Conformal Symmetry Breaking Operators for Differential Forms on Spheres
This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such confo...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
Singapore
Springer Nature
2016
Springer Springer Singapore |
Edition | 1 |
Series | Lecture Notes in Mathematics |
Subjects | |
Online Access | Get full text |
ISBN | 9789811026577 9811026572 9811026564 9789811026560 |
ISSN | 0075-8434 1617-9692 |
DOI | 10.1007/978-981-10-2657-7 |
Cover
Abstract | This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulae in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin-Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established.The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between Cinfinity-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well.This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics. |
---|---|
AbstractList | This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X into those on a submanifold Y with focus on the model space (X, Y) = (Sn, Sn-1).The authors give a complete classification of all such conformally covariant differential operators, and find their explicit formulae in the flat coordinates in terms of basic operators in differential geometry and classical hypergeometric polynomials. Resulting families of operators are natural generalizations of the Rankin-Cohen brackets for modular forms and Juhl's operators from conformal holography. The matrix-valued factorization identities among all possible combinations of conformally covariant differential operators are also established.The main machinery of the proof relies on the "F-method" recently introduced and developed by the authors. It is a general method to construct intertwining operators between Cinfinity-induced representations or to find singular vectors of Verma modules in the context of branching rules, as solutions to differential equations on the Fourier transform side. The book gives a new extension of the F-method to the matrix-valued case in the general setting, which could be applied to other problems as well.This book offers a self-contained introduction to the analysis of symmetry breaking operators for infinite-dimensional representations of reductive Lie groups. This feature will be helpful for active scientists and accessible to graduate students and young researchers in differential geometry, representation theory, and theoretical physics. |
Author | Kobayashi, Toshiyuki Kubo, Toshihisa Pevzner, Michael |
Author_FL | コバヤシ, トシユキ クボ, トシヒサ |
Author_FL_xml | – sequence: 1 fullname: コバヤシ, トシユキ – sequence: 2 fullname: クボ, トシヒサ |
Author_xml | – sequence: 1 fullname: Kobayashi, Toshiyuki |
BackLink | https://cir.nii.ac.jp/crid/1130000795740605952$$DView record in CiNii |
BookMark | eNpdkEFv1DAQhQ20qNuyP4BbhCohDm7HdmzHR7q0pVKlHoq4Wq5jd8Nm42AHUP89E9JLudjy8_ee5s0xORjSEAh5z-CMAehzoxtqGkYZUK6kpvoVWaOGEoNZ0K_JiimmqVGGv_nv74CsMEPSphb1ITnmwJSREhR_S1ZGgQEjlDwi61J-AADTQhvTrMj1Jg0x5b3rq_un_T5M-am6yMHtuuGxuhtDdlPKpUKk-tLFGHIYpg7hK_SUKg3V_bhFsbwjh9H1Jayf7xPy_ery2-Yrvb27vtl8vqVOCFCaxtg2hre-FUbyltVBee6wj2Y-MGiNqMGwhrvoDQ8u4tht24Iz0j9E3zglTsinJdiVXfhTtqmfiv3dh4eUdsW-WAmy5wtbxox9QrYLxcDOC59pi_j8ng12dnxcHGNOP3-FMtl_wR5bZ9fby4uNlEYxxpA8Xcih66zv5hNVXC1oI3UNCiQ2ROzDgnlXXI-Y3achPWY3bouVNehGK_EXAi-N3g |
ContentType | eBook Book |
Copyright | Springer Nature Singapore Pte Ltd. 2016 |
Copyright_xml | – notice: Springer Nature Singapore Pte Ltd. 2016 |
DBID | I4C RYH |
DEWEY | 516 |
DOI | 10.1007/978-981-10-2657-7 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9789811026577 9811026572 |
EISSN | 1617-9692 |
Edition | 1 |
Editor | Kubo, Toshihisa Pevzner, Michael |
Editor_xml | – sequence: 1 fullname: Kubo, Toshihisa – sequence: 2 fullname: Pevzner, Michael |
ExternalDocumentID | 9789811026577 430415 EBC5596111 BB2229372X 5407876 |
GroupedDBID | 0DA 0DF 2HY 38. AABBV AAMCO AAQZU ABBVZ ABMNI ACLMJ ADCEK ADCXD ADMHO ADPGQ AEFQP AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS AORVH AZZ BBABE CZZ I4C IEZ LDK SBO SWNTM TPJZQ Z83 RYH 29L 2HD 5GY ABZEH ACGFS ACNCT AENEX AHDLI DU5 RSU UQL WH7 |
ID | FETCH-LOGICAL-a33067-ffd892dcd3952d14e6c2a96971ce10d93409182afc92eaf909ddd0a95cbfc8a63 |
IEDL.DBID | LDK |
ISBN | 9789811026577 9811026572 9811026564 9789811026560 |
ISSN | 0075-8434 |
IngestDate | Fri Nov 08 04:14:28 EST 2024 Fri May 23 02:56:54 EDT 2025 Fri May 30 21:38:24 EDT 2025 Thu Jun 26 23:26:29 EDT 2025 Thu Apr 03 03:50:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2016955062 |
LCCallNum_Ident | QA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a33067-ffd892dcd3952d14e6c2a96971ce10d93409182afc92eaf909ddd0a95cbfc8a63 |
Notes | Includes bibliographical references (p. 185-186) and index |
OCLC | 960909365 |
PQID | EBC5596111 |
PageCount | 191 |
ParticipantIDs | askewsholts_vlebooks_9789811026577 springer_books_10_1007_978_981_10_2657_7 proquest_ebookcentral_EBC5596111 nii_cinii_1130000795740605952 casalini_monographs_5407876 |
PublicationCentury | 2000 |
PublicationDate | [2016] |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: [2016] |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Netherlands – name: Singapore |
PublicationSeriesTitle | Lecture Notes in Mathematics |
PublicationSeriesTitleAlternate | Lect.Notes Mathematics |
PublicationYear | 2016 |
Publisher | Springer Nature Springer Springer Singapore |
Publisher_xml | – name: Springer Nature – name: Springer – name: Springer Singapore |
RelatedPersons | Wienhard, Anna Morel, Jean-Michel Di Bernardo, Mario Khoshnevisan, Davar Kontoyiannis, Ioannis De Lellis, Camillo Lugosi, Gábor Serfaty, Sylvia Teissier, Bernard Figalli, Alessio Podolskij, Mark |
RelatedPersons_xml | – sequence: 1 givenname: Jean-Michel surname: Morel fullname: Morel, Jean-Michel organization: CMLA, École Normale Supérieure, Cachan CX, France – sequence: 2 givenname: Bernard surname: Teissier fullname: Teissier, Bernard organization: UFR de Mathématiques, case 7012, Université Paris Diderot-Paris 7, Paris Cedex 13, France – sequence: 3 givenname: Camillo surname: De Lellis fullname: De Lellis, Camillo organization: Institut für Mathematik, Universität Zürich, Zürich, Switzerland – sequence: 4 givenname: Mario surname: Di Bernardo fullname: Di Bernardo, Mario organization: Faculty of Engineering, University of Bristol, Bristol, United Kingdom – sequence: 5 givenname: Alessio surname: Figalli fullname: Figalli, Alessio organization: Dept of Mathematics, Swiss Federal Inst of Tech in Zurich, Zürich, Switzerland – sequence: 6 givenname: Davar surname: Khoshnevisan fullname: Khoshnevisan, Davar organization: Department of Mathematics, The University of Utah, Salt Lake City, USA – sequence: 7 givenname: Ioannis surname: Kontoyiannis fullname: Kontoyiannis, Ioannis organization: Department of Informatics, Athens Univ. of Econ. & Business, Athens, Greece – sequence: 8 givenname: Gábor surname: Lugosi fullname: Lugosi, Gábor organization: Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 9 givenname: Mark surname: Podolskij fullname: Podolskij, Mark organization: Department of Mathematics, Aarhus University, Aarhus C, Denmark – sequence: 10 givenname: Sylvia surname: Serfaty fullname: Serfaty, Sylvia organization: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie Paris 6, Paris, France – sequence: 11 givenname: Anna surname: Wienhard fullname: Wienhard, Anna organization: Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany |
SSID | ssj0001737998 ssj0025440 |
Score | 2.1773067 |
Snippet | This work is the first systematic study of all possible conformally covariant differential operators transforming differential forms on a Riemannian manifold X... |
SourceID | askewsholts springer proquest nii casalini |
SourceType | Aggregation Database Publisher |
SubjectTerms | Broken symmetry (Physics) Conformal geometry Differential Geometry Differential operators Fourier Analysis Geometry Geometry, Differential Mathematical Physics Mathematics Mathematics and Statistics Partial Differential Equations Topological Groups, Lie Groups |
TableOfContents | Intro -- Contents -- Summary -- Chapter 1 Introduction -- Chapter 2 Symmetry Breaking Operators and Principal Series Representations of G=O(n+1,1) -- 2.1 Principal Series Representations of G=O(n+1,1) -- 2.2 Conformal View on Principal Series Representations of O(n+1,1) -- 2.3 Representation Theoretic Properties of (ω(i)u,δ, Ei(Sn)) -- 2.4 Differential Symmetry Breaking Operators for Principal Series -- 2.5 Symmetry Breaking Operators for Connected Group SO0(n,1) -- 2.6 Branching Problems for Verma Modules -- Chapter 3 F-method for Matrix-Valued Differential Operators -- 3.1 Algebraic Fourier Transform -- 3.2 Differential Operators Between Two Manifolds -- 3.3 F-method for Principal Series Representations -- 3.4 Matrix-Valued Differential Operators in the F-method -- Chapter 4 Matrix-Valued F-method for O(n+1,1) -- 4.1 Strategy of Matrix-Valued F-method for (G,G') = (O(n+1,1), O(n,1)) -- 4.2 Harmonic Polynomials -- 4.3 Description of HomL'(V,W Pol(n+)) -- 4.4 Decomposition of the Equation (dπ(σ,λ)*(N+1)idw)Ψ=0 -- 4.5 Matrix Coefficients in the F-method -- Chapter 5 Application of Finite-Dimensional Representation Theory -- 5.1 Signatures in Index Sets -- 5.2 Action of O(N) on the Exterior Algebra *(CN) -- 5.3 Construction of Intertwining Operators -- 5.4 Application of Finite-Dimensional Representation Theory -- 5.5 Classification of HomO(n-1) (i(Cn), j(Cn-1)Hk(Cn-1)) -- 5.6 Descriptions of HomO(n-1) (i(Cn) ,j(Cn-1)Pol[ζ1,…, ζn]) -- 5.7 Proof of the Implication (i)(iii) in Theorem 2.8 -- Chapter 6 F-system for Symmetry Breaking Operators (j=i-1, i case) -- 6.1 Proof of Theorem 2.8 for j = i-1, i -- 6.2 Reduction Theorem -- 6.3 Step 2: Matrix Coefficients MIJ for (dπ(i,λ)*(N+1)Ψ -- 6.4 Step 3: Case-Reduction for MvectIJ -- 6.5 Step 4 - Part I: Formulæ for Saturated Differential Equations -- 6.6 Step 4 - Part II: Explicit Formulæ for MIJ Hodge Star Operator and Branson's Operator T2(i) -- Chapter 13 Matrix-Valued Factorization Identities -- 13.1 Matrix-Valued Factorization Identities -- 13.2 Proof of Theorem 13.1 (1) -- 13.3 Proof of Theorem 13.1 (2) -- 13.4 Proof of Theorem 13.2 (1) -- 13.5 Proof of Theorem 13.2 (2) -- 13.6 Proof of Theorem 13.3 -- 13.7 Proof of Theorem 13.4 -- 13.8 Renormalized Factorization Identities -- Chapter 14 Appendix: Gegenbauer Polynomials -- 14.1 Normalized Gegenbauer Polynomials -- 14.2 Derivatives of Gegenbauer Polynomials -- 14.3 Three-Term Relations Among Renormalized Gegenbauer Polynomials -- 14.4 Duality of Gegenbauer Polynomials for Special Values -- 14.5 Proof of Theorem 6.7 -- References -- List of Symbols -- Index 6.7 Step 5: Deduction from MIJ=0 to Lr(g0,g1, g2) = 0 -- Chapter 7 F-system for Symmetry Breaking Operators (j = i-2, i+1 case) -- 7.1 Proof of Theorem 7.1 -- Chapter 8 Basic Operators in Differential Geometry and Conformal Covariance -- 8.1 Twisted Pull-Back of Differential Forms by Conformal Transformations -- 8.2 Hodge Star Operator Under Conformal Transformations -- 8.3 Normal Derivatives Under Conformal Transformations -- 8.4 Basic Operators on Ei(Rn) -- 8.5 Transformation Rules Involving the Hodge Star Operator and Restxn=0. -- 8.6 Symbol Maps for Differential Operators Acting on Forms -- Chapter 9 Identities of Scalar-Valued Differential Operators Dul -- 9.1 Homogeneous Polynomial Inflation Ia -- 9.2 Identities Among Juhl's Conformally Covariant Differential Operators -- 9.3 Proof of Proposition 1.4 -- 9.4 Two Expressions of Di→i-1u,a -- Chapter 10 Construction of Differential Symmetry Breaking Operators -- 10.1 Proof of Theorem 2.9 in the Case j=i-1 -- 10.2 Proof of Theorem 2.9 in the Case j=i+1 -- 10.3 Application of the Duality Theorem for Symmetry Breaking Operators -- 10.4 Proof of Theorem 2.9 in the Case j=i -- 10.5 Proof of Theorem 2.9 in the Case j=i-2 -- Chapter 11 Solutions to Problems A and B for (Sn, Sn-1) -- 11.1 Problems A and B for Conformal Transformation Group Conf(X -- Y) -- 11.2 Model Space (X,Y)=(Sn,Sn-1) -- 11.3 Proof of Theorem 1.1 -- 11.4 Proof of Theorems 1.5-1.8 -- 11.5 Change of Coordinates in Symmetry Breaking Operators -- Chapter 12 Intertwining Operators -- 12.1 Classification of Differential Intertwining Operators Between Forms on Sn -- 12.2 Differential Symmetry Breaking Operators Between Principal Series Representations -- 12.3 Description of HomL(V,WPol(n+)) -- 12.4 Solving the F-system when j=i+1 -- 12.5 Solving the F-system when j=i -- 12.6 Solving the F-system when j=i-1 -- 12.7 Proof of Theorem 12.1 |
Title | Conformal Symmetry Breaking Operators for Differential Forms on Spheres |
URI | http://digital.casalini.it/9789811026577 https://cir.nii.ac.jp/crid/1130000795740605952 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5596111 http://link.springer.com/10.1007/978-981-10-2657-7 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789811026577 |
Volume | 2170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9UwEB5Be-Fd2EUoRRbiwCVVEttxfO3yqIDCoQX1ZjlepKe-pqhOkcqvZ-zEpVQc4BLJUrzEE8_M5_F8BnhrpJfCNLqU1FYl856VfeVsybUXra4brRPFxtHn9vAr-3DKT-c87pBPu-eQZNLUOdktwh3ZpfNXTctFKe7DJhWii_c1fNr_-HtjRVCRMMSMujhjUx6K4GXH6EQG2GFLaFoj8wxCtZsCy3HPv_W3gIUOZ6h6UC2NIdoxHXRMX0SzNKxWf7iod6KqyVgtH8JJ_szpjMrZztXY75ifdxgg_3MeHsGmi4kRj-GeG57A4uiG7zU8hfcxcTB6v2tyfH1-7sbLa7KL7mjchydfvrsUyw8EXyH7840sqFnWZIl1ArkYyHFkN3DhGXxbHpzsHZbzFQ2lphFslN7bTjbWWCp5Y2vmWhS8bKWojasrKyniR4Qw2hvZOO1lJa21lZbc9N50uqXPYWO4GNwLIFiZUtvZyrfoJjGmdWV1xy0aWVzJvi_gza35Vz_WKZwc1C1pClHAVhaLwnU80X4HFWkGUe8XsI2SUmYVn3WM5OGMSi7Qq0E3kzcFkCxDlVqfT8iqg909hF4tGoYC3mWxqKn_TPyM41A4kFiOQ1Hi5b-_ugUP0BOb93ZewcZ4eeW20dsZ-9fp7_4FO97qrw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5Be4C98BahLViIA5dUSWzH8bWPZaG75dAF9WY5sS2tuk1RnSKVX9-xk5RScYBLJEvxI554Zj6P5zPAh0Y6KZpCp5KaLGXOsbTOrEm5dqLUeaF1pNhYHJezb-zLKT8d8rj9eNp9DElGTT0muwW4I6t4_qoouUjFQ9hkRUYDYf784Oj3xoqgImKIAXVxxvo8FMHTitGeDLDCltC0BuYZhGq3BTbGPf_W3wQm2p-h6kG11Plgx7TXIX0RzVK7Wv3hot6LqkZjNX0Cy_Ez-zMqZ7tXXb3b_LrHAPmf8_AUNm1IjHgGD2z7HCaLW75X_wI-hcTB4P2uycn1-bntLq_JHrqjYR-efP1hYyzfE3yFHAw3sqBmWZMp1vHkoiUngd3A-pfwfXq43J-lwxUNqaYBbKTOmUoWpjFU8sLkzJYoeFlKkTc2z4ykiB8RwmjXyMJqJzNpjMm05E3tmkqX9BVstBetfQ0EK1NqKpO5Et0kxrTOjK64QSOLK9nVCby_M__q5zqGk726I00hEtgaxaJwHfe0314FmkHU-wnsoKRUswrPPETycEYlF-jVoJvJiwTIKEMVWx9OyKrDvX2EXiUahgQ-jmJRff8j8TOOQ-FAQjkMRYk3__7qO3g0Wy7mav75-GgLHqNXNuzzbMNGd3lld9Dz6eq38U-_ATpn7Y0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Conformal+symmetry+breaking+operators+for+differential+forms+on+spheres&rft.au=%E5%B0%8F%E6%9E%97%2C+%E4%BF%8A%E8%A1%8C&rft.au=%E4%B9%85%E4%BF%9D%2C+%E5%88%A9%E4%B9%85&rft.au=Pevzner%2C+Michael&rft.date=2016-01-01&rft.pub=Springer&rft.isbn=9789811026560&rft_id=info:doi/10.1007%2F978-981-10-2657-7&rft.externalDocID=BB2229372X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898110%2F9789811026577.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-981-10-2657-7 |