident: 10.1016/j.geomorph.2024.109367_bb0240 article-title: An improved method for the evaluation and local multi-scale optimization of the automatic extraction of slope units in complex terrains publication-title: Remote Sens. doi: 10.3390/rs14143444 – volume: 13 start-page: 3422 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0165 article-title: Generation of homogeneous slope units using a novel object-oriented multi-resolution segmentation method publication-title: Water (Basel) – volume: 139–140 year: 2012 ident: 10.1016/j.geomorph.2024.109367_bb0185 article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units publication-title: Geomorphology – volume: 21 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0210 article-title: Delineation of management zones with spatial data fusion and belief theory publication-title: Precis. Agric. doi: 10.1007/s11119-019-09696-0 – volume: 14 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0090 article-title: Recognition and mapping of landslide using a fully convolutional densenet and influencing factors publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3101203 – volume: 35 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0070 article-title: Landslide susceptibility assessment using different slope units based on the evidential belief function model publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1582716 – volume: 15 year: 2023 ident: 10.1016/j.geomorph.2024.109367_bb0045 article-title: Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2022.07.009 – volume: 9 year: 2016 ident: 10.1016/j.geomorph.2024.109367_bb0020 article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3975-2016 – volume: 76 year: 2015 ident: 10.1016/j.geomorph.2024.109367_bb0145 article-title: GIS deterministic model-based 3D large-scale artificial slope stability analysis along a highway using a new slope unit division method publication-title: Nat. Hazards doi: 10.1007/s11069-014-1524-6 – volume: 18 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0125 article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments publication-title: Landslides doi: 10.1007/s10346-021-01756-9 – volume: 63 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0115 article-title: Major advances in particle swarm optimization: theory, analysis, and application publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100868 – volume: 45 year: 2012 ident: 10.1016/j.geomorph.2024.109367_bb0140 article-title: Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2012.04.007 – volume: 741 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0170 article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139937 – volume: 79 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0195 article-title: Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China publication-title: Bull. Eng. Geol. Environ. – volume: 356 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0130 article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107084 – volume: 45 year: 2019 ident: 10.1016/j.geomorph.2024.109367_bb0235 article-title: Particle swarm optimization based on dimensional learning strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.12.009 – ident: 10.1016/j.geomorph.2024.109367_bb0150 doi: 10.1109/ICNN.1995.488968 – volume: 111 year: 2019 ident: 10.1016/j.geomorph.2024.109367_bb0160 article-title: Autonomous robot photographer with KL divergence optimization of image composition and human facial direction publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2018.10.008 – volume: 27 year: 2006 ident: 10.1016/j.geomorph.2024.109367_bb0085 article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600617194 – volume: 371 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0040 article-title: National-scale landslide susceptibility map of Romania in a European methodological framework publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107432 – volume: 60 year: 2022 ident: 10.1016/j.geomorph.2024.109367_bb0245 article-title: SLIC superpixel segmentation for polarimetric SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3047126 – volume: 12 year: 2018 ident: 10.1016/j.geomorph.2024.109367_bb0105 article-title: Self-adaptive particle swarm optimization: a review and analysis of convergence publication-title: Swarm Intell. doi: 10.1007/s11721-017-0150-9 – volume: 259 year: 2019 ident: 10.1016/j.geomorph.2024.109367_bb0255 article-title: GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing publication-title: Southeastern China. Eng. Geol. – volume: 17 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0075 article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed publication-title: Japan. Landslides – year: 2018 ident: 10.1016/j.geomorph.2024.109367_bb0180 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2018.03.001 – volume: 17 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0250 article-title: Semisupervised classification based on SLIC segmentation for hyperspectral image publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2945546 – volume: 666 year: 2019 ident: 10.1016/j.geomorph.2024.109367_bb0225 article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County publication-title: China. Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.263 – volume: 301 year: 2022 ident: 10.1016/j.geomorph.2024.109367_bb0135 article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106615 – volume: 80 year: 2022 ident: 10.1016/j.geomorph.2024.109367_bb0190 article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102488 – volume: 11 year: 2018 ident: 10.1016/j.geomorph.2024.109367_bb0035 article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment publication-title: Earth Sci. Inf. doi: 10.1007/s12145-018-0335-9 – volume: 12 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0015 article-title: GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.09.004 – volume: 84 year: 2016 ident: 10.1016/j.geomorph.2024.109367_bb0030 article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.07.016 – year: 2005 ident: 10.1016/j.geomorph.2024.109367_bb0120 article-title: GIS-based landslide hazard assessment: an overview publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133305pp462ra – volume: 44 year: 2015 ident: 10.1016/j.geomorph.2024.109367_bb0080 article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9400-4 – year: 2016 ident: 10.1016/j.geomorph.2024.109367_bb0095 article-title: Landslides in a changing climate publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.08.011 – volume: 358 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0025 article-title: Parameter-free delineation of slope units and terrain subdivision of Italy publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107124 – volume: 195 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0055 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: Catena (Amst) – volume: 54 year: 2017 ident: 10.1016/j.geomorph.2024.109367_bb0200 article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 34 year: 2012 ident: 10.1016/j.geomorph.2024.109367_bb0010 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 154 year: 2018 ident: 10.1016/j.geomorph.2024.109367_bb0100 article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability publication-title: Energy doi: 10.1016/j.energy.2017.12.057 – volume: 288 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0215 article-title: AI-powered landslide susceptibility assessment in Hong Kong publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106103 – volume: 12 year: 2021 ident: 10.1016/j.geomorph.2024.109367_bb0065 article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.07.012 – volume: 22 year: 1951 ident: 10.1016/j.geomorph.2024.109367_bb0155 article-title: On Information and Sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 204 year: 2016 ident: 10.1016/j.geomorph.2024.109367_bb0260 article-title: Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2016.02.009 – volume: 58 year: 2020 ident: 10.1016/j.geomorph.2024.109367_bb0175 article-title: Population size in particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100718 |
| SSID | ssj0004790 |
| Score | 2.4603682 |
| Snippet | The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109367 |
| SubjectTerms | DEM High-homogeneity PSO SLIC Slope units Terrain segmentation |
| Title | PSO-SLIC algorithm: A novel automated method for the generation of high-homogeneity slope units using DEM data |
| URI | https://dx.doi.org/10.1016/j.geomorph.2024.109367 |
| Volume | 463 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0169-555X databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004790 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0169-555X databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004790 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0169-555X databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004790 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0169-555X databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004790 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0169-555X databaseCode: AKRWK dateStart: 19930101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004790 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb2IT3wzB69rm2Q3zXorxVrfQhW8hU2y21ZqUrQVevG3O5OHVhB6EHLJsgObmdmZb7PzYOxEoMuJLW7AKEg0F5Gpcx0pwSVaw1j4vhvledy3d37nSVw9y-cF1qpyYSissrT9hU3PrXU5Uiu5WRsNBrUu1RGREg9bgjSzQUl8QjSoi8Hp50-Yh2gU_1lwMqfZM1nCLyij7DXD78Fzoivyykp5v_k_HNSM02mvs7USLUKzWNAGWzDpJlspG5f3p5ts-SLvzDvdYulD9553by5boIe9DI_8_dczaEKafZgh6Mk4Q2hqEig6RgNCVUDoB7286jQJBzILVLuY93GxNIzwHN6H2cjABLf9O1CEfA9QbkBRpdvsqX3-2OrwspkC154nxzxJXIXoKhbKNoy0gecZ3yKYsFZrxyR-rFWcmMCpe8ZFp59Yq4T2ZERX0z5ucm-HLaZZanYZWEcF1nE03c6IwI2DwLhuoiLfwUd59T0mKw6GcVlpnBpeDMMqpOwlrDgfEufDgvN7rPZNNypqbcylUJWAwl9aE6JDmEO7_w_aA7ZKb-TDHHnIFsdvE3OE4GQcHefad8yWmpfXnbsvxUrkGA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMEF8RTj6QPXsLVNuoYbmoAB4yENJG5V2ibb0GgntiFx4bfj9MFDQuKA1FMaS6md2J8bPwAOOZmc2NABjIJEMR7pBlOR5EyQNoy577tRnsd9feO3H_jlo3icgVaVC2PDKkvdX-j0XFuXI_WSm_XRYFDv2joiQpCzxe3ObMpZmOfCbVoP7Oj9K86DN4sfLTSb2enf0oSfSEjZc0YfRI6iy_PSSnnD-V8s1Derc7YCyyVcxJNiRaswo9M1WCw7l_ff1mDhPG_N-7YO6V33lnU7Fy1Uw15GPn__-RhPMM1e9RDVdJIRNtUJFi2jkbAqEvbDXl522koHM4O2eDHr02LtMOFzHA-zkcYpnfsx2hD5HpLg0IaVbsDD2el9q83KbgpMeZ6YsCRxJcGrmEvT1MIEnqd9Q2jCGKUcnfixknGiA6fhaZesfmKM5MoTkb2b9umUe5swl2ap3gI0jgyM4yh7PcMDNw4C7bqJjHyHHuk1aiAqDoZxWWrcdrwYhlVM2VNYcT60nA8Lzteg_kk3Kopt_EkhKwGFP7ZNSBbhD9rtf9AewGL7_roTdi5urnZgyb6xBs0RuzA3eZnqPUIqk2g_34kfIZPlrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-SLIC+algorithm%3A+A+novel+automated+method+for+the+generation+of+high-homogeneity+slope+units+using+DEM+data&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Li%2C+Yange&rft.au=Fu%2C+Bangjie&rft.au=Han%2C+Zheng&rft.au=Fang%2C+Zhenxiong&rft.date=2024-10-15&rft.issn=0169-555X&rft.volume=463&rft.spage=109367&rft_id=info:doi/10.1016%2Fj.geomorph.2024.109367&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geomorph_2024_109367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon |