Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences

This book presents improved and extended versions of selected papers from EUROGEN 2019,  a conference with interest on developing or applying evolutionary and deterministic methods in optimization of design and emphasizing on industrial and societal applications.

Saved in:
Bibliographic Details
Main Authors Gaspar-Cunha, António, Periaux, Jacques, Giannakoglou, Kyriakos C, Gauger, Nicolas R, Quagliarella, Domenico, Greiner, David
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition1
SeriesComputational Methods in Applied Sciences
Subjects
Online AccessGet full text
ISBN3030574210
9783030574215
DOI10.1007/978-3-319-89988-6

Cover

Table of Contents:
  • 20 Neuroevolutionary Multiobjective Optimization of Injection Stretch Blow Molding Process in the Blowing Phase
  • 12 Robustness Measures for Multi-objective Robust Design -- 12.1 Introduction -- 12.2 Robust Design -- 12.2.1 Robustness Measures -- 12.2.2 Expectation-Based Approach -- 12.2.3 Two-Phase Approach -- 12.2.4 Direct Approach -- 12.2.5 Uncertainty Quantification -- 12.3 Multi-objective Optimization -- 12.3.1 Constraint-Based Approach -- 12.3.2 Global Optimization Method -- 12.4 Aerodynamic Shape Optimization -- 12.5 Results for the Two-Phase Approach -- 12.6 Results for the Direct Approach -- 12.7 Summary and Outlook -- References -- 13 Uncertainty Assessment of an Optimized ERCOFTAC Pump -- 13.1 Introduction -- 13.2 Geometric Parameterization -- 13.2.1 Camber-Line -- 13.2.2 Thickness Function -- 13.2.3 Range of the Input Variables -- 13.3 CFD -- 13.3.1 Performance of the Real and Parametrized ERCOFTAC Pump -- 13.4 Optimization Strategy -- 13.5 Uncertainty Quantification Assessment -- 13.6 Results -- 13.6.1 Deterministic Optimization -- 13.6.2 Uncertainty Quantification Assessment -- 13.7 Conclusions -- References -- 14 Gradient-Based Aerodynamic Robust Optimization Using the Adjoint Method and Gaussian Processes -- 14.1 Introduction -- 14.2 Problem Definition -- 14.2.1 Deterministic Optimization -- 14.2.2 Robust Optimization -- 14.2.3 Parametrization -- 14.2.4 Uncertainties -- 14.3 Methodology -- 14.3.1 Numerical Solver -- 14.3.2 Adjoint Method -- 14.3.3 Surrogate Based Uncertainty Quantification -- 14.3.4 Optimization Framework -- 14.4 Results -- 14.4.1 Deterministic Optimization -- 14.4.2 Uncertainty Quantification -- 14.4.3 Robust Optimization -- 14.5 Conclusions -- References -- 15 A Multi Layer Evidence Network Model for the Design Process of Space Systems Under Epistemic Uncertainty -- 15.1 Introduction -- 15.2 Evidence Framework for Epistemic Uncertainty -- 15.3 Evidence-Based Robust Optimisation -- 15.4 Space Systems Project Life Cycle
  • 8 The Effects of Crowding Distance and Mutation in Multimodal and Multi-objective Optimization Problems -- 8.1 Introduction -- 8.2 Related Work -- 8.3 Proposed NSGA-II-WSCD-NBM -- 8.3.1 Weighted-Sum Crowding Distance Method -- 8.3.2 Neighborhood Polynomial Mutation -- 8.4 Experimental Setting -- 8.4.1 Test Problems -- 8.4.2 Performance Measures -- 8.5 Analysis of Results -- 8.5.1 Influence of the Weight Values in WSCD -- 8.5.2 Influence of the Population Size in WSCD -- 8.6 Conclusion -- References -- 9 Combining Manhattan and Crowding Distances in Decision Space for Multimodal Multi-objective Optimization Problems -- 9.1 Introduction -- 9.2 Related Work -- 9.2.1 Crowding Distance in the NSGA-II Algorithm -- 9.3 Proposed NSGA-II-MDCD Algorithm -- 9.4 Experiments -- 9.4.1 Test Problems -- 9.4.2 Parameter Settings -- 9.4.3 Performance Measures -- 9.5 Analysis of Results -- 9.6 Conclusions -- References -- 10 An Unsteady Aerodynamic/Aeroacoustic Optimization Framework Using Continuous Adjoint -- 10.1 Introduction -- 10.2 Governing Equations -- 10.2.1 Flow Equations -- 10.2.2 Noise Prediction Using the FW-H Analogy -- 10.3 Formulation of the Continuous Adjoint Method -- 10.3.1 Constraint Imposition Methods -- 10.4 Verification of the Hybrid CFD/FW-H Solver -- 10.4.1 Monopole in Uniform Flow -- 10.4.2 Pitching Airfoil in Inviscid Flow -- 10.5 Optimization Results -- 10.6 Conclusions -- References -- 11 Discrete Adjoint Approaches for CHT Applications in OpenFOAM -- 11.1 Introduction -- 11.2 CHT Foundations -- 11.3 Algorithmic Differentiation -- 11.4 Checkpointing Considerations -- 11.5 Verifying the Checkpointing Implementation -- 11.6 Additional Considerations for Shape Optimization -- 11.7 CHT Sensitivity Results -- 11.8 Primal Copy Constructor Checkpointing -- 11.9 Summary and Outlook -- References
  • 15.4.1 Pre-formulation -- 15.4.2 Formulation -- 15.4.3 Implementation -- 15.5 Multi-layer Evidence Network Model (ML-ENM) -- 15.6 Problem Formulation -- 15.7 Method -- 15.8 Results -- 15.9 Conclusion -- References -- 16 Solving Multi-objective Optimal Design and Maintenance for Systems Based on Calendar Times Using NSGA-II -- 16.1 Introduction -- 16.2 Methodology -- 16.2.1 Availability and Functionability Profile -- 16.2.2 Building Functionability Profiles -- 16.2.3 Multi-objective Optimization -- 16.3 Application Case -- 16.4 Results -- 16.5 Conclusions -- References -- 17 Assessment of Exergy Analysis of CFD Simulations for the Evaluation of Aero-Thermo-Propulsive Performance of Aerial Vehicles -- 17.1 Introduction -- 17.2 Why Exergy? -- 17.3 Formulation -- 17.4 Accuracy Assessment -- 17.4.1 Implementation -- 17.4.2 Sensitivity Analysis -- 17.5 Conclusion -- References -- 18 Surrogate-Based Shape Optimization of Centrifugal Pumps for Automotive Engine Cooling Systems -- 18.1 Introduction -- 18.2 Centrifugal Pump -- 18.3 Geometry Parametrization -- 18.3.1 Impeller -- 18.3.2 Volute -- 18.4 CFD Simulation -- 18.5 Optimization Strategy -- 18.6 Results and Discussion -- 18.7 Conclusions -- References -- 19 Towards an Open-Source Framework for Aero-Structural Design and Optimization Within the SU2 Suite -- 19.1 Introduction -- 19.2 Background -- 19.2.1 Structural FEM Solver -- 19.2.2 CFD Solver -- 19.2.3 Splining Method -- 19.2.4 Fluid Mesh Deformation Solver -- 19.2.5 Coupling Method -- 19.3 Application -- 19.3.1 Structural Solver Validation -- 19.3.2 Primal FSI Solver -- 19.4 Adjoint Based Optimization: Sensitivities Evaluation -- 19.4.1 Structural Sensitivities -- 19.4.2 FSI Sensitivities -- 19.5 Conclusions and Future Works -- References
  • Intro -- Preface -- Contents -- 1 A Bi-Level Optimization Approach to Define Dynamic Tariffs with Variable Prices and Periods in the Electricity Retail Market -- 1.1 Introduction -- 1.2 Bi-Level Optimization Model -- 1.3 Hybrid Approaches -- 1.3.1 Free BL I -- 1.3.2 Free BL T -- 1.4 Experimental Results and Discussion -- 1.4.1 Results -- 1.5 Conclusions -- References -- 2 An Evolutionary Algorithm for a Bilevel Biobjective Location-Routing-Allocation Problem -- 2.1 Introduction -- 2.2 BB-LRA problem Formulation -- 2.3 EBA: An Evolutionary Biobjective Algorithm for Solving the BB-LRA Problem -- 2.3.1 Chromosome Encoding and Fitness Evaluation -- 2.3.2 Repairing a Chromosome -- 2.3.3 Initial Population -- 2.3.4 Population Handling: Crossover, Mutation and Selection -- 2.4 Computational Experiment -- 2.5 Conclusions -- References -- 3 Incorporation of Region of Interest in a Decomposition-Based Multi-objective Evolutionary Algorithm -- 3.1 Introduction -- 3.2 Background -- 3.2.1 Many-Objective Optimization -- 3.2.2 Introducing Preferences in MOEA -- 3.3 Methodology -- 3.3.1 The Preference Cone -- 3.4 Results and Discussion -- 3.4.1 Experimental Setup -- 3.4.2 ROI Definition -- 3.4.3 Discussion -- 3.5 Conclusions -- References -- 4 Solving Multiobjective Engineering Design Problems Through a Scalarized Augmented Lagrangian Algorithm (SCAL) -- 4.1 Introduction -- 4.2 Augmented Weighted Tchebycheff Methods -- 4.3 Augmented Lagrangian Technique Using the Hooke and Jeeves Pattern Search Method -- 4.4 Engineering Design Problems -- 4.4.1 Four-Bar Plane Truss -- 4.4.2 Cantilever Beam -- 4.4.3 Disc Break -- 4.4.4 I-Beam -- 4.4.5 Pressure Vessel -- 4.4.6 Speed Reducer -- 4.4.7 Two-Bar Truss -- 4.4.8 Welded Beam -- 4.4.9 Spring -- 4.4.10 Gear Train -- 4.5 Results and Discussion -- 4.6 Conclusions -- References
  • 5 Many-Objective Multidisciplinary Evolutionary Design for Hybrid-Wing-Body-Type Flyback Booster on an Entirely Automated System -- 5.1 Introduction -- 5.2 Problem Definition -- 5.2.1 Objective Functions: 6 -- 5.2.2 Design Variables: 40 -- 5.2.3 Constraints: 5 -- 5.3 Full Automated Multidisciplinary Optimization System -- 5.3.1 Pre-process -- 5.4 Method of Numerical Functions -- 5.4.1 Optimizer -- 5.4.2 Data Mining -- 5.4.3 Evaluation Methods of Objective Functions -- 5.5 The Modifications of Problem Definitions in This Paper -- 5.5.1 The Geometrical Problems in the Previous Research -- 5.5.2 Modification Manner of the Geometrical Subjects -- 5.5.3 SBX Modification -- 5.6 Results and Discussion -- 5.6.1 Cause of the Extreme High Temperature Area -- 5.6.2 The Temperature Restraint on Boosters' Surface -- 5.6.3 Negative Expansion of Objective-Functions Space -- 5.7 Conclusions -- References -- 6 A Neuroevolutionary Approach to Feature Selection Using Multiobjective Evolutionary Algorithms -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Classifier -- 6.2.2 Performance Measure for Classification -- 6.2.3 Multiobjective Optimization -- 6.3 Experimental Design -- 6.4 Results and Discussion -- 6.5 Conclusions -- References -- 7 Multi-objective Optimization in the Build Orientation of a 3D CAD Model -- 7.1 Introduction -- 7.2 Multi-objective Approach -- 7.2.1 Optimization Problem -- 7.2.2 Quality Measures -- 7.2.3 Multi-objective Genetic Algorithm -- 7.3 Experiments -- 7.3.1 Model -- 7.3.2 Implementation Details -- 7.3.3 Results for the SA versus SE Problem -- 7.3.4 Results for the SA versus BT Problem -- 7.3.5 Results for the SE versus BT Problem -- 7.3.6 Results for the SA versus SE versus BT Problem -- 7.3.7 Discussion of the Results -- 7.4 Conclusions and Future Work -- References