Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO2: Nonequilibrium Contributions to the Photoinduced Phase Transitions

Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal–insulator phase transition remains a subject of vigoro...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 16; no. 5; pp. 1312 - 1319
Main Authors Tomko, John A., Aryana, Kiumars, Wu, Yifan, Zhou, Guoqing, Zhang, Qiyan, Wongwiset, Pat, Wheeler, Virginia, Prezhdo, Oleg V., Hopkins, Patrick E.
Format Journal Article
LanguageEnglish
Published American Chemical Society 06.02.2025
Subjects
Online AccessGet full text
ISSN1948-7185
1948-7185
DOI10.1021/acs.jpclett.4c02951

Cover

Abstract Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal–insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6–0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
AbstractList Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal–insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6–0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal–insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6–0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6-0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6-0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
Author Aryana, Kiumars
Wongwiset, Pat
Wheeler, Virginia
Zhou, Guoqing
Tomko, John A.
Zhang, Qiyan
Hopkins, Patrick E.
Prezhdo, Oleg V.
Wu, Yifan
AuthorAffiliation Department of Chemistry
University of Virginia
Department of Mechanical and Aerospace Engineering
Department of Physics and Astronomy
University of Southern California
Department of Materials Science and Engineering
Department of Physics
AuthorAffiliation_xml – name: Department of Chemistry
– name: Department of Physics and Astronomy
– name: University of Virginia
– name: University of Southern California
– name: Department of Physics
– name: Department of Mechanical and Aerospace Engineering
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: John A.
  orcidid: 0000-0001-9260-6568
  surname: Tomko
  fullname: Tomko, John A.
  organization: Department of Mechanical and Aerospace Engineering
– sequence: 2
  givenname: Kiumars
  surname: Aryana
  fullname: Aryana, Kiumars
  organization: Department of Mechanical and Aerospace Engineering
– sequence: 3
  givenname: Yifan
  orcidid: 0009-0006-3810-0885
  surname: Wu
  fullname: Wu, Yifan
  organization: Department of Chemistry
– sequence: 4
  givenname: Guoqing
  orcidid: 0000-0002-4000-8467
  surname: Zhou
  fullname: Zhou, Guoqing
  organization: University of Southern California
– sequence: 5
  givenname: Qiyan
  surname: Zhang
  fullname: Zhang, Qiyan
  organization: Department of Chemistry
– sequence: 6
  givenname: Pat
  surname: Wongwiset
  fullname: Wongwiset, Pat
  organization: Department of Mechanical and Aerospace Engineering
– sequence: 7
  givenname: Virginia
  orcidid: 0000-0002-6024-9516
  surname: Wheeler
  fullname: Wheeler, Virginia
– sequence: 8
  givenname: Oleg V.
  orcidid: 0000-0002-5140-7500
  surname: Prezhdo
  fullname: Prezhdo, Oleg V.
  organization: University of Southern California
– sequence: 9
  givenname: Patrick E.
  orcidid: 0000-0002-3403-743X
  surname: Hopkins
  fullname: Hopkins, Patrick E.
  email: phopkins@virginia.edu
  organization: University of Virginia
BookMark eNp9kDtPHDEUha0IFB7JL0jjMkV28WvsmTRRNOSBhCAF0Fp3x17WaMZe_CDZJr89hl0J0lDZV_eco3O_I7Tng7cIfaBkTgmjJzCk-d16GG3OczEQ1jX0DTqknWhnirbN3ov_ATpK6Y4Q2ZFWvUUHvGsV54Ifor_XY46whJRxv4J4a3EPMTob8enGw-SGhJ3HN-DBuDLhUxf-OGM_4ZtL9hlf1EL3xY1uER-XffA5ukXJLviEc8B5ZfGvVcjBeVMGa-oAyeKrCD65J9U7tL-EMdn3u_cYXX__dtX_nJ1f_jjrv57PgLMuz9TSCEKUZcpwo7glwBqpGqEUNLwOlHVEAlUCYGlaJgcjydBxKVTDrBSUHyOxzS1-DZvfMI56Hd0EcaMp0Y84dcWpdzj1Dme1fdna1mUxWTPYeiA8WwM4_f_Gu5W-DQ-a0raSbmVN-LhLiOG-2JT15NJgxxG8DSVpTiURkirFqvRkK31qEkr0lcir9f4BcuGiog
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID 7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.jpclett.4c02951
DatabaseName MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 1319
ExternalDocumentID 10.1021/acs.jpclett.4c02951
PMC11808786
a626415874
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABLBI
5PM
4.4
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-a329t-7fd4007e27d3d73e0a25675477a530a212906a174aafd826cd60c9364752e6413
IEDL.DBID UNPAY
ISSN 1948-7185
IngestDate Sun Oct 26 02:45:51 EDT 2025
Tue Sep 30 17:05:07 EDT 2025
Wed Oct 01 13:39:33 EDT 2025
Fri Feb 07 03:35:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-7fd4007e27d3d73e0a25675477a530a212906a174aafd826cd60c9364752e6413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9260-6568
0000-0002-6024-9516
0000-0002-5140-7500
0000-0002-3403-743X
0000-0002-4000-8467
0009-0006-3810-0885
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acs.jpclett.4c02951
PMID 39873343
PQID 3160461772
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1021_acs_jpclett_4c02951
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11808786
proquest_miscellaneous_3160461772
acs_journals_10_1021_acs_jpclett_4c02951
PublicationCentury 2000
PublicationDate 2025-02-06
PublicationDateYYYYMMDD 2025-02-06
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-06
  day: 06
PublicationDecade 2020
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0069087
Score 2.4687405
Snippet Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic...
Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic...
SourceID unpaywall
pubmedcentral
proquest
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1312
SubjectTerms Letter
Physical Insights into Materials and Molecular Properties
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swELYQPLCXjcGmdYzJSHvggXSJk9gpb1U7hJDokKCIt-hiOyNblxTiaBsP_PadnQZRmCYeEyuWc7747nJ330fIp1DyLGM58zIF0ovQJfAgw8MQneU4gDjJteM6PJnwo2l0fBlfPmhWf5TBZ8FnkHX_-xxlaEw_kj4b2IbpNcaFsBV8w9FZd_BinOf48DAsTzw8cuMOZOjfk1hzJOslx_JxWeR6U87hzy-YzR7YnMNXZNJ17rSlJj_6jcn68vYpkOPzXmeDvFx4n3TYqstrsqLLTbI-6kjftsjddIaLyqE21Cbiv2k6ghtLakfHLXV9TYuSXrhKseYnHRfV70LpfXrxlR3QSVXq66ZwXQQ4aIGvOjqtmpqKoq9JT68qUxWlQo1SeIE2lDpz2VaOvSHTwy_noyNvQdHgQcgGxhO5ssTqmgkVKhFqH9CFEnEkBMQhXti_XBww6gHIFUYyUnFfDixmfcw0RwP6lqyWuLh3hOaZr4UPcS4kBp08SfJISYkzBQyizJc9soeySxefWJ267DkLUnezFWi6EGiP7HabmqL8bAoESl01dRoG3CLMY0jRI8nSbqfzFt0jtXjbyyNlceVwty1aXiIS3iPevWLcP_af5bx__sq3yQtmCYZtWTj_QFbNTaN30Osx2Uen638BQMICVQ
  priority: 102
  providerName: American Chemical Society
Title Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO2: Nonequilibrium Contributions to the Photoinduced Phase Transitions
URI http://dx.doi.org/10.1021/acs.jpclett.4c02951
https://www.proquest.com/docview/3160461772
https://pubmed.ncbi.nlm.nih.gov/PMC11808786
https://doi.org/10.1021/acs.jpclett.4c02951
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1948-7185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069087
  issn: 1948-7185
  databaseCode: ACS
  dateStart: 20100107
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQcqCXPmirbh_ISD300GwTJ7az3NBShJDYIrWL6Cma2E5JWZItcQT00N_esZNFLKqq9pg4tpzxxDOTGX8fIW9jJfKcFSzINaggQZcggBw3Q3SWeQQ8LYznOjyaioNZcnjKT3ucbXcWZiV_z6IPoJrR9wVK0NpRokI2dsel1wXHsQZkfTY93v3q88ZJGuAuy5e4Qn_u6SyQalZ8yfuVkBtttYCbK5jP75iZ_Ufd-e3GoxO66pLzUWvzkfp5D7vxH9_gMXnYu5t0t9OPJ2TNVJtkY7JkeXtKfs3mOKUCGktd5v2boRO4dCx2dK_jqm9oWdETXxrWXtC9sr4utXlPTz6xHTqtK_OjLf2xAWx0SFdL_qyG2pqic0mPz2pbY-CPKqTxAo0m9faxKxV7Rmb7H79MDoKekyGAmI1tIAvtmNQNkzrWMjYhoM8keSIl8Bgv3G8tARjmABQaQxelRajGDqSeMyPQYj4ngwon94LQIg-NDIEXUmGUKdK0SLRSOFLEIMlDNSTvUHZZ_001mU-XsyjzNzuBZr1Ah2R7uaQZys_lPKAyddtkcSQcpDzGEEOSrqx1tujgPDIHsL3aUpVnHmjbweOlMhVDEtyqxW23v0zn5X8-_4o8YI5W2BWDi9dkYC9b8wZ9HZtvoa8_-bzVa_pvZzwC_g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaq9rBceCOWp5E4cCBL4sR2llu1bbWFdkGiW_VmObZDA0uyNI7acuC3d-wkC1shBEfbijUZO56ZeOb7EHoZK5ZlJCdBpqUKEnAJApnBYQjOMo0kTXPjuQ4PZ2w6T96d0JOuKMzVwoAQNcxU-0v8X-gC0RvX92UJqrR2lKiQjF3d9BZlSeRCru3Jp_78hXDP0-JBdJ4GcPLSHmvoz5M4q6TqNf_yenbkoCmX8vJcLha_mZ69W2i-EtpnnHwdNTYbqR_X8Bz_961uo5udL4q3281zB22Y8i4aTHoKuHvo53wBsuWytthdy382eCLPHMUd3mmJ7GtclPjY54013_BOUV0U2rzGxx_IWzyrSvO9KXxNAQw6GKyeXKvGtsLgeeKPp5WtilLD_tLQAIuKvfFs88juo_ne7tFkGnSEDYGMydgGPNeOZt0QrmPNYxNKcKg4TTiXNIaG--fFJMRAUuYa4hqlWajGDsGeEgMrGT9AmyUI9xDhPAsNDyXNuYIQlKVpnmilYKaIyCQL1RC9At2J7oOrhb9LJ5Hwna1CRafQIXrRr60A_bkLEVmaqqlFHDGHNw8BxhCla4suli3Wh3Do2-sjZXHqUbgddl7KUzZEwWp_rB77iziP_l3y52gwPTo8EAf7s_eP0Q3iqIddwjh7gjbtWWOegj9ks2d--18BKmoKtw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWi8Ry4Y22PI3EgQMpiRPbKTfUUi2vshJ0tZwsxw82UJKyccTjwG9n7CQVXSGEOMZWrMn4MTOZ8fch9CBVrCiIJVGhpYoycAkiWcBhCM4yTSTNrQlch68X7GCZvTimxzsoH-7CgBANjNSEJL7f1Wtte4SB5LFv_7gGdTo3zlRMJv7u9DnKYLN7p2j6djiDIeQL1HgQoecRnL50wBv68yDeMqlmy8c8WyG511Zr-f2rXK1-Mz_zS-j9RvBQdfJp3LpirH6cwXT8ny-7jC72Pil-2i2iK2jHVFfR3nSggruGfi5XIJ-VjcM-Pf_B4Kk89VR3eNYR2je4rPBRqB9rP-NZWX8rtXmEj96QJ3hRV-ZLW4a7BdDp4bAGkq0GuxqDB4oPT2pXl5WGdabhASwrDka0qye7jpbzZ--mB1FP3BDJlExcxK32dOuGcJ1qnppYgmPFaca5pCk8-H9fTEIsJKXVEN8ozWI18Uj2lBgGZvUG2q1AuH2EbREbHktquYJQlOW5zbRSMFJCZFbEaoQegu5Ev_EaEXLqJBGhsVOo6BU6QveH-RWgP58YkZWp20akCfO48xBojFC-NfFi3WF-CI_Cvd1TlScBjdtj6OU8ZyMUbdbI5rW_iHPz3yW_h84fzubi1fPFy1voAvEMxL5unN1Gu-60NXfALXLF3bADfgGePw06
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWq7aFcKBQQ2w_kShw4kCVxYjvLrdq2qpC69MBW5RRNbIcGlmTbOCpw4Ld37GSrboUQHBPHljOeeGYy4_cIeR0rkeesYEGuQQUJugQB5LgZorPMI-BpYTzX4elUnMySDxf8osfZdmdhVvL3LHoHqhl9XaAErR0lKmRjd1x6XXAca0DWZ9Ozg88-b5ykAe6yfIkr9OeezgKpZsWXfFgJudFWC_h5A_P5PTNzvNmd3248OqGrLvk2am0-Ur8eYDf-4xs8IY97d5MedPrxlKyZaotsTJYsb8_I79kcp1RAY6nLvH8xdALXjsWOHnZc9Q0tK3ruS8Pa7_SwrH-U2ryl5x_ZezqtK3PVlv7YADY6pKslf1ZDbU3RuaRnl7WtMfBHFdJ4gUaTevvYlYo9J7Pjo0-Tk6DnZAggZmMbyEI7JnXDpI61jE0I6DNJnkgJPMYL91tLAIY5AIXG0EVpEaqxA6nnzAi0mC_IoMLJvSS0yEMjQ-CFVBhlijQtEq0UjhQxSPJQDckblF3Wf1NN5tPlLMr8zU6gWS_QIdlfLmmG8nM5D6hM3TZZHAkHKY8xxJCkK2udLTo4j8wBbK-2VOWlB9p28HipTMWQBHdqcdftL9PZ_s_nd8gj5miFXTG42CUDe92aPfR1bP6q1_FbWxwCBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Charge+Carrier+Dynamics+in+Vanadium+Dioxide%2C+VO2%3A+Nonequilibrium+Contributions+to+the+Photoinduced+Phase+Transitions&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Tomko%2C+John+A.&rft.au=Aryana%2C+Kiumars&rft.au=Wu%2C+Yifan&rft.au=Zhou%2C+Guoqing&rft.date=2025-02-06&rft.pub=American+Chemical+Society&rft.eissn=1948-7185&rft.volume=16&rft.issue=5&rft.spage=1312&rft.epage=1319&rft_id=info:doi/10.1021%2Facs.jpclett.4c02951&rft_id=info%3Apmid%2F39873343&rft.externalDocID=PMC11808786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon