Flexible Metasurfaces for Multifunctional Interfaces
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical dev...
Saved in:
Published in | ACS nano Vol. 18; no. 4; pp. 2685 - 2707 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
30.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.3c09310 |
Cover
Abstract | Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field. |
---|---|
AbstractList | Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field. Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field. |
Author | Bao, Hong Yin, Junyi Wang, Jianjun Xiao, Xiao Zhang, Tianqi Chen, Jun Jiang, Shan Zhou, Yunlei Manshaii, Farid Wang, Shaolei |
AuthorAffiliation | Hangzhou Institute of Technology School of Mechano-Electronic Engineering Department of Bioengineering |
AuthorAffiliation_xml | – name: Department of Bioengineering – name: School of Mechano-Electronic Engineering – name: Hangzhou Institute of Technology |
Author_xml | – sequence: 1 givenname: Yunlei orcidid: 0000-0003-4645-4844 surname: Zhou fullname: Zhou, Yunlei organization: School of Mechano-Electronic Engineering – sequence: 2 givenname: Shaolei orcidid: 0000-0001-8991-0550 surname: Wang fullname: Wang, Shaolei organization: Department of Bioengineering – sequence: 3 givenname: Junyi surname: Yin fullname: Yin, Junyi organization: Department of Bioengineering – sequence: 4 givenname: Jianjun surname: Wang fullname: Wang, Jianjun organization: School of Mechano-Electronic Engineering – sequence: 5 givenname: Farid surname: Manshaii fullname: Manshaii, Farid organization: Department of Bioengineering – sequence: 6 givenname: Xiao surname: Xiao fullname: Xiao, Xiao organization: Department of Bioengineering – sequence: 7 givenname: Tianqi surname: Zhang fullname: Zhang, Tianqi organization: School of Mechano-Electronic Engineering – sequence: 8 givenname: Hong surname: Bao fullname: Bao, Hong organization: School of Mechano-Electronic Engineering – sequence: 9 givenname: Shan surname: Jiang fullname: Jiang, Shan email: jiangshan@xidian.edu.cn organization: School of Mechano-Electronic Engineering – sequence: 10 givenname: Jun orcidid: 0000-0002-3439-0495 surname: Chen fullname: Chen, Jun email: jun.chen@ucla.edu organization: Department of Bioengineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38241491$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM9LwzAcxYNM3A89e5MeBemWNEmbHmVsOtjwouAtpGkCHVkykxT0v7ejnQdhp-8X3uc9eG8KRtZZBcA9gnMEM7QQMlhh3RxLWGIEr8AElThPIcs_R38_RWMwDWEPIS1Ykd-AMWYZQaREE0DWRn03lVHJTkURWq-FVCHRzie71sRGt1bGxllhko2NqpdvwbUWJqi74c7Ax3r1vnxNt28vm-XzNhUY45hKzRCpoM4UpXldFTlDtWaQwgIiJYq80LUSoqJEUyIpplgimGtZU1IzLVmBZ-Cxzz1699WqEPmhCVIZI6xybeBZmUHESgJxhz4MaFsdVM2PvjkI_8PPTTuA9oD0LgSvNJdNFKdq0YvGcAT5aVE-LMqHRTvf4p_vHH3Z8dQ7OoHvXeu78cJF-hfSG4io |
CitedBy_id | crossref_primary_10_1016_j_matlet_2024_137333 crossref_primary_10_1088_2631_7990_ada8e6 crossref_primary_10_1007_s12274_024_6759_2 crossref_primary_10_1021_acsnano_4c14751 crossref_primary_10_1063_5_0222832 crossref_primary_10_1016_j_optlastec_2025_112645 crossref_primary_10_3390_molecules29112704 crossref_primary_10_1021_acsanm_4c06453 crossref_primary_10_1007_s42114_024_01098_9 crossref_primary_10_1007_s42114_025_01249_6 crossref_primary_10_1016_j_optcom_2024_131431 crossref_primary_10_3390_photonics12010043 crossref_primary_10_1007_s40820_024_01536_9 crossref_primary_10_1002_adma_202400797 crossref_primary_10_1002_advs_202416951 crossref_primary_10_1080_25740881_2024_2438053 crossref_primary_10_1021_acsami_4c13455 crossref_primary_10_1364_OME_540079 crossref_primary_10_3390_mi15050598 crossref_primary_10_1007_s42114_024_00906_6 crossref_primary_10_1557_s43580_024_00872_7 crossref_primary_10_1016_j_nwnano_2024_100042 crossref_primary_10_1063_5_0247369 crossref_primary_10_1016_j_surfin_2024_104223 crossref_primary_10_1007_s12598_024_02905_4 crossref_primary_10_1002_advs_202401767 crossref_primary_10_1002_smtd_202401288 crossref_primary_10_1038_s41378_024_00795_1 crossref_primary_10_1007_s42114_025_01219_y crossref_primary_10_1021_acsnano_4c05851 crossref_primary_10_1002_advs_202410364 crossref_primary_10_1364_AO_522582 crossref_primary_10_1515_nanoph_2024_0423 crossref_primary_10_1016_j_diamond_2024_111758 crossref_primary_10_1016_j_isci_2024_110707 crossref_primary_10_1021_acsami_4c14770 crossref_primary_10_1007_s42114_024_01030_1 |
Cites_doi | 10.1126/science.1133628 10.1002/admt.202201703 10.1038/s41377-018-0052-7 10.1002/adfm.202107557 10.1145/3197517.3201373 10.1002/andp.201800134 10.3389/fphy.2020.584077 10.1515/nanoph-2021-0006 10.1016/j.nanoen.2021.106550 10.1016/j.nanoen.2023.108298 10.1126/sciadv.adj8567 10.1038/nature14477 10.1126/science.1186351 10.1002/adom.201901285 10.1002/adfm.202109848 10.1038/s41928-021-00554-4 10.1016/j.matt.2021.09.012 10.1126/science.1206157 10.1002/adma.201904069 10.1016/j.addma.2019.100975 10.1021/acsmaterialslett.1c00763 10.1021/acsami.8b14514 10.1021/acsnano.3c05797 10.1002/advs.201900128 10.1016/j.cad.2021.103146 10.1088/2058-8585/ac28f1 10.1038/s41467-018-05579-6 10.1002/adom.201700455 10.1515/nanoph-2017-0125 10.1038/s41563-019-0452-y 10.1002/adma.202200252 10.1038/s41467-018-06802-0 10.1039/D2MH01466A 10.1002/adom.201700624 10.1002/advs.202103714 10.1002/advs.201700098 10.1016/j.nanoen.2023.108524 10.1016/j.jmr.2017.11.013 10.1038/s41528-021-00123-x 10.1186/s43593-022-00016-0 10.1093/nsr/nwy135 10.1002/lpor.201800064 10.1364/OPN.28.1.000024 10.1002/adfm.202109214 10.1038/s41377-019-0209-z 10.1021/acs.nanolett.8b01737 10.1002/adma.202201093 10.1038/s41377-021-00507-8 10.1002/adma.202102131 10.1002/adom.201701236 10.1002/adhm.202100975 10.1002/aelm.201901311 10.1002/adom.201900657 10.3390/electronics12112531 10.1002/advs.202206982 10.1021/acs.chemrev.8b00573 10.1016/j.bios.2022.114999 10.1038/s41928-020-0428-6 10.1021/acsphotonics.7b00191 10.1103/PhysRevA.94.023820 10.1002/smtd.202200830 10.1109/JSEN.2022.3162914 10.1002/adom.201801616 10.1002/admt.201800600 10.1126/sciadv.abl5511 10.1038/nmat1532 10.1364/AOP.10.000180 10.1021/acs.chemrev.1c00502 10.1038/s41467-019-09103-2 10.1002/advs.202105056 10.1038/s41928-021-00589-7 10.1126/science.1210713 10.1021/nl301594s 10.1038/nnano.2015.186 10.1073/pnas.2300953120 10.1038/s41566-018-0224-2 10.1002/adom.201400584 10.1002/VIW.20220024 10.1021/acsnano.2c06287 10.1002/adfm.202207393 10.1126/sciadv.abg0363 10.1109/TAP.2019.2955219 10.1002/adfm.202109430 10.1016/j.xinn.2023.100447 10.1002/adhm.201501029 10.1002/adma.201504270 10.1002/adfm.202107699 10.1038/s41377-019-0141-2 10.1021/acsnano.2c12606 10.1007/s11431-020-1793-0 10.1515/nanoph-2019-0505 10.1002/adma.202200070 10.1038/srep42650 10.1038/s41928-019-0257-7 10.3389/fphy.2020.586087 10.1002/adfm.201910259 10.1038/s41578-018-0061-4 10.1002/adma.202007502 10.1016/j.electacta.2018.07.228 10.1016/j.joule.2022.06.011 10.1016/j.nanoen.2022.107282 10.1038/s41467-023-36581-2 10.1021/acsami.9b15410 10.1103/PhysRevLett.110.195901 10.1002/advs.202203747 10.1038/s41928-022-00857-0 10.1002/adom.201900792 10.1016/j.nanoen.2022.107572 10.1126/sciadv.abl3742 10.1103/PhysRevLett.101.203901 10.1021/acs.nanolett.3c02492 10.1126/scirobotics.aar7650 10.1002/adma.201700412 10.1002/adma.201102430 10.1038/s41928-023-00960-w 10.1002/smtd.201600064 10.1016/j.joule.2021.03.019 10.1021/acs.nanolett.1c00828 10.1002/advs.201903382 10.1038/s41467-020-17808-y 10.1002/adfm.202214265 10.1126/sciadv.abg2507 10.1364/OE.26.013148 10.1002/adom.202100159 10.1109/JETCAS.2020.2976165 10.1002/adma.202101262 10.1090/noti2164 10.1002/adfm.201906851 10.1038/s41598-017-01932-9 10.1126/sciadv.abh3530 10.1038/s41566-019-0389-3 10.1145/2897824.2925944 10.1016/j.jmps.2017.11.025 10.1002/smll.202207600 10.1002/adom.202001609 10.1088/2631-7990/ac115a 10.1038/s41928-022-00723-z 10.1039/D1CS00003A 10.1002/adma.202204091 10.1021/acsphotonics.0c00983 10.1038/s41467-021-27066-1 10.1002/adom.202000068 10.1021/acs.nanolett.6b00618 10.1002/adom.202100932 10.1021/acsnano.2c12142 10.1007/s11431-020-1642-4 10.1088/2053-1591/aaa7ab 10.1016/j.matt.2023.06.008 10.1063/5.0094289 10.1002/adma.201400021 10.1002/aelm.202200782 10.1021/acs.nanolett.6b01897 10.1002/smll.202103262 10.1364/OE.21.024163 10.1103/PhysRevX.3.041011 10.1002/adma.202104178 10.1016/j.scitotenv.2017.10.191 10.1103/PhysRevLett.109.114302 10.1002/adom.201801742 10.34133/2021/9802673 10.1021/nn2004603 10.1016/j.matt.2022.03.014 10.1002/adma.202202478 10.1038/nmat2810 10.1016/j.nanoen.2022.108024 10.1038/lsa.2014.99 10.1126/sciadv.aax6212 10.1002/adfm.202204803 10.1126/sciadv.abe4553 10.1038/natrevmats.2017.66 10.1002/adma.202207916 10.1038/s41578-019-0167-3 10.1021/acsnano.1c02719 10.1038/srep38440 10.1021/nn5012732 10.1021/acs.nanolett.7b00717 10.1038/s41928-019-0304-4 10.1126/science.1214686 10.1016/j.joule.2022.06.001 10.1038/ncomms5130 10.1364/JOSAB.36.000F38 10.1038/s41563-021-01093-1 10.1126/science.1125907 10.1002/inf2.12122 10.1007/s10439-021-02729-8 10.1016/j.matt.2021.03.005 10.1126/science.aac9411 10.1103/PhysRevLett.106.024301 10.1002/adma.201501943 10.1038/s41928-021-00663-0 10.1038/s41565-019-0465-3 10.1038/s41928-022-00719-9 10.1038/ncomms11618 10.1002/adma.201604262 10.1002/adfm.202010962 10.1126/science.1166949 10.1002/adma.202007966 10.1002/inf2.12419 10.1007/s44258-023-00001-3 10.1038/s41566-020-0604-2 10.1126/sciadv.adj0540 10.1021/acs.chemrev.9b00821 10.1039/C9NR00675C 10.1002/adfm.202209173 10.1039/D1CS00858G 10.1021/acsnano.5b00618 10.1146/annurev-matsci-070616-124220 10.1002/adfm.201401267 10.1002/adfm.201601154 10.1103/PhysRevLett.123.074502 10.1002/smll.201300772 10.1038/s41467-021-25835-6 10.1073/pnas.1501240112 10.1021/acsphotonics.7b01038 10.1002/admt.202001032 10.1016/j.trac.2019.115622 10.1126/science.1126493 10.1021/acsnano.1c10676 10.1016/j.xinn.2023.100485 10.1038/s41377-019-0205-3 10.1109/TIE.2021.3105988 10.1039/D2LC00872F 10.1126/sciadv.abq3248 10.1002/adma.201907307 10.1126/science.abl8941 10.1103/PhysRevLett.108.014301 10.1021/acsnano.0c01804 10.1103/PhysRevLett.109.053902 10.1038/ncomms6028 10.1021/acsnano.1c11350 10.1021/acsami.1c25206 10.1088/1361-6463/ab2365 10.1038/natrevmats.2017.10 10.1186/s43593-022-00013-3 10.1002/adma.201600625 10.1002/adma.202109357 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acsnano.3c09310 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 2707 |
ExternalDocumentID | 38241491 10_1021_acsnano_3c09310 c04139380 |
Genre | Journal Article Review |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABLBI ADHGD BAANH CITATION CUPRZ NPM 7X8 |
ID | FETCH-LOGICAL-a333t-cf814b0f2e556db7681df8050701ea767fdeaab54f54c5353c106fcd54d8fc873 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:08:48 EDT 2025 Thu Apr 03 07:06:45 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Tue Jul 01 02:59:18 EDT 2025 Wed Jan 31 06:55:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | nanophotonics smart skins flexible electronics metamaterials optics multifunctional interfaces metasurfaces conformal designs curved surfaces |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a333t-cf814b0f2e556db7681df8050701ea767fdeaab54f54c5353c106fcd54d8fc873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8991-0550 0000-0003-4645-4844 0000-0002-3439-0495 |
PMID | 38241491 |
PQID | 2920189403 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2920189403 pubmed_primary_38241491 crossref_citationtrail_10_1021_acsnano_3c09310 crossref_primary_10_1021_acsnano_3c09310 acs_journals_10_1021_acsnano_3c09310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-30 |
PublicationDateYYYYMMDD | 2024-01-30 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref233/cit233 ref148/cit148 ref55/cit55 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref153/cit153 ref227/cit227 ref222/cit222 ref150/cit150 ref63/cit63 ref224/cit224 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref230/cit230 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref78/cit78 ref211/cit211 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref15/cit15 ref180/cit180 ref235/cit235 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref226/cit226 ref154/cit154 ref27/cit27 ref228/cit228 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref220/cit220 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref148/cit148 doi: 10.1126/science.1133628 – ident: ref49/cit49 doi: 10.1002/admt.202201703 – ident: ref153/cit153 doi: 10.1038/s41377-018-0052-7 – ident: ref185/cit185 doi: 10.1002/adfm.202107557 – ident: ref220/cit220 doi: 10.1145/3197517.3201373 – ident: ref181/cit181 doi: 10.1002/andp.201800134 – ident: ref202/cit202 doi: 10.3389/fphy.2020.584077 – ident: ref193/cit193 doi: 10.1515/nanoph-2021-0006 – ident: ref64/cit64 doi: 10.1016/j.nanoen.2021.106550 – ident: ref50/cit50 doi: 10.1016/j.nanoen.2023.108298 – ident: ref10/cit10 doi: 10.1126/sciadv.adj8567 – ident: ref121/cit121 doi: 10.1038/nature14477 – ident: ref151/cit151 doi: 10.1126/science.1186351 – ident: ref176/cit176 doi: 10.1002/adom.201901285 – ident: ref32/cit32 doi: 10.1002/adfm.202109848 – ident: ref195/cit195 doi: 10.1038/s41928-021-00554-4 – ident: ref16/cit16 doi: 10.1016/j.matt.2021.09.012 – ident: ref1/cit1 doi: 10.1126/science.1206157 – ident: ref175/cit175 doi: 10.1002/adma.201904069 – ident: ref228/cit228 doi: 10.1016/j.addma.2019.100975 – ident: ref167/cit167 doi: 10.1021/acsmaterialslett.1c00763 – ident: ref8/cit8 doi: 10.1021/acsami.8b14514 – ident: ref47/cit47 doi: 10.1021/acsnano.3c05797 – ident: ref179/cit179 doi: 10.1002/advs.201900128 – ident: ref221/cit221 doi: 10.1016/j.cad.2021.103146 – ident: ref229/cit229 doi: 10.1088/2058-8585/ac28f1 – ident: ref105/cit105 doi: 10.1038/s41467-018-05579-6 – ident: ref172/cit172 doi: 10.1002/adom.201700455 – ident: ref119/cit119 doi: 10.1515/nanoph-2017-0125 – ident: ref216/cit216 doi: 10.1038/s41563-019-0452-y – ident: ref30/cit30 doi: 10.1002/adma.202200252 – ident: ref184/cit184 doi: 10.1038/s41467-018-06802-0 – ident: ref11/cit11 doi: 10.1039/D2MH01466A – ident: ref200/cit200 doi: 10.1002/adom.201700624 – ident: ref162/cit162 doi: 10.1002/advs.202103714 – ident: ref183/cit183 doi: 10.1002/advs.201700098 – ident: ref33/cit33 doi: 10.1016/j.nanoen.2023.108524 – ident: ref137/cit137 doi: 10.1016/j.jmr.2017.11.013 – ident: ref168/cit168 doi: 10.1038/s41528-021-00123-x – ident: ref180/cit180 doi: 10.1186/s43593-022-00016-0 – ident: ref182/cit182 doi: 10.1093/nsr/nwy135 – ident: ref131/cit131 doi: 10.1002/lpor.201800064 – ident: ref111/cit111 doi: 10.1364/OPN.28.1.000024 – ident: ref222/cit222 doi: 10.1002/adfm.202109214 – ident: ref141/cit141 doi: 10.1038/s41377-019-0209-z – ident: ref133/cit133 doi: 10.1021/acs.nanolett.8b01737 – ident: ref83/cit83 doi: 10.1002/adma.202201093 – ident: ref214/cit214 doi: 10.1038/s41377-021-00507-8 – ident: ref215/cit215 doi: 10.1002/adma.202102131 – ident: ref173/cit173 doi: 10.1002/adom.201701236 – ident: ref17/cit17 doi: 10.1002/adhm.202100975 – ident: ref144/cit144 doi: 10.1002/aelm.201901311 – ident: ref209/cit209 doi: 10.1002/adom.201900657 – ident: ref40/cit40 doi: 10.3390/electronics12112531 – ident: ref39/cit39 doi: 10.1002/advs.202206982 – ident: ref118/cit118 doi: 10.1021/acs.chemrev.8b00573 – ident: ref12/cit12 doi: 10.1016/j.bios.2022.114999 – ident: ref7/cit7 doi: 10.1038/s41928-020-0428-6 – ident: ref236/cit236 doi: 10.1021/acsphotonics.7b00191 – ident: ref213/cit213 doi: 10.1103/PhysRevA.94.023820 – ident: ref41/cit41 doi: 10.1002/smtd.202200830 – ident: ref62/cit62 doi: 10.1109/JSEN.2022.3162914 – ident: ref123/cit123 doi: 10.1002/adom.201801616 – ident: ref225/cit225 doi: 10.1002/admt.201800600 – ident: ref22/cit22 doi: 10.1126/sciadv.abl5511 – ident: ref224/cit224 doi: 10.1038/nmat1532 – ident: ref128/cit128 doi: 10.1364/AOP.10.000180 – ident: ref44/cit44 doi: 10.1021/acs.chemrev.1c00502 – ident: ref140/cit140 doi: 10.1038/s41467-019-09103-2 – ident: ref196/cit196 doi: 10.1002/advs.202105056 – ident: ref87/cit87 doi: 10.1038/s41928-021-00589-7 – ident: ref99/cit99 doi: 10.1126/science.1210713 – ident: ref109/cit109 doi: 10.1021/nl301594s – ident: ref127/cit127 doi: 10.1038/nnano.2015.186 – ident: ref169/cit169 doi: 10.1073/pnas.2300953120 – ident: ref135/cit135 doi: 10.1038/s41566-018-0224-2 – ident: ref124/cit124 doi: 10.1002/adom.201400584 – ident: ref46/cit46 doi: 10.1002/VIW.20220024 – ident: ref13/cit13 doi: 10.1021/acsnano.2c06287 – ident: ref55/cit55 doi: 10.1002/adfm.202207393 – ident: ref132/cit132 doi: 10.1126/sciadv.abg0363 – ident: ref178/cit178 doi: 10.1109/TAP.2019.2955219 – ident: ref68/cit68 doi: 10.1002/adfm.202109430 – ident: ref37/cit37 doi: 10.1016/j.xinn.2023.100447 – ident: ref20/cit20 doi: 10.1002/adhm.201501029 – ident: ref136/cit136 doi: 10.1002/adma.201504270 – ident: ref171/cit171 doi: 10.1002/adfm.202107699 – ident: ref192/cit192 doi: 10.1038/s41377-019-0141-2 – ident: ref96/cit96 doi: 10.1021/acsnano.2c12606 – ident: ref63/cit63 doi: 10.1007/s11431-020-1793-0 – ident: ref112/cit112 doi: 10.1515/nanoph-2019-0505 – ident: ref98/cit98 doi: 10.1002/adma.202200070 – ident: ref139/cit139 doi: 10.1038/srep42650 – ident: ref88/cit88 doi: 10.1038/s41928-019-0257-7 – ident: ref91/cit91 doi: 10.3389/fphy.2020.586087 – ident: ref126/cit126 doi: 10.1002/adfm.201910259 – ident: ref82/cit82 doi: 10.1038/s41578-018-0061-4 – ident: ref35/cit35 doi: 10.1002/adma.202007502 – ident: ref235/cit235 doi: 10.1016/j.electacta.2018.07.228 – ident: ref28/cit28 doi: 10.1016/j.joule.2022.06.011 – ident: ref54/cit54 doi: 10.1016/j.nanoen.2022.107282 – ident: ref97/cit97 doi: 10.1038/s41467-023-36581-2 – ident: ref120/cit120 doi: 10.1021/acsami.9b15410 – ident: ref160/cit160 doi: 10.1103/PhysRevLett.110.195901 – ident: ref204/cit204 doi: 10.1002/advs.202203747 – ident: ref189/cit189 doi: 10.1038/s41928-022-00857-0 – ident: ref174/cit174 doi: 10.1002/adom.201900792 – ident: ref53/cit53 doi: 10.1016/j.nanoen.2022.107572 – ident: ref77/cit77 doi: 10.1126/sciadv.abl3742 – ident: ref149/cit149 doi: 10.1103/PhysRevLett.101.203901 – ident: ref9/cit9 doi: 10.1021/acs.nanolett.3c02492 – ident: ref57/cit57 doi: 10.1126/scirobotics.aar7650 – ident: ref104/cit104 doi: 10.1002/adma.201700412 – ident: ref205/cit205 doi: 10.1002/adma.201102430 – ident: ref95/cit95 doi: 10.1038/s41928-023-00960-w – ident: ref84/cit84 doi: 10.1002/smtd.201600064 – ident: ref19/cit19 doi: 10.1016/j.joule.2021.03.019 – ident: ref94/cit94 doi: 10.1021/acs.nanolett.1c00828 – ident: ref186/cit186 doi: 10.1002/advs.201903382 – ident: ref237/cit237 doi: 10.1038/s41467-020-17808-y – ident: ref71/cit71 doi: 10.1002/adfm.202214265 – ident: ref67/cit67 doi: 10.1126/sciadv.abg2507 – ident: ref90/cit90 doi: 10.1364/OE.26.013148 – ident: ref188/cit188 doi: 10.1002/adom.202100159 – ident: ref201/cit201 doi: 10.1109/JETCAS.2020.2976165 – ident: ref45/cit45 doi: 10.1002/adma.202101262 – ident: ref232/cit232 doi: 10.1090/noti2164 – ident: ref125/cit125 doi: 10.1002/adfm.201906851 – ident: ref138/cit138 doi: 10.1038/s41598-017-01932-9 – ident: ref145/cit145 doi: 10.1126/sciadv.abh3530 – ident: ref234/cit234 doi: 10.1038/s41566-019-0389-3 – ident: ref219/cit219 doi: 10.1145/2897824.2925944 – ident: ref81/cit81 doi: 10.1016/j.jmps.2017.11.025 – ident: ref24/cit24 doi: 10.1002/smll.202207600 – ident: ref190/cit190 doi: 10.1002/adom.202001609 – ident: ref230/cit230 doi: 10.1088/2631-7990/ac115a – ident: ref14/cit14 doi: 10.1038/s41928-022-00723-z – ident: ref36/cit36 doi: 10.1039/D1CS00003A – ident: ref223/cit223 doi: 10.1002/adma.202204091 – ident: ref66/cit66 doi: 10.1021/acsphotonics.0c00983 – ident: ref15/cit15 doi: 10.1038/s41467-021-27066-1 – ident: ref210/cit210 doi: 10.1002/adom.202000068 – ident: ref165/cit165 doi: 10.1021/acs.nanolett.6b00618 – ident: ref198/cit198 doi: 10.1002/adom.202100932 – ident: ref48/cit48 doi: 10.1021/acsnano.2c12142 – ident: ref65/cit65 doi: 10.1007/s11431-020-1642-4 – ident: ref208/cit208 doi: 10.1088/2053-1591/aaa7ab – ident: ref2/cit2 doi: 10.1016/j.matt.2023.06.008 – ident: ref61/cit61 doi: 10.1063/5.0094289 – ident: ref164/cit164 doi: 10.1002/adma.201400021 – ident: ref70/cit70 doi: 10.1002/aelm.202200782 – ident: ref130/cit130 doi: 10.1021/acs.nanolett.6b01897 – ident: ref231/cit231 doi: 10.1002/smll.202103262 – ident: ref211/cit211 doi: 10.1364/OE.21.024163 – ident: ref152/cit152 doi: 10.1103/PhysRevX.3.041011 – ident: ref26/cit26 doi: 10.1002/adma.202104178 – ident: ref116/cit116 doi: 10.1016/j.scitotenv.2017.10.191 – ident: ref233/cit233 doi: 10.1103/PhysRevLett.109.114302 – ident: ref177/cit177 doi: 10.1002/adom.201801742 – ident: ref203/cit203 doi: 10.34133/2021/9802673 – ident: ref207/cit207 doi: 10.1021/nn2004603 – ident: ref31/cit31 doi: 10.1016/j.matt.2022.03.014 – ident: ref42/cit42 doi: 10.1002/adma.202202478 – ident: ref115/cit115 doi: 10.1038/nmat2810 – ident: ref51/cit51 doi: 10.1016/j.nanoen.2022.108024 – ident: ref101/cit101 doi: 10.1038/lsa.2014.99 – ident: ref217/cit217 doi: 10.1126/sciadv.aax6212 – ident: ref27/cit27 doi: 10.1002/adfm.202204803 – ident: ref86/cit86 doi: 10.1126/sciadv.abe4553 – ident: ref69/cit69 doi: 10.1038/natrevmats.2017.66 – ident: ref3/cit3 doi: 10.1002/adma.202207916 – ident: ref142/cit142 doi: 10.1038/s41578-019-0167-3 – ident: ref73/cit73 doi: 10.1021/acsnano.1c02719 – ident: ref206/cit206 doi: 10.1038/srep38440 – ident: ref76/cit76 doi: 10.1021/nn5012732 – ident: ref134/cit134 doi: 10.1021/acs.nanolett.7b00717 – ident: ref227/cit227 doi: 10.1038/s41928-019-0304-4 – ident: ref100/cit100 doi: 10.1126/science.1214686 – ident: ref29/cit29 doi: 10.1016/j.joule.2022.06.001 – ident: ref158/cit158 doi: 10.1038/ncomms5130 – ident: ref122/cit122 doi: 10.1364/JOSAB.36.000F38 – ident: ref25/cit25 doi: 10.1038/s41563-021-01093-1 – ident: ref146/cit146 doi: 10.1126/science.1125907 – ident: ref85/cit85 doi: 10.1002/inf2.12122 – ident: ref21/cit21 doi: 10.1007/s10439-021-02729-8 – ident: ref6/cit6 doi: 10.1016/j.matt.2021.03.005 – ident: ref102/cit102 doi: 10.1126/science.aac9411 – ident: ref154/cit154 doi: 10.1103/PhysRevLett.106.024301 – ident: ref166/cit166 doi: 10.1002/adma.201501943 – ident: ref89/cit89 doi: 10.1038/s41928-021-00663-0 – ident: ref78/cit78 doi: 10.1038/s41565-019-0465-3 – ident: ref107/cit107 doi: 10.1038/s41928-022-00719-9 – ident: ref103/cit103 doi: 10.1038/ncomms11618 – ident: ref170/cit170 doi: 10.1002/adma.201604262 – ident: ref18/cit18 doi: 10.1002/adfm.202010962 – ident: ref150/cit150 doi: 10.1126/science.1166949 – ident: ref191/cit191 doi: 10.1002/adma.202007966 – ident: ref60/cit60 doi: 10.1002/inf2.12419 – ident: ref72/cit72 doi: 10.1007/s44258-023-00001-3 – ident: ref106/cit106 doi: 10.1038/s41566-020-0604-2 – ident: ref23/cit23 doi: 10.1126/sciadv.adj0540 – ident: ref56/cit56 doi: 10.1021/acs.chemrev.9b00821 – ident: ref52/cit52 doi: 10.1063/5.0094289 – ident: ref129/cit129 doi: 10.1039/C9NR00675C – ident: ref199/cit199 doi: 10.1002/adfm.202209173 – ident: ref43/cit43 doi: 10.1039/D1CS00858G – ident: ref79/cit79 doi: 10.1021/acsnano.5b00618 – ident: ref80/cit80 doi: 10.1146/annurev-matsci-070616-124220 – ident: ref75/cit75 doi: 10.1002/adfm.201401267 – ident: ref108/cit108 doi: 10.1002/adfm.201601154 – ident: ref157/cit157 doi: 10.1103/PhysRevLett.123.074502 – ident: ref226/cit226 doi: 10.1002/smll.201300772 – ident: ref194/cit194 doi: 10.1038/s41467-021-25835-6 – ident: ref159/cit159 doi: 10.1073/pnas.1501240112 – ident: ref110/cit110 doi: 10.1021/acsphotonics.7b01038 – ident: ref187/cit187 doi: 10.1002/admt.202001032 – ident: ref117/cit117 doi: 10.1016/j.trac.2019.115622 – ident: ref147/cit147 doi: 10.1126/science.1126493 – ident: ref34/cit34 doi: 10.1021/acsnano.1c10676 – ident: ref38/cit38 doi: 10.1016/j.xinn.2023.100485 – ident: ref114/cit114 doi: 10.1038/s41377-019-0205-3 – ident: ref197/cit197 doi: 10.1109/TIE.2021.3105988 – ident: ref59/cit59 doi: 10.1039/D2LC00872F – ident: ref218/cit218 doi: 10.1126/sciadv.abq3248 – ident: ref163/cit163 doi: 10.1002/adma.201907307 – ident: ref161/cit161 doi: 10.1126/science.abl8941 – ident: ref155/cit155 doi: 10.1103/PhysRevLett.108.014301 – ident: ref74/cit74 doi: 10.1021/acsnano.0c01804 – ident: ref156/cit156 doi: 10.1103/PhysRevLett.109.053902 – ident: ref143/cit143 doi: 10.1038/ncomms6028 – ident: ref5/cit5 doi: 10.1021/acsnano.1c11350 – ident: ref58/cit58 doi: 10.1021/acsami.1c25206 – ident: ref212/cit212 doi: 10.1088/1361-6463/ab2365 – ident: ref92/cit92 doi: 10.1038/natrevmats.2017.10 – ident: ref93/cit93 doi: 10.1186/s43593-022-00013-3 – ident: ref113/cit113 doi: 10.1002/adma.201600625 – ident: ref4/cit4 doi: 10.1002/adma.202109357 |
SSID | ssj0057876 |
Score | 2.629393 |
SecondaryResourceType | review_article |
Snippet | Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2685 |
Title | Flexible Metasurfaces for Multifunctional Interfaces |
URI | http://dx.doi.org/10.1021/acsnano.3c09310 https://www.ncbi.nlm.nih.gov/pubmed/38241491 https://www.proquest.com/docview/2920189403 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZQWWDgPsqlIHVgSfAdZ0QVVYVUFqjULfK5UKWoSRd-PXaSlqOqYE5sxfZz3veu7wHQYxhKCbmJPVxWMdUZi5W0LM4Ec9xqzDMbCoVHz3w4pk8TNvkii_4dwcfoXuqykMUsIdob36GYahtzr2UCCuq_LH-6Qe54E0D2BrJHESsWn7UJghrS5U81tAFb1jpmsN9kZ5U1NWFILXlLFpVK9Mc6cePfn38A9lqkGT00onEItmxxBHa_8Q8eAzoIdJhqaqORrYKv0IUErcjj2KguzA1Kr_EVRrXnsH58AsaDx9f-MG7bKMSSEFLF2glEFXTYMsaN8vYFMk5ADwQhsjLlqTNWSsWoY1Qzwoj2ZqLThlEjnBYpOQWdYlbYcxAhkjKDlccwUlOqqHLQQEu5hEKG5n5d0PPrzdtrUOZ1hBujvN2EvN2ELkiWm5_rloo8dMSYbh5wtxrw3rBwbH71dnmaub8pIfwhCztblHnoy4VERiHpgrPmmFeTEeGRDM3Qxf8WcAl2sAc3wRVD4BXoVPOFvfbgpFI3tVh-AgmO3rc |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hGICB96M8g9SBJcWJH03GClEVaJEQrdQtsh17AaWIpAu_nnOSlpcqwZrElu2zc9_d-b4DaPKQSElE6iNcVj7TMfeVNNyPI26F0aGIjUsUHjyI3ojdjfl4CcgsFwYHkWNPeRnE_2QXCK7wWSazSYtqtMFdTtUKF0y4Yg2d66fZv9dtP1HFkdFORjAxJ_P51YHTRjr_ro0WQMxS1XQ34XE-yPKGyXNrWqiWfv_B3_ifWWzBRo07vU61UbZhyWQ7sP6FjXAXWNeRY6oX4w1M4TyH1l3X8hDVemWarlOBlefQK_2I5es9GHVvhtc9vy6q4EtKaeFrGwVMERsazkWq0NoIUhsRhIUkMLIt2jY1UirOLGeaU041Go1Wp5ylkdVRm-7DcjbJzCF4AW3zNFSIaKRmTDFlSUoME5JE0pX6a0AT55vUhyJPynh3GCT1IiT1IjSgNZNBomticlcf42Vxg8t5g9eKk2PxpxczoSZ4blwwRGZmMs0TV6UriGJGaAMOKmnPO6MR4hoWB0d_m8A5rPaGg37Sv324P4a1EGGPc9JQcgLLxdvUnCJsKdRZuVM_AGG55xk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7EtZg9QDlxQ7trMcq0JVllZIUKm3yOuFKq1IeuHrGSdpxaJKcE1iy_bYmTcznjcINXmAhcCh9gEuS5-phPtSGO4nMbehUUGYGJco3B-EvSF7GPFRnRTmcmFgEDn0lJdBfHeqp9rWDAPkBp5nIpu0qAI73OVVrQEcIa5gQ7vzMv__ui0YVrFksJUBUCwIfX514DSSyr9rpCUws1Q33W00XAy0vGXy1poVsqU-fnA4_ncmO2irxp9eu9owu2jFZHto8wsr4T5iXUeSKcfG65vCeRCtu7blAbr1ynRdpworD6JX-hPL1wdo2L177fT8uriCLyilha9sTJjENjCch1qC1UG0jTHAQ0yMiMLIaiOE5MxypjjlVIHxaJXmTMdWxRE9RKvZJDPHyCM04jqQgGyEYkwyabHGhoUCx8KV_GugJsw3rQ9HnpZx74Ck9SKk9SI0UGsuh1TVBOWuTsZ4eYPrRYNpxc2x_NOruWBTOD8uKCIyM5nlqavWReKEYdpAR5XEF53RGPANS8jJ3yZwidafb7vp0_3g8RRtBIB-nK-G4jO0WrzPzDmgl0JelJv1E97y6ZM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Metasurfaces+for+Multifunctional+Interfaces&rft.jtitle=ACS+nano&rft.au=Zhou%2C+Yunlei&rft.au=Wang%2C+Shaolei&rft.au=Yin%2C+Junyi&rft.au=Wang%2C+Jianjun&rft.date=2024-01-30&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=4&rft.spage=2685&rft.epage=2707&rft_id=info:doi/10.1021%2Facsnano.3c09310&rft.externalDocID=c04139380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |