PSO-SLIC algorithm: A novel automated method for the generation of high-homogeneity slope units using DEM data

The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and effici...

Full description

Saved in:
Bibliographic Details
Published inGeomorphology (Amsterdam, Netherlands) Vol. 463; p. 109367
Main Authors Li, Yange, Fu, Bangjie, Han, Zheng, Fang, Zhenxiong, Chen, Ningsheng, Hu, Guisheng, Wang, Weidong, Chen, Guangqi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2024
Subjects
Online AccessGet full text
ISSN0169-555X
DOI10.1016/j.geomorph.2024.109367

Cover

Abstract The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and efficient segmentation of slope units remains a major challenge. To address this, the PSO-SLIC algorithm, an innovative method that integrates the Simple Linear Iterative Clustering (SLIC) and Particle Swarm Optimizing (PSO) algorithms for slope unit generation, is proposed. Specifically, SLIC is adopted as the basic slope unit generation method, wherein the embedded PSO is designed to optimize the essential parameter combinations for SLIC. Additionally, a new fitness function for PSO is proposed to comprehensively consider the homogeneity, heterogeneity, and shape requirements of slope units during the generation process. Notably, the proposed PSO-SLIC algorithm is parameter-free and enables adaptive selection of the optimal parameters without empirical adjusting. In this study, two separate study areas are employed to validate the performance of the proposed method. Specifically, in site A, our method generated a lower percentage (5.16 %) of highly heterogeneous slope units, compared to the hydrological method (15.77 %) and the multi-resolution segmentation method (11.10 %). The statistical results in site B further validate the superiority of our proposed method. Moreover, the proposed PSO-SLIC method effectively reduces the required number of units for terrain representation and decreases subsequent computational demands. Results demonstrate that the proposed PSO-SLIC algorithm can be used for refined terrain segmentation reliably, providing a practical solution for terrain analysis and related applications. •A parameter-free slope units generation method is proposed.•The homogeneity, heterogeneity, and squareness is fully accounts in this method.•Our proposed method can be used for automated and efficient terrain segmentation.
AbstractList The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units extraction method largely depends on empirical adjustments, making the optimization process notably time-consuming. Hence, automated and efficient segmentation of slope units remains a major challenge. To address this, the PSO-SLIC algorithm, an innovative method that integrates the Simple Linear Iterative Clustering (SLIC) and Particle Swarm Optimizing (PSO) algorithms for slope unit generation, is proposed. Specifically, SLIC is adopted as the basic slope unit generation method, wherein the embedded PSO is designed to optimize the essential parameter combinations for SLIC. Additionally, a new fitness function for PSO is proposed to comprehensively consider the homogeneity, heterogeneity, and shape requirements of slope units during the generation process. Notably, the proposed PSO-SLIC algorithm is parameter-free and enables adaptive selection of the optimal parameters without empirical adjusting. In this study, two separate study areas are employed to validate the performance of the proposed method. Specifically, in site A, our method generated a lower percentage (5.16 %) of highly heterogeneous slope units, compared to the hydrological method (15.77 %) and the multi-resolution segmentation method (11.10 %). The statistical results in site B further validate the superiority of our proposed method. Moreover, the proposed PSO-SLIC method effectively reduces the required number of units for terrain representation and decreases subsequent computational demands. Results demonstrate that the proposed PSO-SLIC algorithm can be used for refined terrain segmentation reliably, providing a practical solution for terrain analysis and related applications. •A parameter-free slope units generation method is proposed.•The homogeneity, heterogeneity, and squareness is fully accounts in this method.•Our proposed method can be used for automated and efficient terrain segmentation.
ArticleNumber 109367
Author Chen, Guangqi
Fang, Zhenxiong
Chen, Ningsheng
Hu, Guisheng
Wang, Weidong
Fu, Bangjie
Li, Yange
Han, Zheng
Author_xml – sequence: 1
  givenname: Yange
  surname: Li
  fullname: Li, Yange
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 2
  givenname: Bangjie
  surname: Fu
  fullname: Fu, Bangjie
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 3
  givenname: Zheng
  surname: Han
  fullname: Han, Zheng
  email: zheng_han@csu.edu.cn
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 4
  givenname: Zhenxiong
  surname: Fang
  fullname: Fang, Zhenxiong
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 5
  givenname: Ningsheng
  surname: Chen
  fullname: Chen, Ningsheng
  organization: Key Lab of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 6
  givenname: Guisheng
  surname: Hu
  fullname: Hu, Guisheng
  organization: Key Lab of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 7
  givenname: Weidong
  surname: Wang
  fullname: Wang, Weidong
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 8
  givenname: Guangqi
  surname: Chen
  fullname: Chen, Guangqi
  organization: Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan
BookMark eNqFkMtKAzEUhrOoYFt9BckLTE1mJnMRF5ZatVCpUAV3IU5OZlJmkpKkhb69U6sbN10d-A_fuXwjNDDWAEI3lEwoodntZlKD7azbNpOYxGkflkmWD9Cwb5YRY-zzEo283xBC0rwkQ2Te1qtovVzMsGhr63Roujs8xcbuocViF2wnAkjcQWisxMo6HBrANRhwImhrsFW40XUTNf3aY6zDAfvWbgHvjA4e77w2NX6cv2IpgrhCF0q0Hq5_6xh9PM3fZy_RcvW8mE2XkUgSFiIp47JgtEpLlQNTRZJApihjSglBQWaVKCsJBSUJxAWNpVJlKhL2RWicZ0VBkjG6P82tnPXegeKVDj8HByd0yynhR198w_988aMvfvLV49k_fOt0J9zhPPhwAqF_bq_BcV9pMBVI7aAKXFp9bsQ3oUePGg
CitedBy_id crossref_primary_10_1080_19475705_2024_2398103
crossref_primary_10_1016_j_envsoft_2024_106261
crossref_primary_10_1016_j_ige_2024_10_003
Cites_doi 10.1007/s10064-018-1389-0
10.1023/B:NHAZ.0000037036.01850.0d
10.1007/s10346-016-0790-7
10.3390/rs14143444
10.1007/s11119-019-09696-0
10.1109/JSTARS.2021.3101203
10.1080/10106049.2019.1582716
10.1016/j.jrmge.2022.07.009
10.5194/gmd-9-3975-2016
10.1007/s11069-014-1524-6
10.1007/s10346-021-01756-9
10.1016/j.swevo.2021.100868
10.1016/j.compgeo.2012.04.007
10.1016/j.scitotenv.2020.139937
10.1016/j.geomorph.2020.107084
10.1016/j.swevo.2018.12.009
10.1109/ICNN.1995.488968
10.1016/j.robot.2018.10.008
10.1080/01431160600617194
10.1016/j.geomorph.2020.107432
10.1109/TGRS.2020.3047126
10.1007/s11721-017-0150-9
10.1016/j.earscirev.2018.03.001
10.1109/LGRS.2019.2945546
10.1016/j.scitotenv.2019.02.263
10.1016/j.enggeo.2022.106615
10.1016/j.media.2022.102488
10.1007/s12145-018-0335-9
10.1016/j.gsf.2020.09.004
10.1016/j.envsoft.2016.07.016
10.1191/0309133305pp462ra
10.1007/s10462-013-9400-4
10.1016/j.earscirev.2016.08.011
10.1016/j.geomorph.2020.107124
10.1109/TPAMI.2012.120
10.1016/j.energy.2017.12.057
10.1016/j.enggeo.2021.106103
10.1016/j.gsf.2020.07.012
10.1214/aoms/1177729694
10.1016/j.enggeo.2016.02.009
10.1016/j.swevo.2020.100718
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.geomorph.2024.109367
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
ExternalDocumentID 10_1016_j_geomorph_2024_109367
S0169555X24003179
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSZ
T5K
XPP
ZCA
ZMT
~02
~G-
29H
9M8
AATTM
AAYWO
AAYXX
ABEFU
ABJNI
ABXDB
ACLOT
ACVFH
ADCNI
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
OHT
R2-
SEP
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-a335t-dd29851c49f7e5f833e6f155ffaa1ed6ca9cde8103e2812dff94a35b012768803
IEDL.DBID .~1
ISSN 0169-555X
IngestDate Thu Apr 24 23:01:43 EDT 2025
Wed Oct 01 02:40:24 EDT 2025
Sat Sep 14 18:09:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords High-homogeneity
Slope units
SLIC
DEM
PSO
Terrain segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a335t-dd29851c49f7e5f833e6f155ffaa1ed6ca9cde8103e2812dff94a35b012768803
ParticipantIDs crossref_citationtrail_10_1016_j_geomorph_2024_109367
crossref_primary_10_1016_j_geomorph_2024_109367
elsevier_sciencedirect_doi_10_1016_j_geomorph_2024_109367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Geomorphology (Amsterdam, Netherlands)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (bb0010) 2012; 34
Hong, Liu, Bui, Pradhan, Acharya, Pham, Zhu, Chen, Ahmad (bb0110) 2018; 163
Chen, Liang, Ke, Yang, Zhao (bb0070) 2020; 35
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (bb0180) 2018
Jia, Mitani, Xie, Tong, Yang (bb0145) 2015; 76
Ali, Parvin, Vojteková, Costache, Linh, Pham, Vojtek, Gigović, Ahmad, Ghorbani (bb0015) 2021; 12
Turel, Frost (bb0205) 2011
Houssein, Gad, Hussain, Suganthan (bb0115) 2021; 63
Jia, Mitani, Xie, Djamaluddin (bb0140) 2012; 45
Harrison, Engelbrecht, Ombuki-Berman (bb0105) 2018; 12
Gariano, Guzzetti (bb0095) 2016
Huabin, Gangjun, Weiya, Gonghui (bb0120) 2005
Piotrowski, Napiorkowski, Piotrowska (bb0175) 2020; 58
Chen, Oguchi, Hayakawa, Saito, Chen (bb0050) 2017; 14
Alvioli, Guzzetti, Marchesini (bb0025) 2020; 358
Ba, Chen, Deng, Yang, Li (bb0035) 2018; 11
Chang, Catani, Huang, Liu, Meena, Huang, Zhou (bb0045) 2023; 15
Xie, Esaki, Zhou (bb0230) 2004; 33
Li, He, Chen, Han, Wang, Chen, Huang (bb0165) 2021; 13
Vallentin, Dobers, Itzerott, Kleinschmit, Spengler (bb0210) 2020; 21
Jacobs, Kervyn, Reichenbach, Rossi, Marchesini, Alvioli, Dewitte (bb0130) 2020; 356
Dou, Yunus, Bui, Merghadi, Sahana, Zhu, Chen, Han, Pham (bb0075) 2020; 17
Chen, Li (bb0055) 2020; 195
Zhang, Liu, Dong, Wu, Hu (bb0250) 2020; 17
Alvioli, Marchesini, Reichenbach, Rossi, Ardizzone, Fiorucci, Guzzetti (bb0020) 2016; 9
Abdelsamea, Zidan, Senousy, Gaber, Rakha, Ilyas (bb0005) 2022; 12
Bălteanu, Micu, Jurchescu, Malet, Sima, Kucsicsa, Dumitrică, Petrea, Mărgărint, Bilaşco, Dobrescu, Călăraşu, Olinic, Boți, Senzaconi (bb0040) 2020; 371
Sun, Chen, Han, Bao, Zhan, Peng (bb0195) 2020; 79
Wang, Zhang, DelgadoTéllez, Wei (bb0220) 2019; 78
Esmin, Coelho, Matwin (bb0080) 2015; 44
Romstad, Etzelmüller (bb0185) 2012; 139–140
Zhou, Yin, Cao, Ahmed (bb0260) 2016; 204
Huang, Tao, Chang, Huang, Fan, Jiang, Li (bb0125) 2021; 18
Xu, Cui, Shi, Ge, Zhan, Lee, Liang, Tai, Wu (bb0235) 2019; 45
Seidlitz, Sellner, Odenthal, Özdemir, Studier-Fischer, Knödler, Ayala, Adler, Kenngott, Tizabi (bb0190) 2022; 80
Yin, Wang, Du, Liu, Zhou, Yang (bb0245) 2022; 60
Arnone, Francipane, Scarbaci, Puglisi, Noto (bb0030) 2016; 84
Zhao, Wang, Jiang, Liu, Wei (bb0255) 2019; 259
Ghorbani, Kasaeian, Toopshekan, Bahrami, Maghami (bb0100) 2018; 154
Panahi, Gayen, Pourghasemi, Rezaie, Lee (bb0170) 2020; 741
Chen, Chen, Peng, Panahi, Lee (bb0065) 2021; 12
Gao, Chen, Niu, Plaza (bb0090) 2021; 14
Kullback, Leibler (bb0155) 1951; 22
Wang, Zhang, Luo, He, Cheung (bb0215) 2021; 288
Lan, Sekiyama (bb0160) 2019; 111
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948.
Yang, Wei, Deng, Zhao (bb0240) 2022; 14
Espindola, Camara, Reis, Bins, Monteiro (bb0085) 2006; 27
Wang, Fang, Hong (bb0225) 2019; 666
Janowski, Wroblewski, Rucinska, Kubowicz-Grajewska, Tysiac (bb0135) 2022; 301
Thomas, Jordan, Shine, Fenton, Mellander, Dunlop, Murphy (bb0200) 2017; 54
Alvioli (10.1016/j.geomorph.2024.109367_bb0020) 2016; 9
Alvioli (10.1016/j.geomorph.2024.109367_bb0025) 2020; 358
Huang (10.1016/j.geomorph.2024.109367_bb0125) 2021; 18
Chen (10.1016/j.geomorph.2024.109367_bb0065) 2021; 12
Jia (10.1016/j.geomorph.2024.109367_bb0145) 2015; 76
Xu (10.1016/j.geomorph.2024.109367_bb0235) 2019; 45
Lan (10.1016/j.geomorph.2024.109367_bb0160) 2019; 111
Achanta (10.1016/j.geomorph.2024.109367_bb0010) 2012; 34
Bălteanu (10.1016/j.geomorph.2024.109367_bb0040) 2020; 371
Espindola (10.1016/j.geomorph.2024.109367_bb0085) 2006; 27
Harrison (10.1016/j.geomorph.2024.109367_bb0105) 2018; 12
Li (10.1016/j.geomorph.2024.109367_bb0165) 2021; 13
Chang (10.1016/j.geomorph.2024.109367_bb0045) 2023; 15
Jacobs (10.1016/j.geomorph.2024.109367_bb0130) 2020; 356
Ghorbani (10.1016/j.geomorph.2024.109367_bb0100) 2018; 154
Chen (10.1016/j.geomorph.2024.109367_bb0070) 2020; 35
Zhou (10.1016/j.geomorph.2024.109367_bb0260) 2016; 204
Janowski (10.1016/j.geomorph.2024.109367_bb0135) 2022; 301
Yang (10.1016/j.geomorph.2024.109367_bb0240) 2022; 14
Jia (10.1016/j.geomorph.2024.109367_bb0140) 2012; 45
Zhang (10.1016/j.geomorph.2024.109367_bb0250) 2020; 17
Zhao (10.1016/j.geomorph.2024.109367_bb0255) 2019; 259
Ba (10.1016/j.geomorph.2024.109367_bb0035) 2018; 11
Panahi (10.1016/j.geomorph.2024.109367_bb0170) 2020; 741
Wang (10.1016/j.geomorph.2024.109367_bb0215) 2021; 288
Huabin (10.1016/j.geomorph.2024.109367_bb0120) 2005
Abdelsamea (10.1016/j.geomorph.2024.109367_bb0005) 2022; 12
Sun (10.1016/j.geomorph.2024.109367_bb0195) 2020; 79
Reichenbach (10.1016/j.geomorph.2024.109367_bb0180) 2018
Seidlitz (10.1016/j.geomorph.2024.109367_bb0190) 2022; 80
Dou (10.1016/j.geomorph.2024.109367_bb0075) 2020; 17
Piotrowski (10.1016/j.geomorph.2024.109367_bb0175) 2020; 58
Arnone (10.1016/j.geomorph.2024.109367_bb0030) 2016; 84
Kullback (10.1016/j.geomorph.2024.109367_bb0155) 1951; 22
Xie (10.1016/j.geomorph.2024.109367_bb0230) 2004; 33
Vallentin (10.1016/j.geomorph.2024.109367_bb0210) 2020; 21
Chen (10.1016/j.geomorph.2024.109367_bb0050) 2017; 14
Hong (10.1016/j.geomorph.2024.109367_bb0110) 2018; 163
Houssein (10.1016/j.geomorph.2024.109367_bb0115) 2021; 63
Esmin (10.1016/j.geomorph.2024.109367_bb0080) 2015; 44
Turel (10.1016/j.geomorph.2024.109367_bb0205) 2011
Wang (10.1016/j.geomorph.2024.109367_bb0220) 2019; 78
Wang (10.1016/j.geomorph.2024.109367_bb0225) 2019; 666
Thomas (10.1016/j.geomorph.2024.109367_bb0200) 2017; 54
Ali (10.1016/j.geomorph.2024.109367_bb0015) 2021; 12
Gao (10.1016/j.geomorph.2024.109367_bb0090) 2021; 14
Gariano (10.1016/j.geomorph.2024.109367_bb0095) 2016
Chen (10.1016/j.geomorph.2024.109367_bb0055) 2020; 195
Yin (10.1016/j.geomorph.2024.109367_bb0245) 2022; 60
10.1016/j.geomorph.2024.109367_bb0150
Romstad (10.1016/j.geomorph.2024.109367_bb0185) 2012; 139–140
References_xml – volume: 741
  year: 2020
  ident: bb0170
  article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 76
  year: 2015
  ident: bb0145
  article-title: GIS deterministic model-based 3D large-scale artificial slope stability analysis along a highway using a new slope unit division method
  publication-title: Nat. Hazards
– volume: 139–140
  year: 2012
  ident: bb0185
  article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units
  publication-title: Geomorphology
– volume: 45
  year: 2012
  ident: bb0140
  article-title: Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area
  publication-title: Comput. Geotech.
– volume: 45
  year: 2019
  ident: bb0235
  article-title: Particle swarm optimization based on dimensional learning strategy
  publication-title: Swarm Evol. Comput.
– volume: 288
  year: 2021
  ident: bb0215
  article-title: AI-powered landslide susceptibility assessment in Hong Kong
  publication-title: Eng. Geol.
– volume: 12
  year: 2021
  ident: bb0015
  article-title: GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms
  publication-title: Geosci. Front.
– volume: 11
  year: 2018
  ident: bb0035
  article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment
  publication-title: Earth Sci. Inf.
– volume: 154
  year: 2018
  ident: bb0100
  article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability
  publication-title: Energy
– volume: 44
  year: 2015
  ident: bb0080
  article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
  publication-title: Artif. Intell. Rev.
– volume: 15
  year: 2023
  ident: bb0045
  article-title: Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 12
  year: 2021
  ident: bb0065
  article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer
  publication-title: Geosci. Front.
– year: 2011
  ident: bb0205
  article-title: Delineation of Slope Profiles From Digital Elevation Models for Landslide Hazard Analysis
– volume: 14
  year: 2017
  ident: bb0050
  article-title: Relationship between landslide size and rainfall conditions in Taiwan
  publication-title: Landslides
– volume: 18
  year: 2021
  ident: bb0125
  article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments
  publication-title: Landslides
– volume: 356
  year: 2020
  ident: bb0130
  article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach
  publication-title: Geomorphology
– volume: 80
  year: 2022
  ident: bb0190
  article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images
  publication-title: Med. Image Anal.
– volume: 14
  start-page: 3444
  year: 2022
  ident: bb0240
  article-title: An improved method for the evaluation and local multi-scale optimization of the automatic extraction of slope units in complex terrains
  publication-title: Remote Sens.
– volume: 60
  year: 2022
  ident: bb0245
  article-title: SLIC superpixel segmentation for polarimetric SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 22
  year: 1951
  ident: bb0155
  article-title: On Information and Sufficiency
  publication-title: Ann. Math. Stat.
– volume: 33
  year: 2004
  ident: bb0230
  article-title: GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model
  publication-title: Nat. Hazards
– volume: 17
  year: 2020
  ident: bb0075
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed
  publication-title: Japan. Landslides
– volume: 666
  year: 2019
  ident: bb0225
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County
  publication-title: China. Sci. Total Environ.
– volume: 21
  year: 2020
  ident: bb0210
  article-title: Delineation of management zones with spatial data fusion and belief theory
  publication-title: Precis. Agric.
– volume: 14
  year: 2021
  ident: bb0090
  article-title: Recognition and mapping of landslide using a fully convolutional densenet and influencing factors
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 35
  year: 2020
  ident: bb0070
  article-title: Landslide susceptibility assessment using different slope units based on the evidential belief function model
  publication-title: Geocarto Int.
– year: 2016
  ident: bb0095
  article-title: Landslides in a changing climate
  publication-title: Earth Sci. Rev.
– volume: 84
  year: 2016
  ident: bb0030
  article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping
  publication-title: Environ. Model. Softw.
– volume: 111
  year: 2019
  ident: bb0160
  article-title: Autonomous robot photographer with KL divergence optimization of image composition and human facial direction
  publication-title: Robot. Auton. Syst.
– volume: 259
  year: 2019
  ident: bb0255
  article-title: GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing
  publication-title: Southeastern China. Eng. Geol.
– volume: 12
  year: 2022
  ident: bb0005
  article-title: A survey on artificial intelligence in histopathology image analysis
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
– year: 2018
  ident: bb0180
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
– volume: 195
  year: 2020
  ident: bb0055
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: Catena (Amst)
– volume: 12
  year: 2018
  ident: bb0105
  article-title: Self-adaptive particle swarm optimization: a review and analysis of convergence
  publication-title: Swarm Intell.
– volume: 9
  year: 2016
  ident: bb0020
  article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
  publication-title: Geosci. Model Dev.
– volume: 78
  year: 2019
  ident: bb0220
  article-title: A new slope unit extraction method for regional landslide analysis based on morphological image analysis
  publication-title: Bull. Eng. Geol. Environ.
– volume: 17
  year: 2020
  ident: bb0250
  article-title: Semisupervised classification based on SLIC segmentation for hyperspectral image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 371
  year: 2020
  ident: bb0040
  article-title: National-scale landslide susceptibility map of Romania in a European methodological framework
  publication-title: Geomorphology
– volume: 54
  year: 2017
  ident: bb0200
  article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 34
  year: 2012
  ident: bb0010
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 79
  year: 2020
  ident: bb0195
  article-title: Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China
  publication-title: Bull. Eng. Geol. Environ.
– volume: 204
  year: 2016
  ident: bb0260
  article-title: Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China
  publication-title: Eng. Geol.
– volume: 358
  year: 2020
  ident: bb0025
  article-title: Parameter-free delineation of slope units and terrain subdivision of Italy
  publication-title: Geomorphology
– volume: 63
  year: 2021
  ident: bb0115
  article-title: Major advances in particle swarm optimization: theory, analysis, and application
  publication-title: Swarm Evol. Comput.
– volume: 301
  year: 2022
  ident: bb0135
  article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
  publication-title: Eng. Geol.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks. IEEE, pp. 1942–1948.
– volume: 58
  year: 2020
  ident: bb0175
  article-title: Population size in particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 163
  year: 2018
  ident: bb0110
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena (Amst)
– year: 2005
  ident: bb0120
  article-title: GIS-based landslide hazard assessment: an overview
  publication-title: Prog. Phys. Geogr.
– volume: 27
  year: 2006
  ident: bb0085
  article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
  publication-title: Int. J. Remote Sens.
– volume: 13
  start-page: 3422
  year: 2021
  ident: bb0165
  article-title: Generation of homogeneous slope units using a novel object-oriented multi-resolution segmentation method
  publication-title: Water (Basel)
– volume: 163
  year: 2018
  ident: 10.1016/j.geomorph.2024.109367_bb0110
  article-title: Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)
  publication-title: Catena (Amst)
– volume: 78
  year: 2019
  ident: 10.1016/j.geomorph.2024.109367_bb0220
  article-title: A new slope unit extraction method for regional landslide analysis based on morphological image analysis
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-018-1389-0
– volume: 33
  year: 2004
  ident: 10.1016/j.geomorph.2024.109367_bb0230
  article-title: GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model
  publication-title: Nat. Hazards
  doi: 10.1023/B:NHAZ.0000037036.01850.0d
– volume: 12
  year: 2022
  ident: 10.1016/j.geomorph.2024.109367_bb0005
  article-title: A survey on artificial intelligence in histopathology image analysis
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
– volume: 14
  year: 2017
  ident: 10.1016/j.geomorph.2024.109367_bb0050
  article-title: Relationship between landslide size and rainfall conditions in Taiwan
  publication-title: Landslides
  doi: 10.1007/s10346-016-0790-7
– year: 2011
  ident: 10.1016/j.geomorph.2024.109367_bb0205
– volume: 14
  start-page: 3444
  year: 2022
  ident: 10.1016/j.geomorph.2024.109367_bb0240
  article-title: An improved method for the evaluation and local multi-scale optimization of the automatic extraction of slope units in complex terrains
  publication-title: Remote Sens.
  doi: 10.3390/rs14143444
– volume: 13
  start-page: 3422
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0165
  article-title: Generation of homogeneous slope units using a novel object-oriented multi-resolution segmentation method
  publication-title: Water (Basel)
– volume: 139–140
  year: 2012
  ident: 10.1016/j.geomorph.2024.109367_bb0185
  article-title: Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units
  publication-title: Geomorphology
– volume: 21
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0210
  article-title: Delineation of management zones with spatial data fusion and belief theory
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09696-0
– volume: 14
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0090
  article-title: Recognition and mapping of landslide using a fully convolutional densenet and influencing factors
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3101203
– volume: 35
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0070
  article-title: Landslide susceptibility assessment using different slope units based on the evidential belief function model
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1582716
– volume: 15
  year: 2023
  ident: 10.1016/j.geomorph.2024.109367_bb0045
  article-title: Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2022.07.009
– volume: 9
  year: 2016
  ident: 10.1016/j.geomorph.2024.109367_bb0020
  article-title: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3975-2016
– volume: 76
  year: 2015
  ident: 10.1016/j.geomorph.2024.109367_bb0145
  article-title: GIS deterministic model-based 3D large-scale artificial slope stability analysis along a highway using a new slope unit division method
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1524-6
– volume: 18
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0125
  article-title: Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments
  publication-title: Landslides
  doi: 10.1007/s10346-021-01756-9
– volume: 63
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0115
  article-title: Major advances in particle swarm optimization: theory, analysis, and application
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100868
– volume: 45
  year: 2012
  ident: 10.1016/j.geomorph.2024.109367_bb0140
  article-title: Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2012.04.007
– volume: 741
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0170
  article-title: Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139937
– volume: 79
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0195
  article-title: Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China
  publication-title: Bull. Eng. Geol. Environ.
– volume: 356
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0130
  article-title: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107084
– volume: 45
  year: 2019
  ident: 10.1016/j.geomorph.2024.109367_bb0235
  article-title: Particle swarm optimization based on dimensional learning strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.12.009
– ident: 10.1016/j.geomorph.2024.109367_bb0150
  doi: 10.1109/ICNN.1995.488968
– volume: 111
  year: 2019
  ident: 10.1016/j.geomorph.2024.109367_bb0160
  article-title: Autonomous robot photographer with KL divergence optimization of image composition and human facial direction
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2018.10.008
– volume: 27
  year: 2006
  ident: 10.1016/j.geomorph.2024.109367_bb0085
  article-title: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600617194
– volume: 371
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0040
  article-title: National-scale landslide susceptibility map of Romania in a European methodological framework
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107432
– volume: 60
  year: 2022
  ident: 10.1016/j.geomorph.2024.109367_bb0245
  article-title: SLIC superpixel segmentation for polarimetric SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047126
– volume: 12
  year: 2018
  ident: 10.1016/j.geomorph.2024.109367_bb0105
  article-title: Self-adaptive particle swarm optimization: a review and analysis of convergence
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-017-0150-9
– volume: 259
  year: 2019
  ident: 10.1016/j.geomorph.2024.109367_bb0255
  article-title: GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing
  publication-title: Southeastern China. Eng. Geol.
– volume: 17
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0075
  article-title: Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed
  publication-title: Japan. Landslides
– year: 2018
  ident: 10.1016/j.geomorph.2024.109367_bb0180
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 17
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0250
  article-title: Semisupervised classification based on SLIC segmentation for hyperspectral image
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2945546
– volume: 666
  year: 2019
  ident: 10.1016/j.geomorph.2024.109367_bb0225
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County
  publication-title: China. Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 301
  year: 2022
  ident: 10.1016/j.geomorph.2024.109367_bb0135
  article-title: Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106615
– volume: 80
  year: 2022
  ident: 10.1016/j.geomorph.2024.109367_bb0190
  article-title: Robust deep learning-based semantic organ segmentation in hyperspectral images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102488
– volume: 11
  year: 2018
  ident: 10.1016/j.geomorph.2024.109367_bb0035
  article-title: A comparison of slope units and grid cells as mapping units for landslide susceptibility assessment
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-018-0335-9
– volume: 12
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0015
  article-title: GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.09.004
– volume: 84
  year: 2016
  ident: 10.1016/j.geomorph.2024.109367_bb0030
  article-title: Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.07.016
– year: 2005
  ident: 10.1016/j.geomorph.2024.109367_bb0120
  article-title: GIS-based landslide hazard assessment: an overview
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133305pp462ra
– volume: 44
  year: 2015
  ident: 10.1016/j.geomorph.2024.109367_bb0080
  article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9400-4
– year: 2016
  ident: 10.1016/j.geomorph.2024.109367_bb0095
  article-title: Landslides in a changing climate
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.08.011
– volume: 358
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0025
  article-title: Parameter-free delineation of slope units and terrain subdivision of Italy
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107124
– volume: 195
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0055
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: Catena (Amst)
– volume: 54
  year: 2017
  ident: 10.1016/j.geomorph.2024.109367_bb0200
  article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 34
  year: 2012
  ident: 10.1016/j.geomorph.2024.109367_bb0010
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 154
  year: 2018
  ident: 10.1016/j.geomorph.2024.109367_bb0100
  article-title: Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.057
– volume: 288
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0215
  article-title: AI-powered landslide susceptibility assessment in Hong Kong
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2021.106103
– volume: 12
  year: 2021
  ident: 10.1016/j.geomorph.2024.109367_bb0065
  article-title: Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.07.012
– volume: 22
  year: 1951
  ident: 10.1016/j.geomorph.2024.109367_bb0155
  article-title: On Information and Sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 204
  year: 2016
  ident: 10.1016/j.geomorph.2024.109367_bb0260
  article-title: Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2016.02.009
– volume: 58
  year: 2020
  ident: 10.1016/j.geomorph.2024.109367_bb0175
  article-title: Population size in particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100718
SSID ssj0004790
Score 2.4603682
Snippet The generation of high-homogeneity slope units is crucial for terrain understanding and further analysis. Currently, the parameterization of the slope units...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109367
SubjectTerms DEM
High-homogeneity
PSO
SLIC
Slope units
Terrain segmentation
Title PSO-SLIC algorithm: A novel automated method for the generation of high-homogeneity slope units using DEM data
URI https://dx.doi.org/10.1016/j.geomorph.2024.109367
Volume 463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0169-555X
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004790
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0169-555X
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004790
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0169-555X
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004790
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0169-555X
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004790
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0169-555X
  databaseCode: AKRWK
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004790
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEb2IT3wzB69rm2Q3zXorxVrfQhW8hU2y21ZqUrQVevG3O5OHVhB6EHLJsgObmdmZb7PzYOxEoMuJLW7AKEg0F5Gpcx0pwSVaw1j4vhvledy3d37nSVw9y-cF1qpyYSissrT9hU3PrXU5Uiu5WRsNBrUu1RGREg9bgjSzQUl8QjSoi8Hp50-Yh2gU_1lwMqfZM1nCLyij7DXD78Fzoivyykp5v_k_HNSM02mvs7USLUKzWNAGWzDpJlspG5f3p5ts-SLvzDvdYulD9553by5boIe9DI_8_dczaEKafZgh6Mk4Q2hqEig6RgNCVUDoB7286jQJBzILVLuY93GxNIzwHN6H2cjABLf9O1CEfA9QbkBRpdvsqX3-2OrwspkC154nxzxJXIXoKhbKNoy0gecZ3yKYsFZrxyR-rFWcmMCpe8ZFp59Yq4T2ZERX0z5ucm-HLaZZanYZWEcF1nE03c6IwI2DwLhuoiLfwUd59T0mKw6GcVlpnBpeDMMqpOwlrDgfEufDgvN7rPZNNypqbcylUJWAwl9aE6JDmEO7_w_aA7ZKb-TDHHnIFsdvE3OE4GQcHefad8yWmpfXnbsvxUrkGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMEF8RTj6QPXsLVNuoYbmoAB4yENJG5V2ibb0GgntiFx4bfj9MFDQuKA1FMaS6md2J8bPwAOOZmc2NABjIJEMR7pBlOR5EyQNoy577tRnsd9feO3H_jlo3icgVaVC2PDKkvdX-j0XFuXI_WSm_XRYFDv2joiQpCzxe3ObMpZmOfCbVoP7Oj9K86DN4sfLTSb2enf0oSfSEjZc0YfRI6iy_PSSnnD-V8s1Derc7YCyyVcxJNiRaswo9M1WCw7l_ff1mDhPG_N-7YO6V33lnU7Fy1Uw15GPn__-RhPMM1e9RDVdJIRNtUJFi2jkbAqEvbDXl522koHM4O2eDHr02LtMOFzHA-zkcYpnfsx2hD5HpLg0IaVbsDD2el9q83KbgpMeZ6YsCRxJcGrmEvT1MIEnqd9Q2jCGKUcnfixknGiA6fhaZesfmKM5MoTkb2b9umUe5swl2ap3gI0jgyM4yh7PcMDNw4C7bqJjHyHHuk1aiAqDoZxWWrcdrwYhlVM2VNYcT60nA8Lzteg_kk3Kopt_EkhKwGFP7ZNSBbhD9rtf9AewGL7_roTdi5urnZgyb6xBs0RuzA3eZnqPUIqk2g_34kfIZPlrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSO-SLIC+algorithm%3A+A+novel+automated+method+for+the+generation+of+high-homogeneity+slope+units+using+DEM+data&rft.jtitle=Geomorphology+%28Amsterdam%2C+Netherlands%29&rft.au=Li%2C+Yange&rft.au=Fu%2C+Bangjie&rft.au=Han%2C+Zheng&rft.au=Fang%2C+Zhenxiong&rft.date=2024-10-15&rft.issn=0169-555X&rft.volume=463&rft.spage=109367&rft_id=info:doi/10.1016%2Fj.geomorph.2024.109367&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geomorph_2024_109367
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-555X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-555X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-555X&client=summon