Flexible Metasurfaces for Multifunctional Interfaces

Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical dev...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 18; no. 4; pp. 2685 - 2707
Main Authors Zhou, Yunlei, Wang, Shaolei, Yin, Junyi, Wang, Jianjun, Manshaii, Farid, Xiao, Xiao, Zhang, Tianqi, Bao, Hong, Jiang, Shan, Chen, Jun
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.01.2024
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
1936-086X
DOI10.1021/acsnano.3c09310

Cover

Abstract Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
AbstractList Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Author Bao, Hong
Yin, Junyi
Wang, Jianjun
Xiao, Xiao
Zhang, Tianqi
Chen, Jun
Jiang, Shan
Zhou, Yunlei
Manshaii, Farid
Wang, Shaolei
AuthorAffiliation Hangzhou Institute of Technology
School of Mechano-Electronic Engineering
Department of Bioengineering
AuthorAffiliation_xml – name: Department of Bioengineering
– name: School of Mechano-Electronic Engineering
– name: Hangzhou Institute of Technology
Author_xml – sequence: 1
  givenname: Yunlei
  orcidid: 0000-0003-4645-4844
  surname: Zhou
  fullname: Zhou, Yunlei
  organization: School of Mechano-Electronic Engineering
– sequence: 2
  givenname: Shaolei
  orcidid: 0000-0001-8991-0550
  surname: Wang
  fullname: Wang, Shaolei
  organization: Department of Bioengineering
– sequence: 3
  givenname: Junyi
  surname: Yin
  fullname: Yin, Junyi
  organization: Department of Bioengineering
– sequence: 4
  givenname: Jianjun
  surname: Wang
  fullname: Wang, Jianjun
  organization: School of Mechano-Electronic Engineering
– sequence: 5
  givenname: Farid
  surname: Manshaii
  fullname: Manshaii, Farid
  organization: Department of Bioengineering
– sequence: 6
  givenname: Xiao
  surname: Xiao
  fullname: Xiao, Xiao
  organization: Department of Bioengineering
– sequence: 7
  givenname: Tianqi
  surname: Zhang
  fullname: Zhang, Tianqi
  organization: School of Mechano-Electronic Engineering
– sequence: 8
  givenname: Hong
  surname: Bao
  fullname: Bao, Hong
  organization: School of Mechano-Electronic Engineering
– sequence: 9
  givenname: Shan
  surname: Jiang
  fullname: Jiang, Shan
  email: jiangshan@xidian.edu.cn
  organization: School of Mechano-Electronic Engineering
– sequence: 10
  givenname: Jun
  orcidid: 0000-0002-3439-0495
  surname: Chen
  fullname: Chen, Jun
  email: jun.chen@ucla.edu
  organization: Department of Bioengineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38241491$$D View this record in MEDLINE/PubMed
BookMark eNp1kM9LwzAcxYNM3A89e5MeBemWNEmbHmVsOtjwouAtpGkCHVkykxT0v7ejnQdhp-8X3uc9eG8KRtZZBcA9gnMEM7QQMlhh3RxLWGIEr8AElThPIcs_R38_RWMwDWEPIS1Ykd-AMWYZQaREE0DWRn03lVHJTkURWq-FVCHRzie71sRGt1bGxllhko2NqpdvwbUWJqi74c7Ax3r1vnxNt28vm-XzNhUY45hKzRCpoM4UpXldFTlDtWaQwgIiJYq80LUSoqJEUyIpplgimGtZU1IzLVmBZ-Cxzz1699WqEPmhCVIZI6xybeBZmUHESgJxhz4MaFsdVM2PvjkI_8PPTTuA9oD0LgSvNJdNFKdq0YvGcAT5aVE-LMqHRTvf4p_vHH3Z8dQ7OoHvXeu78cJF-hfSG4io
CitedBy_id crossref_primary_10_1016_j_matlet_2024_137333
crossref_primary_10_1088_2631_7990_ada8e6
crossref_primary_10_1007_s12274_024_6759_2
crossref_primary_10_1021_acsnano_4c14751
crossref_primary_10_1063_5_0222832
crossref_primary_10_1016_j_optlastec_2025_112645
crossref_primary_10_3390_molecules29112704
crossref_primary_10_1021_acsanm_4c06453
crossref_primary_10_1007_s42114_024_01098_9
crossref_primary_10_1007_s42114_025_01249_6
crossref_primary_10_1016_j_optcom_2024_131431
crossref_primary_10_3390_photonics12010043
crossref_primary_10_1007_s40820_024_01536_9
crossref_primary_10_1002_adma_202400797
crossref_primary_10_1002_advs_202416951
crossref_primary_10_1080_25740881_2024_2438053
crossref_primary_10_1021_acsami_4c13455
crossref_primary_10_1364_OME_540079
crossref_primary_10_3390_mi15050598
crossref_primary_10_1007_s42114_024_00906_6
crossref_primary_10_1557_s43580_024_00872_7
crossref_primary_10_1016_j_nwnano_2024_100042
crossref_primary_10_1063_5_0247369
crossref_primary_10_1016_j_surfin_2024_104223
crossref_primary_10_1007_s12598_024_02905_4
crossref_primary_10_1002_advs_202401767
crossref_primary_10_1002_smtd_202401288
crossref_primary_10_1038_s41378_024_00795_1
crossref_primary_10_1007_s42114_025_01219_y
crossref_primary_10_1021_acsnano_4c05851
crossref_primary_10_1002_advs_202410364
crossref_primary_10_1364_AO_522582
crossref_primary_10_1515_nanoph_2024_0423
crossref_primary_10_1016_j_diamond_2024_111758
crossref_primary_10_1016_j_isci_2024_110707
crossref_primary_10_1021_acsami_4c14770
crossref_primary_10_1007_s42114_024_01030_1
Cites_doi 10.1126/science.1133628
10.1002/admt.202201703
10.1038/s41377-018-0052-7
10.1002/adfm.202107557
10.1145/3197517.3201373
10.1002/andp.201800134
10.3389/fphy.2020.584077
10.1515/nanoph-2021-0006
10.1016/j.nanoen.2021.106550
10.1016/j.nanoen.2023.108298
10.1126/sciadv.adj8567
10.1038/nature14477
10.1126/science.1186351
10.1002/adom.201901285
10.1002/adfm.202109848
10.1038/s41928-021-00554-4
10.1016/j.matt.2021.09.012
10.1126/science.1206157
10.1002/adma.201904069
10.1016/j.addma.2019.100975
10.1021/acsmaterialslett.1c00763
10.1021/acsami.8b14514
10.1021/acsnano.3c05797
10.1002/advs.201900128
10.1016/j.cad.2021.103146
10.1088/2058-8585/ac28f1
10.1038/s41467-018-05579-6
10.1002/adom.201700455
10.1515/nanoph-2017-0125
10.1038/s41563-019-0452-y
10.1002/adma.202200252
10.1038/s41467-018-06802-0
10.1039/D2MH01466A
10.1002/adom.201700624
10.1002/advs.202103714
10.1002/advs.201700098
10.1016/j.nanoen.2023.108524
10.1016/j.jmr.2017.11.013
10.1038/s41528-021-00123-x
10.1186/s43593-022-00016-0
10.1093/nsr/nwy135
10.1002/lpor.201800064
10.1364/OPN.28.1.000024
10.1002/adfm.202109214
10.1038/s41377-019-0209-z
10.1021/acs.nanolett.8b01737
10.1002/adma.202201093
10.1038/s41377-021-00507-8
10.1002/adma.202102131
10.1002/adom.201701236
10.1002/adhm.202100975
10.1002/aelm.201901311
10.1002/adom.201900657
10.3390/electronics12112531
10.1002/advs.202206982
10.1021/acs.chemrev.8b00573
10.1016/j.bios.2022.114999
10.1038/s41928-020-0428-6
10.1021/acsphotonics.7b00191
10.1103/PhysRevA.94.023820
10.1002/smtd.202200830
10.1109/JSEN.2022.3162914
10.1002/adom.201801616
10.1002/admt.201800600
10.1126/sciadv.abl5511
10.1038/nmat1532
10.1364/AOP.10.000180
10.1021/acs.chemrev.1c00502
10.1038/s41467-019-09103-2
10.1002/advs.202105056
10.1038/s41928-021-00589-7
10.1126/science.1210713
10.1021/nl301594s
10.1038/nnano.2015.186
10.1073/pnas.2300953120
10.1038/s41566-018-0224-2
10.1002/adom.201400584
10.1002/VIW.20220024
10.1021/acsnano.2c06287
10.1002/adfm.202207393
10.1126/sciadv.abg0363
10.1109/TAP.2019.2955219
10.1002/adfm.202109430
10.1016/j.xinn.2023.100447
10.1002/adhm.201501029
10.1002/adma.201504270
10.1002/adfm.202107699
10.1038/s41377-019-0141-2
10.1021/acsnano.2c12606
10.1007/s11431-020-1793-0
10.1515/nanoph-2019-0505
10.1002/adma.202200070
10.1038/srep42650
10.1038/s41928-019-0257-7
10.3389/fphy.2020.586087
10.1002/adfm.201910259
10.1038/s41578-018-0061-4
10.1002/adma.202007502
10.1016/j.electacta.2018.07.228
10.1016/j.joule.2022.06.011
10.1016/j.nanoen.2022.107282
10.1038/s41467-023-36581-2
10.1021/acsami.9b15410
10.1103/PhysRevLett.110.195901
10.1002/advs.202203747
10.1038/s41928-022-00857-0
10.1002/adom.201900792
10.1016/j.nanoen.2022.107572
10.1126/sciadv.abl3742
10.1103/PhysRevLett.101.203901
10.1021/acs.nanolett.3c02492
10.1126/scirobotics.aar7650
10.1002/adma.201700412
10.1002/adma.201102430
10.1038/s41928-023-00960-w
10.1002/smtd.201600064
10.1016/j.joule.2021.03.019
10.1021/acs.nanolett.1c00828
10.1002/advs.201903382
10.1038/s41467-020-17808-y
10.1002/adfm.202214265
10.1126/sciadv.abg2507
10.1364/OE.26.013148
10.1002/adom.202100159
10.1109/JETCAS.2020.2976165
10.1002/adma.202101262
10.1090/noti2164
10.1002/adfm.201906851
10.1038/s41598-017-01932-9
10.1126/sciadv.abh3530
10.1038/s41566-019-0389-3
10.1145/2897824.2925944
10.1016/j.jmps.2017.11.025
10.1002/smll.202207600
10.1002/adom.202001609
10.1088/2631-7990/ac115a
10.1038/s41928-022-00723-z
10.1039/D1CS00003A
10.1002/adma.202204091
10.1021/acsphotonics.0c00983
10.1038/s41467-021-27066-1
10.1002/adom.202000068
10.1021/acs.nanolett.6b00618
10.1002/adom.202100932
10.1021/acsnano.2c12142
10.1007/s11431-020-1642-4
10.1088/2053-1591/aaa7ab
10.1016/j.matt.2023.06.008
10.1063/5.0094289
10.1002/adma.201400021
10.1002/aelm.202200782
10.1021/acs.nanolett.6b01897
10.1002/smll.202103262
10.1364/OE.21.024163
10.1103/PhysRevX.3.041011
10.1002/adma.202104178
10.1016/j.scitotenv.2017.10.191
10.1103/PhysRevLett.109.114302
10.1002/adom.201801742
10.34133/2021/9802673
10.1021/nn2004603
10.1016/j.matt.2022.03.014
10.1002/adma.202202478
10.1038/nmat2810
10.1016/j.nanoen.2022.108024
10.1038/lsa.2014.99
10.1126/sciadv.aax6212
10.1002/adfm.202204803
10.1126/sciadv.abe4553
10.1038/natrevmats.2017.66
10.1002/adma.202207916
10.1038/s41578-019-0167-3
10.1021/acsnano.1c02719
10.1038/srep38440
10.1021/nn5012732
10.1021/acs.nanolett.7b00717
10.1038/s41928-019-0304-4
10.1126/science.1214686
10.1016/j.joule.2022.06.001
10.1038/ncomms5130
10.1364/JOSAB.36.000F38
10.1038/s41563-021-01093-1
10.1126/science.1125907
10.1002/inf2.12122
10.1007/s10439-021-02729-8
10.1016/j.matt.2021.03.005
10.1126/science.aac9411
10.1103/PhysRevLett.106.024301
10.1002/adma.201501943
10.1038/s41928-021-00663-0
10.1038/s41565-019-0465-3
10.1038/s41928-022-00719-9
10.1038/ncomms11618
10.1002/adma.201604262
10.1002/adfm.202010962
10.1126/science.1166949
10.1002/adma.202007966
10.1002/inf2.12419
10.1007/s44258-023-00001-3
10.1038/s41566-020-0604-2
10.1126/sciadv.adj0540
10.1021/acs.chemrev.9b00821
10.1039/C9NR00675C
10.1002/adfm.202209173
10.1039/D1CS00858G
10.1021/acsnano.5b00618
10.1146/annurev-matsci-070616-124220
10.1002/adfm.201401267
10.1002/adfm.201601154
10.1103/PhysRevLett.123.074502
10.1002/smll.201300772
10.1038/s41467-021-25835-6
10.1073/pnas.1501240112
10.1021/acsphotonics.7b01038
10.1002/admt.202001032
10.1016/j.trac.2019.115622
10.1126/science.1126493
10.1021/acsnano.1c10676
10.1016/j.xinn.2023.100485
10.1038/s41377-019-0205-3
10.1109/TIE.2021.3105988
10.1039/D2LC00872F
10.1126/sciadv.abq3248
10.1002/adma.201907307
10.1126/science.abl8941
10.1103/PhysRevLett.108.014301
10.1021/acsnano.0c01804
10.1103/PhysRevLett.109.053902
10.1038/ncomms6028
10.1021/acsnano.1c11350
10.1021/acsami.1c25206
10.1088/1361-6463/ab2365
10.1038/natrevmats.2017.10
10.1186/s43593-022-00013-3
10.1002/adma.201600625
10.1002/adma.202109357
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.3c09310
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 2707
ExternalDocumentID 38241491
10_1021_acsnano_3c09310
c04139380
Genre Journal Article
Review
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
AAHBH
AAYXX
ABBLG
ABLBI
ADHGD
BAANH
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a333t-cf814b0f2e556db7681df8050701ea767fdeaab54f54c5353c106fcd54d8fc873
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 07:08:48 EDT 2025
Thu Apr 03 07:06:45 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Tue Jul 01 02:59:18 EDT 2025
Wed Jan 31 06:55:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords nanophotonics
smart skins
flexible electronics
metamaterials
optics
multifunctional interfaces
metasurfaces
conformal designs
curved surfaces
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-cf814b0f2e556db7681df8050701ea767fdeaab54f54c5353c106fcd54d8fc873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8991-0550
0000-0003-4645-4844
0000-0002-3439-0495
PMID 38241491
PQID 2920189403
PQPubID 23479
PageCount 23
ParticipantIDs proquest_miscellaneous_2920189403
pubmed_primary_38241491
crossref_citationtrail_10_1021_acsnano_3c09310
crossref_primary_10_1021_acsnano_3c09310
acs_journals_10_1021_acsnano_3c09310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-30
PublicationDateYYYYMMDD 2024-01-30
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref233/cit233
ref148/cit148
ref55/cit55
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref153/cit153
ref227/cit227
ref222/cit222
ref150/cit150
ref63/cit63
ref224/cit224
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref230/cit230
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref220/cit220
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref148/cit148
  doi: 10.1126/science.1133628
– ident: ref49/cit49
  doi: 10.1002/admt.202201703
– ident: ref153/cit153
  doi: 10.1038/s41377-018-0052-7
– ident: ref185/cit185
  doi: 10.1002/adfm.202107557
– ident: ref220/cit220
  doi: 10.1145/3197517.3201373
– ident: ref181/cit181
  doi: 10.1002/andp.201800134
– ident: ref202/cit202
  doi: 10.3389/fphy.2020.584077
– ident: ref193/cit193
  doi: 10.1515/nanoph-2021-0006
– ident: ref64/cit64
  doi: 10.1016/j.nanoen.2021.106550
– ident: ref50/cit50
  doi: 10.1016/j.nanoen.2023.108298
– ident: ref10/cit10
  doi: 10.1126/sciadv.adj8567
– ident: ref121/cit121
  doi: 10.1038/nature14477
– ident: ref151/cit151
  doi: 10.1126/science.1186351
– ident: ref176/cit176
  doi: 10.1002/adom.201901285
– ident: ref32/cit32
  doi: 10.1002/adfm.202109848
– ident: ref195/cit195
  doi: 10.1038/s41928-021-00554-4
– ident: ref16/cit16
  doi: 10.1016/j.matt.2021.09.012
– ident: ref1/cit1
  doi: 10.1126/science.1206157
– ident: ref175/cit175
  doi: 10.1002/adma.201904069
– ident: ref228/cit228
  doi: 10.1016/j.addma.2019.100975
– ident: ref167/cit167
  doi: 10.1021/acsmaterialslett.1c00763
– ident: ref8/cit8
  doi: 10.1021/acsami.8b14514
– ident: ref47/cit47
  doi: 10.1021/acsnano.3c05797
– ident: ref179/cit179
  doi: 10.1002/advs.201900128
– ident: ref221/cit221
  doi: 10.1016/j.cad.2021.103146
– ident: ref229/cit229
  doi: 10.1088/2058-8585/ac28f1
– ident: ref105/cit105
  doi: 10.1038/s41467-018-05579-6
– ident: ref172/cit172
  doi: 10.1002/adom.201700455
– ident: ref119/cit119
  doi: 10.1515/nanoph-2017-0125
– ident: ref216/cit216
  doi: 10.1038/s41563-019-0452-y
– ident: ref30/cit30
  doi: 10.1002/adma.202200252
– ident: ref184/cit184
  doi: 10.1038/s41467-018-06802-0
– ident: ref11/cit11
  doi: 10.1039/D2MH01466A
– ident: ref200/cit200
  doi: 10.1002/adom.201700624
– ident: ref162/cit162
  doi: 10.1002/advs.202103714
– ident: ref183/cit183
  doi: 10.1002/advs.201700098
– ident: ref33/cit33
  doi: 10.1016/j.nanoen.2023.108524
– ident: ref137/cit137
  doi: 10.1016/j.jmr.2017.11.013
– ident: ref168/cit168
  doi: 10.1038/s41528-021-00123-x
– ident: ref180/cit180
  doi: 10.1186/s43593-022-00016-0
– ident: ref182/cit182
  doi: 10.1093/nsr/nwy135
– ident: ref131/cit131
  doi: 10.1002/lpor.201800064
– ident: ref111/cit111
  doi: 10.1364/OPN.28.1.000024
– ident: ref222/cit222
  doi: 10.1002/adfm.202109214
– ident: ref141/cit141
  doi: 10.1038/s41377-019-0209-z
– ident: ref133/cit133
  doi: 10.1021/acs.nanolett.8b01737
– ident: ref83/cit83
  doi: 10.1002/adma.202201093
– ident: ref214/cit214
  doi: 10.1038/s41377-021-00507-8
– ident: ref215/cit215
  doi: 10.1002/adma.202102131
– ident: ref173/cit173
  doi: 10.1002/adom.201701236
– ident: ref17/cit17
  doi: 10.1002/adhm.202100975
– ident: ref144/cit144
  doi: 10.1002/aelm.201901311
– ident: ref209/cit209
  doi: 10.1002/adom.201900657
– ident: ref40/cit40
  doi: 10.3390/electronics12112531
– ident: ref39/cit39
  doi: 10.1002/advs.202206982
– ident: ref118/cit118
  doi: 10.1021/acs.chemrev.8b00573
– ident: ref12/cit12
  doi: 10.1016/j.bios.2022.114999
– ident: ref7/cit7
  doi: 10.1038/s41928-020-0428-6
– ident: ref236/cit236
  doi: 10.1021/acsphotonics.7b00191
– ident: ref213/cit213
  doi: 10.1103/PhysRevA.94.023820
– ident: ref41/cit41
  doi: 10.1002/smtd.202200830
– ident: ref62/cit62
  doi: 10.1109/JSEN.2022.3162914
– ident: ref123/cit123
  doi: 10.1002/adom.201801616
– ident: ref225/cit225
  doi: 10.1002/admt.201800600
– ident: ref22/cit22
  doi: 10.1126/sciadv.abl5511
– ident: ref224/cit224
  doi: 10.1038/nmat1532
– ident: ref128/cit128
  doi: 10.1364/AOP.10.000180
– ident: ref44/cit44
  doi: 10.1021/acs.chemrev.1c00502
– ident: ref140/cit140
  doi: 10.1038/s41467-019-09103-2
– ident: ref196/cit196
  doi: 10.1002/advs.202105056
– ident: ref87/cit87
  doi: 10.1038/s41928-021-00589-7
– ident: ref99/cit99
  doi: 10.1126/science.1210713
– ident: ref109/cit109
  doi: 10.1021/nl301594s
– ident: ref127/cit127
  doi: 10.1038/nnano.2015.186
– ident: ref169/cit169
  doi: 10.1073/pnas.2300953120
– ident: ref135/cit135
  doi: 10.1038/s41566-018-0224-2
– ident: ref124/cit124
  doi: 10.1002/adom.201400584
– ident: ref46/cit46
  doi: 10.1002/VIW.20220024
– ident: ref13/cit13
  doi: 10.1021/acsnano.2c06287
– ident: ref55/cit55
  doi: 10.1002/adfm.202207393
– ident: ref132/cit132
  doi: 10.1126/sciadv.abg0363
– ident: ref178/cit178
  doi: 10.1109/TAP.2019.2955219
– ident: ref68/cit68
  doi: 10.1002/adfm.202109430
– ident: ref37/cit37
  doi: 10.1016/j.xinn.2023.100447
– ident: ref20/cit20
  doi: 10.1002/adhm.201501029
– ident: ref136/cit136
  doi: 10.1002/adma.201504270
– ident: ref171/cit171
  doi: 10.1002/adfm.202107699
– ident: ref192/cit192
  doi: 10.1038/s41377-019-0141-2
– ident: ref96/cit96
  doi: 10.1021/acsnano.2c12606
– ident: ref63/cit63
  doi: 10.1007/s11431-020-1793-0
– ident: ref112/cit112
  doi: 10.1515/nanoph-2019-0505
– ident: ref98/cit98
  doi: 10.1002/adma.202200070
– ident: ref139/cit139
  doi: 10.1038/srep42650
– ident: ref88/cit88
  doi: 10.1038/s41928-019-0257-7
– ident: ref91/cit91
  doi: 10.3389/fphy.2020.586087
– ident: ref126/cit126
  doi: 10.1002/adfm.201910259
– ident: ref82/cit82
  doi: 10.1038/s41578-018-0061-4
– ident: ref35/cit35
  doi: 10.1002/adma.202007502
– ident: ref235/cit235
  doi: 10.1016/j.electacta.2018.07.228
– ident: ref28/cit28
  doi: 10.1016/j.joule.2022.06.011
– ident: ref54/cit54
  doi: 10.1016/j.nanoen.2022.107282
– ident: ref97/cit97
  doi: 10.1038/s41467-023-36581-2
– ident: ref120/cit120
  doi: 10.1021/acsami.9b15410
– ident: ref160/cit160
  doi: 10.1103/PhysRevLett.110.195901
– ident: ref204/cit204
  doi: 10.1002/advs.202203747
– ident: ref189/cit189
  doi: 10.1038/s41928-022-00857-0
– ident: ref174/cit174
  doi: 10.1002/adom.201900792
– ident: ref53/cit53
  doi: 10.1016/j.nanoen.2022.107572
– ident: ref77/cit77
  doi: 10.1126/sciadv.abl3742
– ident: ref149/cit149
  doi: 10.1103/PhysRevLett.101.203901
– ident: ref9/cit9
  doi: 10.1021/acs.nanolett.3c02492
– ident: ref57/cit57
  doi: 10.1126/scirobotics.aar7650
– ident: ref104/cit104
  doi: 10.1002/adma.201700412
– ident: ref205/cit205
  doi: 10.1002/adma.201102430
– ident: ref95/cit95
  doi: 10.1038/s41928-023-00960-w
– ident: ref84/cit84
  doi: 10.1002/smtd.201600064
– ident: ref19/cit19
  doi: 10.1016/j.joule.2021.03.019
– ident: ref94/cit94
  doi: 10.1021/acs.nanolett.1c00828
– ident: ref186/cit186
  doi: 10.1002/advs.201903382
– ident: ref237/cit237
  doi: 10.1038/s41467-020-17808-y
– ident: ref71/cit71
  doi: 10.1002/adfm.202214265
– ident: ref67/cit67
  doi: 10.1126/sciadv.abg2507
– ident: ref90/cit90
  doi: 10.1364/OE.26.013148
– ident: ref188/cit188
  doi: 10.1002/adom.202100159
– ident: ref201/cit201
  doi: 10.1109/JETCAS.2020.2976165
– ident: ref45/cit45
  doi: 10.1002/adma.202101262
– ident: ref232/cit232
  doi: 10.1090/noti2164
– ident: ref125/cit125
  doi: 10.1002/adfm.201906851
– ident: ref138/cit138
  doi: 10.1038/s41598-017-01932-9
– ident: ref145/cit145
  doi: 10.1126/sciadv.abh3530
– ident: ref234/cit234
  doi: 10.1038/s41566-019-0389-3
– ident: ref219/cit219
  doi: 10.1145/2897824.2925944
– ident: ref81/cit81
  doi: 10.1016/j.jmps.2017.11.025
– ident: ref24/cit24
  doi: 10.1002/smll.202207600
– ident: ref190/cit190
  doi: 10.1002/adom.202001609
– ident: ref230/cit230
  doi: 10.1088/2631-7990/ac115a
– ident: ref14/cit14
  doi: 10.1038/s41928-022-00723-z
– ident: ref36/cit36
  doi: 10.1039/D1CS00003A
– ident: ref223/cit223
  doi: 10.1002/adma.202204091
– ident: ref66/cit66
  doi: 10.1021/acsphotonics.0c00983
– ident: ref15/cit15
  doi: 10.1038/s41467-021-27066-1
– ident: ref210/cit210
  doi: 10.1002/adom.202000068
– ident: ref165/cit165
  doi: 10.1021/acs.nanolett.6b00618
– ident: ref198/cit198
  doi: 10.1002/adom.202100932
– ident: ref48/cit48
  doi: 10.1021/acsnano.2c12142
– ident: ref65/cit65
  doi: 10.1007/s11431-020-1642-4
– ident: ref208/cit208
  doi: 10.1088/2053-1591/aaa7ab
– ident: ref2/cit2
  doi: 10.1016/j.matt.2023.06.008
– ident: ref61/cit61
  doi: 10.1063/5.0094289
– ident: ref164/cit164
  doi: 10.1002/adma.201400021
– ident: ref70/cit70
  doi: 10.1002/aelm.202200782
– ident: ref130/cit130
  doi: 10.1021/acs.nanolett.6b01897
– ident: ref231/cit231
  doi: 10.1002/smll.202103262
– ident: ref211/cit211
  doi: 10.1364/OE.21.024163
– ident: ref152/cit152
  doi: 10.1103/PhysRevX.3.041011
– ident: ref26/cit26
  doi: 10.1002/adma.202104178
– ident: ref116/cit116
  doi: 10.1016/j.scitotenv.2017.10.191
– ident: ref233/cit233
  doi: 10.1103/PhysRevLett.109.114302
– ident: ref177/cit177
  doi: 10.1002/adom.201801742
– ident: ref203/cit203
  doi: 10.34133/2021/9802673
– ident: ref207/cit207
  doi: 10.1021/nn2004603
– ident: ref31/cit31
  doi: 10.1016/j.matt.2022.03.014
– ident: ref42/cit42
  doi: 10.1002/adma.202202478
– ident: ref115/cit115
  doi: 10.1038/nmat2810
– ident: ref51/cit51
  doi: 10.1016/j.nanoen.2022.108024
– ident: ref101/cit101
  doi: 10.1038/lsa.2014.99
– ident: ref217/cit217
  doi: 10.1126/sciadv.aax6212
– ident: ref27/cit27
  doi: 10.1002/adfm.202204803
– ident: ref86/cit86
  doi: 10.1126/sciadv.abe4553
– ident: ref69/cit69
  doi: 10.1038/natrevmats.2017.66
– ident: ref3/cit3
  doi: 10.1002/adma.202207916
– ident: ref142/cit142
  doi: 10.1038/s41578-019-0167-3
– ident: ref73/cit73
  doi: 10.1021/acsnano.1c02719
– ident: ref206/cit206
  doi: 10.1038/srep38440
– ident: ref76/cit76
  doi: 10.1021/nn5012732
– ident: ref134/cit134
  doi: 10.1021/acs.nanolett.7b00717
– ident: ref227/cit227
  doi: 10.1038/s41928-019-0304-4
– ident: ref100/cit100
  doi: 10.1126/science.1214686
– ident: ref29/cit29
  doi: 10.1016/j.joule.2022.06.001
– ident: ref158/cit158
  doi: 10.1038/ncomms5130
– ident: ref122/cit122
  doi: 10.1364/JOSAB.36.000F38
– ident: ref25/cit25
  doi: 10.1038/s41563-021-01093-1
– ident: ref146/cit146
  doi: 10.1126/science.1125907
– ident: ref85/cit85
  doi: 10.1002/inf2.12122
– ident: ref21/cit21
  doi: 10.1007/s10439-021-02729-8
– ident: ref6/cit6
  doi: 10.1016/j.matt.2021.03.005
– ident: ref102/cit102
  doi: 10.1126/science.aac9411
– ident: ref154/cit154
  doi: 10.1103/PhysRevLett.106.024301
– ident: ref166/cit166
  doi: 10.1002/adma.201501943
– ident: ref89/cit89
  doi: 10.1038/s41928-021-00663-0
– ident: ref78/cit78
  doi: 10.1038/s41565-019-0465-3
– ident: ref107/cit107
  doi: 10.1038/s41928-022-00719-9
– ident: ref103/cit103
  doi: 10.1038/ncomms11618
– ident: ref170/cit170
  doi: 10.1002/adma.201604262
– ident: ref18/cit18
  doi: 10.1002/adfm.202010962
– ident: ref150/cit150
  doi: 10.1126/science.1166949
– ident: ref191/cit191
  doi: 10.1002/adma.202007966
– ident: ref60/cit60
  doi: 10.1002/inf2.12419
– ident: ref72/cit72
  doi: 10.1007/s44258-023-00001-3
– ident: ref106/cit106
  doi: 10.1038/s41566-020-0604-2
– ident: ref23/cit23
  doi: 10.1126/sciadv.adj0540
– ident: ref56/cit56
  doi: 10.1021/acs.chemrev.9b00821
– ident: ref52/cit52
  doi: 10.1063/5.0094289
– ident: ref129/cit129
  doi: 10.1039/C9NR00675C
– ident: ref199/cit199
  doi: 10.1002/adfm.202209173
– ident: ref43/cit43
  doi: 10.1039/D1CS00858G
– ident: ref79/cit79
  doi: 10.1021/acsnano.5b00618
– ident: ref80/cit80
  doi: 10.1146/annurev-matsci-070616-124220
– ident: ref75/cit75
  doi: 10.1002/adfm.201401267
– ident: ref108/cit108
  doi: 10.1002/adfm.201601154
– ident: ref157/cit157
  doi: 10.1103/PhysRevLett.123.074502
– ident: ref226/cit226
  doi: 10.1002/smll.201300772
– ident: ref194/cit194
  doi: 10.1038/s41467-021-25835-6
– ident: ref159/cit159
  doi: 10.1073/pnas.1501240112
– ident: ref110/cit110
  doi: 10.1021/acsphotonics.7b01038
– ident: ref187/cit187
  doi: 10.1002/admt.202001032
– ident: ref117/cit117
  doi: 10.1016/j.trac.2019.115622
– ident: ref147/cit147
  doi: 10.1126/science.1126493
– ident: ref34/cit34
  doi: 10.1021/acsnano.1c10676
– ident: ref38/cit38
  doi: 10.1016/j.xinn.2023.100485
– ident: ref114/cit114
  doi: 10.1038/s41377-019-0205-3
– ident: ref197/cit197
  doi: 10.1109/TIE.2021.3105988
– ident: ref59/cit59
  doi: 10.1039/D2LC00872F
– ident: ref218/cit218
  doi: 10.1126/sciadv.abq3248
– ident: ref163/cit163
  doi: 10.1002/adma.201907307
– ident: ref161/cit161
  doi: 10.1126/science.abl8941
– ident: ref155/cit155
  doi: 10.1103/PhysRevLett.108.014301
– ident: ref74/cit74
  doi: 10.1021/acsnano.0c01804
– ident: ref156/cit156
  doi: 10.1103/PhysRevLett.109.053902
– ident: ref143/cit143
  doi: 10.1038/ncomms6028
– ident: ref5/cit5
  doi: 10.1021/acsnano.1c11350
– ident: ref58/cit58
  doi: 10.1021/acsami.1c25206
– ident: ref212/cit212
  doi: 10.1088/1361-6463/ab2365
– ident: ref92/cit92
  doi: 10.1038/natrevmats.2017.10
– ident: ref93/cit93
  doi: 10.1186/s43593-022-00013-3
– ident: ref113/cit113
  doi: 10.1002/adma.201600625
– ident: ref4/cit4
  doi: 10.1002/adma.202109357
SSID ssj0057876
Score 2.629393
SecondaryResourceType review_article
Snippet Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2685
Title Flexible Metasurfaces for Multifunctional Interfaces
URI http://dx.doi.org/10.1021/acsnano.3c09310
https://www.ncbi.nlm.nih.gov/pubmed/38241491
https://www.proquest.com/docview/2920189403
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZQWWDgPsqlIHVgSfAdZ0QVVYVUFqjULfK5UKWoSRd-PXaSlqOqYE5sxfZz3veu7wHQYxhKCbmJPVxWMdUZi5W0LM4Ec9xqzDMbCoVHz3w4pk8TNvkii_4dwcfoXuqykMUsIdob36GYahtzr2UCCuq_LH-6Qe54E0D2BrJHESsWn7UJghrS5U81tAFb1jpmsN9kZ5U1NWFILXlLFpVK9Mc6cePfn38A9lqkGT00onEItmxxBHa_8Q8eAzoIdJhqaqORrYKv0IUErcjj2KguzA1Kr_EVRrXnsH58AsaDx9f-MG7bKMSSEFLF2glEFXTYMsaN8vYFMk5ADwQhsjLlqTNWSsWoY1Qzwoj2ZqLThlEjnBYpOQWdYlbYcxAhkjKDlccwUlOqqHLQQEu5hEKG5n5d0PPrzdtrUOZ1hBujvN2EvN2ELkiWm5_rloo8dMSYbh5wtxrw3rBwbH71dnmaub8pIfwhCztblHnoy4VERiHpgrPmmFeTEeGRDM3Qxf8WcAl2sAc3wRVD4BXoVPOFvfbgpFI3tVh-AgmO3rc
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hGICB96M8g9SBJcWJH03GClEVaJEQrdQtsh17AaWIpAu_nnOSlpcqwZrElu2zc9_d-b4DaPKQSElE6iNcVj7TMfeVNNyPI26F0aGIjUsUHjyI3ojdjfl4CcgsFwYHkWNPeRnE_2QXCK7wWSazSYtqtMFdTtUKF0y4Yg2d66fZv9dtP1HFkdFORjAxJ_P51YHTRjr_ro0WQMxS1XQ34XE-yPKGyXNrWqiWfv_B3_ifWWzBRo07vU61UbZhyWQ7sP6FjXAXWNeRY6oX4w1M4TyH1l3X8hDVemWarlOBlefQK_2I5es9GHVvhtc9vy6q4EtKaeFrGwVMERsazkWq0NoIUhsRhIUkMLIt2jY1UirOLGeaU041Go1Wp5ylkdVRm-7DcjbJzCF4AW3zNFSIaKRmTDFlSUoME5JE0pX6a0AT55vUhyJPynh3GCT1IiT1IjSgNZNBomticlcf42Vxg8t5g9eKk2PxpxczoSZ4blwwRGZmMs0TV6UriGJGaAMOKmnPO6MR4hoWB0d_m8A5rPaGg37Sv324P4a1EGGPc9JQcgLLxdvUnCJsKdRZuVM_AGG55xk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7EtZg9QDlxQ7trMcq0JVllZIUKm3yOuFKq1IeuHrGSdpxaJKcE1iy_bYmTcznjcINXmAhcCh9gEuS5-phPtSGO4nMbehUUGYGJco3B-EvSF7GPFRnRTmcmFgEDn0lJdBfHeqp9rWDAPkBp5nIpu0qAI73OVVrQEcIa5gQ7vzMv__ui0YVrFksJUBUCwIfX514DSSyr9rpCUws1Q33W00XAy0vGXy1poVsqU-fnA4_ncmO2irxp9eu9owu2jFZHto8wsr4T5iXUeSKcfG65vCeRCtu7blAbr1ynRdpworD6JX-hPL1wdo2L177fT8uriCLyilha9sTJjENjCch1qC1UG0jTHAQ0yMiMLIaiOE5MxypjjlVIHxaJXmTMdWxRE9RKvZJDPHyCM04jqQgGyEYkwyabHGhoUCx8KV_GugJsw3rQ9HnpZx74Ck9SKk9SI0UGsuh1TVBOWuTsZ4eYPrRYNpxc2x_NOruWBTOD8uKCIyM5nlqavWReKEYdpAR5XEF53RGPANS8jJ3yZwidafb7vp0_3g8RRtBIB-nK-G4jO0WrzPzDmgl0JelJv1E97y6ZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Metasurfaces+for+Multifunctional+Interfaces&rft.jtitle=ACS+nano&rft.au=Zhou%2C+Yunlei&rft.au=Wang%2C+Shaolei&rft.au=Yin%2C+Junyi&rft.au=Wang%2C+Jianjun&rft.date=2024-01-30&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=18&rft.issue=4&rft.spage=2685&rft.epage=2707&rft_id=info:doi/10.1021%2Facsnano.3c09310&rft.externalDocID=c04139380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon