Conformal Symmetry Breaking Operators for Differential Forms on Spheres

This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such confo...

Full description

Saved in:
Bibliographic Details
Main Author Kobayashi, Toshiyuki
Format eBook Book
LanguageEnglish
Published Singapore Springer Nature 2016
Springer
Springer Singapore
Edition1
SeriesLecture Notes in Mathematics
Subjects
Online AccessGet full text
ISBN9789811026577
9811026572
9811026564
9789811026560
ISSN0075-8434
1617-9692
DOI10.1007/978-981-10-2657-7

Cover

Abstract This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulae in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin-Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established.The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between Cinfinity-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well.This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
AbstractList This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulae in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin-Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established.The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between Cinfinity-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well.This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics.
Author Kobayashi, Toshiyuki
Kubo, Toshihisa
Pevzner, Michael
Author_FL コバヤシ, トシユキ
クボ, トシヒサ
Author_FL_xml – sequence: 1
  fullname: コバヤシ, トシユキ
– sequence: 2
  fullname: クボ, トシヒサ
Author_xml – sequence: 1
  fullname: Kobayashi, Toshiyuki
BackLink https://cir.nii.ac.jp/crid/1130000795740605952$$DView record in CiNii
BookMark eNpdkEFv1DAQhQ20qNuyP4BbhCohDm7HdmzHR7q0pVKlHoq4Wq5jd8Nm42AHUP89E9JLudjy8_ee5s0xORjSEAh5z-CMAehzoxtqGkYZUK6kpvoVWaOGEoNZ0K_JiimmqVGGv_nv74CsMEPSphb1ITnmwJSREhR_S1ZGgQEjlDwi61J-AADTQhvTrMj1Jg0x5b3rq_un_T5M-am6yMHtuuGxuhtDdlPKpUKk-tLFGHIYpg7hK_SUKg3V_bhFsbwjh9H1Jayf7xPy_ery2-Yrvb27vtl8vqVOCFCaxtg2hre-FUbyltVBee6wj2Y-MGiNqMGwhrvoDQ8u4tht24Iz0j9E3zglTsinJdiVXfhTtqmfiv3dh4eUdsW-WAmy5wtbxox9QrYLxcDOC59pi_j8ng12dnxcHGNOP3-FMtl_wR5bZ9fby4uNlEYxxpA8Xcih66zv5hNVXC1oI3UNCiQ2ROzDgnlXXI-Y3achPWY3bouVNehGK_EXAi-N3g
ContentType eBook
Book
Copyright Springer Nature Singapore Pte Ltd. 2016
Copyright_xml – notice: Springer Nature Singapore Pte Ltd. 2016
DBID I4C
RYH
DEWEY 516
DOI 10.1007/978-981-10-2657-7
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9789811026577
9811026572
EISSN 1617-9692
Edition 1
Editor Kubo, Toshihisa
Pevzner, Michael
Editor_xml – sequence: 1
  fullname: Kubo, Toshihisa
– sequence: 2
  fullname: Pevzner, Michael
ExternalDocumentID 9789811026577
430415
EBC5596111
BB2229372X
5407876
GroupedDBID 0DA
0DF
2HY
38.
AABBV
AAMCO
AAQZU
ABBVZ
ABMNI
ACLMJ
ADCEK
ADCXD
ADMHO
ADPGQ
AEFQP
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AZZ
BBABE
CZZ
I4C
IEZ
LDK
SBO
SWNTM
TPJZQ
Z83
RYH
29L
2HD
5GY
ABZEH
ACGFS
ACNCT
AENEX
AHDLI
DU5
RSU
UQL
WH7
ID FETCH-LOGICAL-a33067-ffd892dcd3952d14e6c2a96971ce10d93409182afc92eaf909ddd0a95cbfc8a63
IEDL.DBID LDK
ISBN 9789811026577
9811026572
9811026564
9789811026560
ISSN 0075-8434
IngestDate Fri Nov 08 04:14:28 EST 2024
Fri May 23 02:56:54 EDT 2025
Fri May 30 21:38:24 EDT 2025
Thu Jun 26 23:26:29 EDT 2025
Thu Apr 03 03:50:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2016955062
LCCallNum_Ident QA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a33067-ffd892dcd3952d14e6c2a96971ce10d93409182afc92eaf909ddd0a95cbfc8a63
Notes Includes bibliographical references (p. 185-186) and index
OCLC 960909365
PQID EBC5596111
PageCount 191
ParticipantIDs askewsholts_vlebooks_9789811026577
springer_books_10_1007_978_981_10_2657_7
proquest_ebookcentral_EBC5596111
nii_cinii_1130000795740605952
casalini_monographs_5407876
PublicationCentury 2000
PublicationDate [2016]
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: [2016]
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Netherlands
– name: Singapore
PublicationSeriesTitle Lecture Notes in Mathematics
PublicationSeriesTitleAlternate Lect.Notes Mathematics
PublicationYear 2016
Publisher Springer Nature
Springer
Springer Singapore
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer Singapore
RelatedPersons Wienhard, Anna
Morel, Jean-Michel
Di Bernardo, Mario
Khoshnevisan, Davar
Kontoyiannis, Ioannis
De Lellis, Camillo
Lugosi, Gábor
Serfaty, Sylvia
Teissier, Bernard
Figalli, Alessio
Podolskij, Mark
RelatedPersons_xml – sequence: 1
  givenname: Jean-Michel
  surname: Morel
  fullname: Morel, Jean-Michel
  organization: CMLA, École Normale Supérieure, Cachan CX, France
– sequence: 2
  givenname: Bernard
  surname: Teissier
  fullname: Teissier, Bernard
  organization: UFR de Mathématiques, case 7012, Université Paris Diderot-Paris 7, Paris Cedex 13, France
– sequence: 3
  givenname: Camillo
  surname: De Lellis
  fullname: De Lellis, Camillo
  organization: Institut für Mathematik, Universität Zürich, Zürich, Switzerland
– sequence: 4
  givenname: Mario
  surname: Di Bernardo
  fullname: Di Bernardo, Mario
  organization: Faculty of Engineering, University of Bristol, Bristol, United Kingdom
– sequence: 5
  givenname: Alessio
  surname: Figalli
  fullname: Figalli, Alessio
  organization: Dept of Mathematics, Swiss Federal Inst of Tech in Zurich, Zürich, Switzerland
– sequence: 6
  givenname: Davar
  surname: Khoshnevisan
  fullname: Khoshnevisan, Davar
  organization: Department of Mathematics, The University of Utah, Salt Lake City, USA
– sequence: 7
  givenname: Ioannis
  surname: Kontoyiannis
  fullname: Kontoyiannis, Ioannis
  organization: Department of Informatics, Athens Univ. of Econ. & Business, Athens, Greece
– sequence: 8
  givenname: Gábor
  surname: Lugosi
  fullname: Lugosi, Gábor
  organization: Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 9
  givenname: Mark
  surname: Podolskij
  fullname: Podolskij, Mark
  organization: Department of Mathematics, Aarhus University, Aarhus C, Denmark
– sequence: 10
  givenname: Sylvia
  surname: Serfaty
  fullname: Serfaty, Sylvia
  organization: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6, Paris, France
– sequence: 11
  givenname: Anna
  surname: Wienhard
  fullname: Wienhard, Anna
  organization: Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany
SSID ssj0001737998
ssj0025440
Score 2.1773067
Snippet This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X...
SourceID askewsholts
springer
proquest
nii
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Broken symmetry (Physics)
Conformal geometry
Differential Geometry
Differential operators
Fourier Analysis
Geometry
Geometry, Differential
Mathematical Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Topological Groups, Lie Groups
TableOfContents Intro -- Contents -- Summary -- Chapter 1 Introduction -- Chapter 2 Symmetry Breaking Operators and Principal Series Representations of G=O(n+1,1) -- 2.1 Principal Series Representations of G=O(n+1,1) -- 2.2 Conformal View on Principal Series Representations of O(n+1,1) -- 2.3 Representation Theoretic Properties of (ω(i)u,δ, Ei(Sn)) -- 2.4 Differential Symmetry Breaking Operators for Principal Series -- 2.5 Symmetry Breaking Operators for Connected Group SO0(n,1) -- 2.6 Branching Problems for Verma Modules -- Chapter 3 F-method for Matrix-Valued Differential Operators -- 3.1 Algebraic Fourier Transform -- 3.2 Differential Operators Between Two Manifolds -- 3.3 F-method for Principal Series Representations -- 3.4 Matrix-Valued Differential Operators in the F-method -- Chapter 4 Matrix-Valued F-method for O(n+1,1) -- 4.1 Strategy of Matrix-Valued F-method for (G,G') = (O(n+1,1), O(n,1)) -- 4.2 Harmonic Polynomials -- 4.3 Description of HomL'(V,W Pol(n+)) -- 4.4 Decomposition of the Equation (dπ(σ,λ)*(N+1)idw)Ψ=0 -- 4.5 Matrix Coefficients in the F-method -- Chapter 5 Application of Finite-Dimensional Representation Theory -- 5.1 Signatures in Index Sets -- 5.2 Action of O(N) on the Exterior Algebra *(CN) -- 5.3 Construction of Intertwining Operators -- 5.4 Application of Finite-Dimensional Representation Theory -- 5.5 Classification of HomO(n-1) (i(Cn), j(Cn-1)Hk(Cn-1)) -- 5.6 Descriptions of HomO(n-1) (i(Cn) ,j(Cn-1)Pol[ζ1,…, ζn]) -- 5.7 Proof of the Implication (i)(iii) in Theorem 2.8 -- Chapter 6 F-system for Symmetry Breaking Operators (j=i-1, i case) -- 6.1 Proof of Theorem 2.8 for j = i-1, i -- 6.2 Reduction Theorem -- 6.3 Step 2: Matrix Coefficients MIJ for (dπ(i,λ)*(N+1)Ψ -- 6.4 Step 3: Case-Reduction for MvectIJ -- 6.5 Step 4 - Part I: Formulæ for Saturated Differential Equations -- 6.6 Step 4 - Part II: Explicit Formulæ for MIJ
Hodge Star Operator and Branson's Operator T2(i) -- Chapter 13 Matrix-Valued Factorization Identities -- 13.1 Matrix-Valued Factorization Identities -- 13.2 Proof of Theorem 13.1 (1) -- 13.3 Proof of Theorem 13.1 (2) -- 13.4 Proof of Theorem 13.2 (1) -- 13.5 Proof of Theorem 13.2 (2) -- 13.6 Proof of Theorem 13.3 -- 13.7 Proof of Theorem 13.4 -- 13.8 Renormalized Factorization Identities -- Chapter 14 Appendix: Gegenbauer Polynomials -- 14.1 Normalized Gegenbauer Polynomials -- 14.2 Derivatives of Gegenbauer Polynomials -- 14.3 Three-Term Relations Among Renormalized Gegenbauer Polynomials -- 14.4 Duality of Gegenbauer Polynomials for Special Values -- 14.5 Proof of Theorem 6.7 -- References -- List of Symbols -- Index
6.7 Step 5: Deduction from MIJ=0 to Lr(g0,g1, g2) = 0 -- Chapter 7 F-system for Symmetry Breaking Operators (j = i-2, i+1 case) -- 7.1 Proof of Theorem 7.1 -- Chapter 8 Basic Operators in Differential Geometry and Conformal Covariance -- 8.1 Twisted Pull-Back of Differential Forms by Conformal Transformations -- 8.2 Hodge Star Operator Under Conformal Transformations -- 8.3 Normal Derivatives Under Conformal Transformations -- 8.4 Basic Operators on Ei(Rn) -- 8.5 Transformation Rules Involving the Hodge Star Operator and Restxn=0. -- 8.6 Symbol Maps for Differential Operators Acting on Forms -- Chapter 9 Identities of Scalar-Valued Differential Operators Dul -- 9.1 Homogeneous Polynomial Inflation Ia -- 9.2 Identities Among Juhl's Conformally Covariant Differential Operators -- 9.3 Proof of Proposition 1.4 -- 9.4 Two Expressions of Di→i-1u,a -- Chapter 10 Construction of Differential Symmetry Breaking Operators -- 10.1 Proof of Theorem 2.9 in the Case j=i-1 -- 10.2 Proof of Theorem 2.9 in the Case j=i+1 -- 10.3 Application of the Duality Theorem for Symmetry Breaking Operators -- 10.4 Proof of Theorem 2.9 in the Case j=i -- 10.5 Proof of Theorem 2.9 in the Case j=i-2 -- Chapter 11 Solutions to Problems A and B for (Sn, Sn-1) -- 11.1 Problems A and B for Conformal Transformation Group Conf(X -- Y) -- 11.2 Model Space (X,Y)=(Sn,Sn-1) -- 11.3 Proof of Theorem 1.1 -- 11.4 Proof of Theorems 1.5-1.8 -- 11.5 Change of Coordinates in Symmetry Breaking Operators -- Chapter 12 Intertwining Operators -- 12.1 Classification of Differential Intertwining Operators Between Forms on Sn -- 12.2 Differential Symmetry Breaking Operators Between Principal Series Representations -- 12.3 Description of HomL(V,WPol(n+)) -- 12.4 Solving the F-system when j=i+1 -- 12.5 Solving the F-system when j=i -- 12.6 Solving the F-system when j=i-1 -- 12.7 Proof of Theorem 12.1
Title Conformal Symmetry Breaking Operators for Differential Forms on Spheres
URI http://digital.casalini.it/9789811026577
https://cir.nii.ac.jp/crid/1130000795740605952
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5596111
http://link.springer.com/10.1007/978-981-10-2657-7
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789811026577
Volume 2170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB5Be-Fd2EUoRRbiwCVVEttxfO3yqIDCoQX1ZjlepKe-pqhOkcqvZ-zEpVQc4BLJUrzEE8_M5_F8BnhrpJfCNLqU1FYl856VfeVsybUXra4brRPFxtHn9vAr-3DKT-c87pBPu-eQZNLUOdktwh3ZpfNXTctFKe7DJhWii_c1fNr_-HtjRVCRMMSMujhjUx6K4GXH6EQG2GFLaFoj8wxCtZsCy3HPv_W3gIUOZ6h6UC2NIdoxHXRMX0SzNKxWf7iod6KqyVgtH8JJ_szpjMrZztXY75ifdxgg_3MeHsGmi4kRj-GeG57A4uiG7zU8hfcxcTB6v2tyfH1-7sbLa7KL7mjchydfvrsUyw8EXyH7840sqFnWZIl1ArkYyHFkN3DhGXxbHpzsHZbzFQ2lphFslN7bTjbWWCp5Y2vmWhS8bKWojasrKyniR4Qw2hvZOO1lJa21lZbc9N50uqXPYWO4GNwLIFiZUtvZyrfoJjGmdWV1xy0aWVzJvi_gza35Vz_WKZwc1C1pClHAVhaLwnU80X4HFWkGUe8XsI2SUmYVn3WM5OGMSi7Qq0E3kzcFkCxDlVqfT8iqg909hF4tGoYC3mWxqKn_TPyM41A4kFiOQ1Hi5b-_ugUP0BOb93ZewcZ4eeW20dsZ-9fp7_4FO97qrw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4C98BahLViIA5dUSWzH8bWPZaG75dAF9WY5sS2tuk1RnSKVX9-xk5RScYBLJEvxI554Zj6P5zPAh0Y6KZpCp5KaLGXOsbTOrEm5dqLUeaF1pNhYHJezb-zLKT8d8rj9eNp9DElGTT0muwW4I6t4_qoouUjFQ9hkRUYDYf784Oj3xoqgImKIAXVxxvo8FMHTitGeDLDCltC0BuYZhGq3BTbGPf_W3wQm2p-h6kG11Plgx7TXIX0RzVK7Wv3hot6LqkZjNX0Cy_Ez-zMqZ7tXXb3b_LrHAPmf8_AUNm1IjHgGD2z7HCaLW75X_wI-hcTB4P2uycn1-bntLq_JHrqjYR-efP1hYyzfE3yFHAw3sqBmWZMp1vHkoiUngd3A-pfwfXq43J-lwxUNqaYBbKTOmUoWpjFU8sLkzJYoeFlKkTc2z4ykiB8RwmjXyMJqJzNpjMm05E3tmkqX9BVstBetfQ0EK1NqKpO5Et0kxrTOjK64QSOLK9nVCby_M__q5zqGk726I00hEtgaxaJwHfe0314FmkHU-wnsoKRUswrPPETycEYlF-jVoJvJiwTIKEMVWx9OyKrDvX2EXiUahgQ-jmJRff8j8TOOQ-FAQjkMRYk3__7qO3g0Wy7mav75-GgLHqNXNuzzbMNGd3lld9Dz6eq38U-_ATpn7Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Conformal+symmetry+breaking+operators+for+differential+forms+on+spheres&rft.au=%E5%B0%8F%E6%9E%97%2C+%E4%BF%8A%E8%A1%8C&rft.au=%E4%B9%85%E4%BF%9D%2C+%E5%88%A9%E4%B9%85&rft.au=Pevzner%2C+Michael&rft.date=2016-01-01&rft.pub=Springer&rft.isbn=9789811026560&rft_id=info:doi/10.1007%2F978-981-10-2657-7&rft.externalDocID=BB2229372X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898110%2F9789811026577.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-981-10-2657-7