Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration

Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised mul...

Full description

Saved in:
Bibliographic Details
Published inJournal of geochemical exploration Vol. 236; p. 106959
Main Authors Bédard, Émilie, De Bronac de Vazelhes, Victor, Beaudoin, Georges
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text
ISSN0375-6742
1879-1689
DOI10.1016/j.gexplo.2022.106959

Cover

Abstract Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised multivariate classification method using the geochemical composition of magnetite in order to provide a model usable by industry and government for mineral exploration. After screening a comprehensive database of ~30 k magnetite analyses, ~17 k observations are selected for our study. These data are from 303 different deposits that belong to 9 major deposit types (BIF, Fe-Ti, IOCG, IOA, Ni-Cu-PGE, Porphyry, VMS, Skarn, V) and a varied class of non-mineralized rocks (Country rocks). We tested the three most promising supervised machine learning algorithms on our dataset (Naive Bayes, K-Nearest Neighbor, Random Forest) with 2 open source statistical platforms: Orange and R. The Random Forest (RF) algorithm yield the best predictive outcome on untransformed data with prediction accuracies of 0.80 with Orange and 0.81 with R. We also tested our RF model on three case studies: 1) IOCG-like deposits, 2) porphyry Cu-Au and Cu skarn, and 3) Scandinavian Ni-Cu-PGE deposits. Our model was able to effectively predict the deposit type for the first two case studies to the large family of Porphyry/IOCG/Skarn. For the 3rd case study, almost 61% of the observations were correctly identified as belonging to Ni-Cu-PGE deposits. Our RF model is therefore accurate enough to be used with confidence for mineral exploration. [Display omitted] •Magnetite analyses are used to determine the best predictive supervised multivariate classification method.•Three algorithms (Naive Bayes, K-Nearest Neighbor, Random Forest) were tested on ~17 k observations.•The Random Forest (RF) algorithm yields the best predictive outcome (81%).•The RF model is accurate enough to be used for mineral exploration for 9 deposit types.
AbstractList Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised multivariate classification method using the geochemical composition of magnetite in order to provide a model usable by industry and government for mineral exploration. After screening a comprehensive database of ~30 k magnetite analyses, ~17 k observations are selected for our study. These data are from 303 different deposits that belong to 9 major deposit types (BIF, Fe-Ti, IOCG, IOA, Ni-Cu-PGE, Porphyry, VMS, Skarn, V) and a varied class of non-mineralized rocks (Country rocks). We tested the three most promising supervised machine learning algorithms on our dataset (Naive Bayes, K-Nearest Neighbor, Random Forest) with 2 open source statistical platforms: Orange and R. The Random Forest (RF) algorithm yield the best predictive outcome on untransformed data with prediction accuracies of 0.80 with Orange and 0.81 with R. We also tested our RF model on three case studies: 1) IOCG-like deposits, 2) porphyry Cu-Au and Cu skarn, and 3) Scandinavian Ni-Cu-PGE deposits. Our model was able to effectively predict the deposit type for the first two case studies to the large family of Porphyry/IOCG/Skarn. For the 3rd case study, almost 61% of the observations were correctly identified as belonging to Ni-Cu-PGE deposits. Our RF model is therefore accurate enough to be used with confidence for mineral exploration. [Display omitted] •Magnetite analyses are used to determine the best predictive supervised multivariate classification method.•Three algorithms (Naive Bayes, K-Nearest Neighbor, Random Forest) were tested on ~17 k observations.•The Random Forest (RF) algorithm yields the best predictive outcome (81%).•The RF model is accurate enough to be used for mineral exploration for 9 deposit types.
ArticleNumber 106959
Author De Bronac de Vazelhes, Victor
Bédard, Émilie
Beaudoin, Georges
Author_xml – sequence: 1
  givenname: Émilie
  surname: Bédard
  fullname: Bédard, Émilie
  email: explomin@ggl.ulaval.ca
– sequence: 2
  givenname: Victor
  surname: De Bronac de Vazelhes
  fullname: De Bronac de Vazelhes, Victor
– sequence: 3
  givenname: Georges
  surname: Beaudoin
  fullname: Beaudoin, Georges
  email: georges.beaudoin@ggl.ulaval.ca
BookMark eNqFkE1LAzEQhoNUsK3-Aw_5A1uTbHaz8SBI8QsKetBzyGYnJWW_TGLRf2_a9eRBTwMz87zMPAs064ceELqkZEUJLa92qy18ju2wYoSx1CplIU_QnFZCZrSs5AzNSS6KrBScnaFFCDtCCBW8nKP3F_B28J3uDeDB4tFD40x0e8DhYwS_dwEabFodgrPO6OiGHndDA204rEevEwctdNDHgF2a6W0P0UXAKRZ3rgevW3w8zx_pc3RqdRvg4qcu0dv93ev6Mds8PzytbzeZzpmMWW6oqXJeCcZpTXPgktumTg_aXBIrOC2qojG0qpkxhJSaiUZQyUidlhgwli8Rn3KNH0LwYNXoXaf9l6JEHbSpnZq0qYM2NWlL2PUvzLh4PDz96tr_4JsJTnpg78CrYBwktY3zYKJqBvd3wDdY1pAn
CitedBy_id crossref_primary_10_1016_j_oregeorev_2025_106447
crossref_primary_10_3390_rs15225295
crossref_primary_10_1016_j_oregeorev_2023_105566
crossref_primary_10_1016_j_oregeorev_2023_105493
crossref_primary_10_1007_s13146_024_00994_x
crossref_primary_10_1016_j_oregeorev_2024_106374
crossref_primary_10_3390_min12060689
crossref_primary_10_1007_s00126_023_01204_9
crossref_primary_10_1016_j_gexplo_2024_107540
crossref_primary_10_1180_mgm_2023_69
crossref_primary_10_3390_min13081009
crossref_primary_10_1016_j_gexplo_2024_107555
crossref_primary_10_1016_j_compag_2024_109688
crossref_primary_10_1016_j_jafrearsci_2023_105024
crossref_primary_10_5382_econgeo_5020
crossref_primary_10_1007_s00126_024_01246_7
crossref_primary_10_1180_mgm_2022_39
Cites_doi 10.3390/app11020796
10.1007/s00126-006-0061-y
10.1007/s00126-008-0178-2
10.1016/j.gsf.2018.05.015
10.1007/s00126-020-00953-1
10.1016/j.cageo.2007.09.015
10.1130/0016-7606(1950)61[635:SOHDM]2.0.CO;2
10.1023/A:1010933404324
10.1016/j.gexplo.2014.11.010
10.1016/j.csda.2009.11.023
10.1016/j.gexplo.2021.106859
10.1016/j.gexplo.2018.01.019
10.1016/j.fishres.2017.02.010
10.2113/gsecongeo.102.8.1415
10.5382/econgeo.4654
10.1016/j.jas.2015.04.002
10.1023/A:1007413511361
10.1016/j.gca.2012.04.032
10.1029/2017GC007401
10.1007/s11263-015-0812-2
10.1007/s00126-014-0539-y
10.1111/j.1525-1314.1998.00144.x
10.1016/j.chemolab.2015.02.019
10.1007/s00531-017-1490-9
10.1093/petrology/5.2.310
10.5382/econgeo.4651
10.1007/s11004-007-9100-1
10.1186/s12966-020-01029-z
10.1007/s00126-011-0334-y
10.1016/j.oregeorev.2018.04.011
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.gexplo.2022.106959
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1689
ExternalDocumentID 10_1016_j_gexplo_2022_106959
S0375674222000176
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XOL
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-a329t-3c1c83487241b13e494fdb202f390f741585dc18b2cc006a27d71920bdb22e223
IEDL.DBID .~1
ISSN 0375-6742
IngestDate Thu Oct 09 00:45:57 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetite
Deposit types
Mineral exploration
Machine learning
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a329t-3c1c83487241b13e494fdb202f390f741585dc18b2cc006a27d71920bdb22e223
ParticipantIDs crossref_primary_10_1016_j_gexplo_2022_106959
crossref_citationtrail_10_1016_j_gexplo_2022_106959
elsevier_sciencedirect_doi_10_1016_j_gexplo_2022_106959
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Journal of geochemical exploration
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Shrivastava, Singh, Gupta (bb0260) 2017
Helsel (bb0110) 2012
Ueki, Hino, Kuwatani (bb0275) 2018; 19
Singoyi, Danyushevsky, Davidson, Large, Zaw (bb0255) 2006
Bergman, Lindahl (bb0020) 2015
Wang, Wang, Dong, Qin, Evans, Zhang, Ren (bb0280) 2018; 107
Lagoeiro (bb0145) 1998; 16
Moilanen, Hanski, Konnunaho, Törmänen, Yang, Lahaye, O’Brien, Illikainen (bb0185) 2020
Bolton, Jensen, Wallace, Praet, Fortin, Kaufman, De Batist (bb0030) 2020; 35
Huang, Beaudoin (bb0125) 2019; 114
McLachlan (bb0180) 2004
Buddington, Lindsley (bb0040) 1964; 5
(bb0220) 2020
Oonk, Spijker (bb0200) 2015; 59
Aitchison (bb0005) 1986
Althnian, AlSaeed, Al-Baity, Samha, Dris, Alzakari, Abou Elwafa, Kurdi (bb0010) 2021; 11
Matthews (bb0175) 1976; 61
Liaw, Wiener (bb0155) 2002; 2
Gregory, Cracknell, Large, McGoldrick, Kuhn, Maslennikov, Baker, Fox, Belousov, Figueroa, Steadman, Fabris, Lyons (bb0095) 2019; 114
Kuhn (bb0140) 2020
Koutroumbas, Theodoridis (bb0135) 2008
Bérubé, Olivo, Chouteau, Perrouty, Shamsipour, Enkin, Morris, Feltrin, Thiémonge (bb0025) 2018; 96
Dare, Barnes, Beaudoin (bb0055) 2012; 88
Sylvester, Jackson (bb0265) 2016; 12
Palarea-Albaladejo, Martín-Fernández, Gómez-García (bb0215) 2007; 39
Scheka, Platkov, Vezhosek, Levashov, Oktyabrsky (bb0240) 1980
Trunk (bb0270) 1979; 3
Majka (bb0165) 2019
Weiss (bb0285) 2013
Hutton (bb0130) 1950; 61
Caté, Schetselaar, Mercier-Langevin, Ross (bb0050) 2018; 188
Dupuis, Beaudoin (bb0075) 2011; 46
Palarea-Albaladejo, Martín-Fernández (bb0210) 2015; 143
Palarea-Albaladejo, Martín-Fernández (bb0205) 2008; 34
Durden, Hosking, Bett, Cline, Ruhl (bb0080) 2021; v. 196
Reimann, Filzmoser, Garrett, Dutter (bb0235) 2008
MacIntyre, Eckberg, Morgan, Enns, Cruise, Hitzman (bb0160) 2005; 37
Bastrakov, Skirrow, Davidson (bb0015) 2007; 102
Deer, Howie, Zussman (bb0060) 1992
Guo, Leng, Zhang, Zafar, Chen, Zhang, Tian, Tian, Lai (bb0100) 2020; 116
Fisher, Kendrick (bb0085) 2008; 43
Hron, Templ, Filzmoser (bb0120) 2010; 54
Rasmussen, Palarea-Albaladejo, Johansson, Crowley, Stevens, Gupta, Karstad, Holtermann (bb0225) 2020; 17
Lee (bb0150) 2020
Carew (bb0045) 2004
Manéglia, Beaudoin, Simard (bb0170) 2018; 18
He, Ma (bb0105) 2013
Zhao, Brugger, Pring (bb0290) 2019; 10
Breiman (bb0035) 2001; v. 45
Demsar, Curk, Erjavec, Gorup, Hocevar, Milutinovic, Mozina, Polajnar, Toplak, Staric, Stajdohar, Umek, Zagar, Zbontar, Zitnik, Zupan (bb0065) 2013; 14
Razjigaeva, Naumova (bb0230) 1992; 62
Simard, Beaudoin, Bernard, Hupé (bb0245) 2006; 41
Domingos, Pazzani (bb0070) 1997; 29
O'Brien, Spry, Nettleton, Xu, Teale (bb0195) 2015; 149
Simon, Knipping, Reich, Barra, Deditius, Bilenker, Childress (bb0250) 2018; v. 21
Flem, Moen, Finne, Viljugrein, Kritoffersen (bb0090) 2017; 190
Zhu, Vondrick, Fowlkes, Ramanan (bb0295) 2015; 119
Hong, Zuo, Huang, Xiong (bb0115) 2021; 230
Nadoll, Mauk, Leveille, Koenig (bb0190) 2015; 50
Singoyi (10.1016/j.gexplo.2022.106959_bb0255) 2006
Sun (10.1016/j.gexplo.2022.106959_bb0260) 2017
Weiss (10.1016/j.gexplo.2022.106959_bb0285) 2013
Dupuis (10.1016/j.gexplo.2022.106959_bb0075) 2011; 46
Althnian (10.1016/j.gexplo.2022.106959_bb0010) 2021; 11
Demsar (10.1016/j.gexplo.2022.106959_bb0065) 2013; 14
Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0205) 2008; 34
Hutton (10.1016/j.gexplo.2022.106959_bb0130) 1950; 61
Hron (10.1016/j.gexplo.2022.106959_bb0120) 2010; 54
Majka (10.1016/j.gexplo.2022.106959_bb0165) 2019
O'Brien (10.1016/j.gexplo.2022.106959_bb0195) 2015; 149
Bergman (10.1016/j.gexplo.2022.106959_bb0020) 2015
Bastrakov (10.1016/j.gexplo.2022.106959_bb0015) 2007; 102
MacIntyre (10.1016/j.gexplo.2022.106959_bb0160) 2005; 37
Simon (10.1016/j.gexplo.2022.106959_bb0250) 2018; v. 21
Carew (10.1016/j.gexplo.2022.106959_bb0045) 2004
Trunk (10.1016/j.gexplo.2022.106959_bb0270) 1979; 3
Flem (10.1016/j.gexplo.2022.106959_bb0090) 2017; 190
Huang (10.1016/j.gexplo.2022.106959_bb0125) 2019; 114
Breiman (10.1016/j.gexplo.2022.106959_bb0035) 2001; v. 45
Wang (10.1016/j.gexplo.2022.106959_bb0280) 2018; 107
Manéglia (10.1016/j.gexplo.2022.106959_bb0170) 2018; 18
(10.1016/j.gexplo.2022.106959_bb0220) 2020
Bolton (10.1016/j.gexplo.2022.106959_bb0030) 2020; 35
Domingos (10.1016/j.gexplo.2022.106959_bb0070) 1997; 29
Fisher (10.1016/j.gexplo.2022.106959_bb0085) 2008; 43
Scheka (10.1016/j.gexplo.2022.106959_bb0240) 1980
Lee (10.1016/j.gexplo.2022.106959_bb0150) 2020
Oonk (10.1016/j.gexplo.2022.106959_bb0200) 2015; 59
Matthews (10.1016/j.gexplo.2022.106959_bb0175) 1976; 61
Hong (10.1016/j.gexplo.2022.106959_bb0115) 2021; 230
Ueki (10.1016/j.gexplo.2022.106959_bb0275) 2018; 19
Deer (10.1016/j.gexplo.2022.106959_bb0060) 1992
Simard (10.1016/j.gexplo.2022.106959_bb0245) 2006; 41
Sylvester (10.1016/j.gexplo.2022.106959_bb0265) 2016; 12
Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0215) 2007; 39
He (10.1016/j.gexplo.2022.106959_bb0105) 2013
Bérubé (10.1016/j.gexplo.2022.106959_bb0025) 2018; 96
Guo (10.1016/j.gexplo.2022.106959_bb0100) 2020; 116
Koutroumbas (10.1016/j.gexplo.2022.106959_bb0135) 2008
Caté (10.1016/j.gexplo.2022.106959_bb0050) 2018; 188
Rasmussen (10.1016/j.gexplo.2022.106959_bb0225) 2020; 17
Moilanen (10.1016/j.gexplo.2022.106959_bb0185) 2020
Nadoll (10.1016/j.gexplo.2022.106959_bb0190) 2015; 50
Liaw (10.1016/j.gexplo.2022.106959_bb0155) 2002; 2
Buddington (10.1016/j.gexplo.2022.106959_bb0040) 1964; 5
Reimann (10.1016/j.gexplo.2022.106959_bb0235) 2008
Razjigaeva (10.1016/j.gexplo.2022.106959_bb0230) 1992; 62
Durden (10.1016/j.gexplo.2022.106959_bb0080) 2021; v. 196
Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0210) 2015; 143
Aitchison (10.1016/j.gexplo.2022.106959_bb0005) 1986
Dare (10.1016/j.gexplo.2022.106959_bb0055) 2012; 88
McLachlan (10.1016/j.gexplo.2022.106959_bb0180) 2004
Gregory (10.1016/j.gexplo.2022.106959_bb0095) 2019; 114
Zhu (10.1016/j.gexplo.2022.106959_bb0295) 2015; 119
Lagoeiro (10.1016/j.gexplo.2022.106959_bb0145) 1998; 16
Zhao (10.1016/j.gexplo.2022.106959_bb0290) 2019; 10
Kuhn (10.1016/j.gexplo.2022.106959_bb0140) 2020
Helsel (10.1016/j.gexplo.2022.106959_bb0110) 2012
References_xml – volume: 18
  start-page: 241
  year: 2018
  end-page: 251
  ident: bb0170
  publication-title: Indicator Minerals of the Meliadine Orogenic Gold Deposits, Nunavut (Canada), and Application to Till Surveys: Geochemistry: Exploration, Environment, Analysis
– volume: 62
  start-page: 802
  year: 1992
  end-page: 809
  ident: bb0230
  article-title: Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study
  publication-title: Journal of Sedimentary Petrology
– volume: 19
  start-page: 1327
  year: 2018
  end-page: 1347
  ident: bb0275
  article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: a machine-learning-based approach
  publication-title: Geochemistry Geophysics Geosystems
– year: 2020
  ident: bb0150
  article-title: NADA: Nondetects and Data Analysis for Environmental Data: R Package Version 1.6-1.1
– year: 2008
  ident: bb0235
  article-title: Statistical data analysis explained: applied environmental statistics with R
– volume: 41
  start-page: 607
  year: 2006
  end-page: 636
  ident: bb0245
  article-title: Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada
  publication-title: Mineral. Deposita
– start-page: 843
  year: 2017
  end-page: 852
  ident: bb0260
  article-title: Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
  publication-title: Proceedings of the IEEE Conference on Computer Vision (ICCV)
– start-page: 696
  year: 1992
  ident: bb0060
  publication-title: An introduction to rock-forming minerals
– volume: 39
  start-page: 625
  year: 2007
  end-page: 645
  ident: bb0215
  article-title: A parametric approach for dealing with compositional rounded zeros
  publication-title: Math. Geol.
– volume: 46
  start-page: 319
  year: 2011
  end-page: 335
  ident: bb0075
  article-title: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types
  publication-title: Miner. Depos.
– volume: v. 21
  start-page: 89
  year: 2018
  end-page: 114
  ident: bb0250
  article-title: Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt: Society of Economic Geologists special
  publication-title: Publication
– volume: 11
  start-page: 796
  year: 2021
  ident: bb0010
  article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain
  publication-title: Appl. Sci.
– start-page: 13
  year: 2013
  end-page: 42
  ident: bb0285
  article-title: Foundations of Imbalanced Learning
  publication-title: Imbalanced Learning : Foundations, Algorithms, and Applications
– volume: 107
  start-page: 291
  year: 2018
  end-page: 319
  ident: bb0280
  article-title: Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications
  publication-title: Int. J. Earth Sci.
– volume: 3
  start-page: 306
  year: 1979
  end-page: 307
  ident: bb0270
  publication-title: A Problem of Dimensionality: A Simple Example": IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI-1
– year: 2004
  ident: bb0045
  article-title: Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt
– year: 2020
  ident: bb0140
  article-title: caret: Classification and Regression Training: R package version 6.0-86
– volume: 61
  start-page: 635
  year: 1950
  end-page: 713
  ident: bb0130
  article-title: Studies of heavy detrital minerals
  publication-title: Geol. Soc. Am. Bull.
– volume: 188
  start-page: 216
  year: 2018
  end-page: 228
  ident: bb0050
  article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: a case study from the Lalor volcanogenic massive sulphide depositSnow Lake, Manitoba, Canada
  publication-title: Journal of Geochemical Exploration
– volume: 230
  year: 2021
  ident: bb0115
  article-title: Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
  publication-title: J. Geochem. Explor.
– volume: 10
  start-page: 29
  year: 2019
  end-page: 41
  ident: bb0290
  article-title: Mechanism and kinetics of hydrothermal replacement of magnetite by hematite
  publication-title: Geosci. Front.
– start-page: 31
  year: 2015
  end-page: 39
  ident: bb0020
  article-title: Optimising archaeologic ceramics XRF analyses
  publication-title: Proceedings of the 6th International Workshop on Compositional Data Analysis, L’Escala, Spain, 2015
– volume: 119
  start-page: 76
  year: 2015
  end-page: 92
  ident: bb0295
  article-title: Do we need more training data?
  publication-title: Int. J. Comput. Vis.
– year: 2020
  ident: bb0220
  article-title: R: A Language and Environment for Statistical Computing
– volume: v. 196
  year: 2021
  ident: bb0080
  article-title: Automated classification of fauna in seabed photographs: the impact of training and validation dataset size, with considerations for the class imbalance
  publication-title: Prog. Oceanogr.
– start-page: 147
  year: 1980
  ident: bb0240
  article-title: The trace element paragenesis of magnetite
– year: 2008
  ident: bb0135
  article-title: Pattern Recognition
– year: 2019
  ident: bb0165
  article-title: naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R: R package version 0.9.7
– volume: 34
  start-page: 902
  year: 2008
  end-page: 917
  ident: bb0205
  article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets
  publication-title: Comput. Geosci.
– volume: 114
  start-page: 953
  year: 2019
  end-page: 979
  ident: bb0125
  article-title: Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes
  publication-title: Economic Geology
– volume: 190
  start-page: 183
  year: 2017
  end-page: 196
  ident: bb0090
  article-title: Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries
  publication-title: Fish. Res.
– year: 2004
  ident: bb0180
  article-title: Discriminant Analysis and Statistical Pattern Recognition
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  ident: bb0065
  article-title: Orange: data mining toolbox in python
  publication-title: Journal of Machine Learning Research
– volume: 50
  start-page: 493
  year: 2015
  end-page: 515
  ident: bb0190
  article-title: Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States
  publication-title: Mineral. Deposita
– year: 2020
  ident: bb0185
  article-title: Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration
  publication-title: Mineral. Deposita
– volume: 29
  start-page: 103
  year: 1997
  end-page: 130
  ident: bb0070
  article-title: On the Optimality of the Simple Bayesian Classifier Under Zero-one loss
  publication-title: Mach. Learn.
– volume: 16
  start-page: 415
  year: 1998
  end-page: 423
  ident: bb0145
  article-title: Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals
  publication-title: J. Metamorph. Geol.
– volume: 35
  start-page: 1
  year: 2020
  end-page: 12
  ident: bb0030
  article-title: Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras
  publication-title: J. Quat. Sci.
– volume: 102
  start-page: 1415
  year: 2007
  end-page: 1440
  ident: bb0015
  article-title: Fluid evolution and origins of Iron Oxide Cu-Au prospects in the Olympic Dam DistrictGawler Craton, South Australia
  publication-title: Economic Geology
– year: 1986
  ident: bb0005
  article-title: The statistical analysis of compositional data
  publication-title: Monographs on Statistics and Applied Probability
– volume: v. 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0035
  article-title: Random Forests
  publication-title: Mach. Learn.
– volume: 149
  start-page: 74
  year: 2015
  end-page: 86
  ident: bb0195
  article-title: Using random forests to distinguish gahnite compositions as an exploration guide to broken hill-type Pb–Zn–Ag deposits in the Broken Hill Domain, Australia
  publication-title: J. Geochem. Explor.
– volume: 37
  start-page: 516
  year: 2005
  ident: bb0160
  article-title: Amargosa prospect, Baja California Norte, Mexico: intense regional metasomatism as a result of IOCG-style alteration: GSA annual meeting, Salt Lake City, United States, 2005
  publication-title: Abstracts with Programs
– year: 2006
  ident: bb0255
  article-title: Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique [abs]
  publication-title: SEG Keystone Conference, Denver, United-States, 2006, Conference proceedings, CD-ROM
– volume: 59
  start-page: 80
  year: 2015
  end-page: 88
  ident: bb0200
  article-title: A supervised machine-learning approach towards geochemical predictive modelling in archaeology
  publication-title: J. Archaeol. Sci.
– volume: 114
  start-page: 771
  year: 2019
  end-page: 786
  ident: bb0095
  article-title: Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite using Laser Ablation-Inductively coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of large Data Sets
  publication-title: Econ. Geol.
– volume: 116
  year: 2020
  ident: bb0100
  article-title: Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan
  publication-title: SW China: Ore Geology Reviews
– volume: 96
  start-page: 130
  year: 2018
  end-page: 145
  ident: bb0025
  article-title: Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada
  publication-title: Ore Geology Reviews
– volume: 43
  start-page: 483
  year: 2008
  end-page: 497
  ident: bb0085
  article-title: Metamorphic fluid origins in the Osborne Fe-oxide-Cu-au deposit, Australia: evidence from noble gases and halogens
  publication-title: Miner. Depos.
– volume: 61
  start-page: 927
  year: 1976
  end-page: 932
  ident: bb0175
  article-title: Magnetite formation by the reduction of hematite with iron under hydrothermal conditions
  publication-title: Am. Miner.
– volume: 54
  start-page: 3095
  year: 2010
  end-page: 3107
  ident: bb0120
  article-title: Imputation of missing values for compositional data using classical and robust methods
  publication-title: Comput. Stat. Data Anal.
– volume: 17
  start-page: 126
  year: 2020
  ident: bb0225
  article-title: Zero problems with compositional data of physical behaviors: a comparison of three zero replacement methods
  publication-title: Int. J. Behav. Nutr. Phys. Act.
– volume: 12
  start-page: 307
  year: 2016
  end-page: 310
  ident: bb0265
  article-title: A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): elements
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0155
  article-title: Classification and Regression by randomForest
  publication-title: R News
– year: 2012
  ident: bb0110
  article-title: Statistics for censored environmental data using Minitab and R
– volume: 143
  start-page: 85
  year: 2015
  end-page: 96
  ident: bb0210
  article-title: zCompositions — R package for multivariate imputation of left-censored data under a compositional approach
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 88
  start-page: 27
  year: 2012
  end-page: 50
  ident: bb0055
  article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination
  publication-title: Geochimica et Cosmochimica Acta
– volume: 5
  start-page: 310
  year: 1964
  end-page: 357
  ident: bb0040
  article-title: Iron–titanium oxide minerals and synthetic equivalents
  publication-title: J. Petrol.
– year: 2013
  ident: bb0105
  article-title: Imbalanced Learning: Foundations, Algorithms, and Applications
– year: 2008
  ident: 10.1016/j.gexplo.2022.106959_bb0135
– volume: 11
  start-page: 796
  year: 2021
  ident: 10.1016/j.gexplo.2022.106959_bb0010
  article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain
  publication-title: Appl. Sci.
  doi: 10.3390/app11020796
– volume: 35
  start-page: 1
  issue: 1–2
  year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0030
  article-title: Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras
  publication-title: J. Quat. Sci.
– volume: 41
  start-page: 607
  issue: 6
  year: 2006
  ident: 10.1016/j.gexplo.2022.106959_bb0245
  article-title: Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada
  publication-title: Mineral. Deposita
  doi: 10.1007/s00126-006-0061-y
– volume: 62
  start-page: 802
  year: 1992
  ident: 10.1016/j.gexplo.2022.106959_bb0230
  article-title: Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study
  publication-title: Journal of Sedimentary Petrology
– volume: 43
  start-page: 483
  year: 2008
  ident: 10.1016/j.gexplo.2022.106959_bb0085
  article-title: Metamorphic fluid origins in the Osborne Fe-oxide-Cu-au deposit, Australia: evidence from noble gases and halogens
  publication-title: Miner. Depos.
  doi: 10.1007/s00126-008-0178-2
– volume: 10
  start-page: 29
  year: 2019
  ident: 10.1016/j.gexplo.2022.106959_bb0290
  article-title: Mechanism and kinetics of hydrothermal replacement of magnetite by hematite
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2018.05.015
– year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0185
  article-title: Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration
  publication-title: Mineral. Deposita
  doi: 10.1007/s00126-020-00953-1
– volume: 34
  start-page: 902
  year: 2008
  ident: 10.1016/j.gexplo.2022.106959_bb0205
  article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2007.09.015
– year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0140
– volume: 14
  start-page: 2349
  issue: Aug
  year: 2013
  ident: 10.1016/j.gexplo.2022.106959_bb0065
  article-title: Orange: data mining toolbox in python
  publication-title: Journal of Machine Learning Research
– volume: 61
  start-page: 635
  year: 1950
  ident: 10.1016/j.gexplo.2022.106959_bb0130
  article-title: Studies of heavy detrital minerals
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/0016-7606(1950)61[635:SOHDM]2.0.CO;2
– volume: v. 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.gexplo.2022.106959_bb0035
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 149
  start-page: 74
  issue: C
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0195
  article-title: Using random forests to distinguish gahnite compositions as an exploration guide to broken hill-type Pb–Zn–Ag deposits in the Broken Hill Domain, Australia
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.11.010
– start-page: 696
  year: 1992
  ident: 10.1016/j.gexplo.2022.106959_bb0060
– year: 2004
  ident: 10.1016/j.gexplo.2022.106959_bb0180
– volume: 54
  start-page: 3095
  issue: 12
  year: 2010
  ident: 10.1016/j.gexplo.2022.106959_bb0120
  article-title: Imputation of missing values for compositional data using classical and robust methods
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.11.023
– volume: 230
  year: 2021
  ident: 10.1016/j.gexplo.2022.106959_bb0115
  article-title: Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2021.106859
– volume: 37
  start-page: 516
  issue: 7
  year: 2005
  ident: 10.1016/j.gexplo.2022.106959_bb0160
  article-title: Amargosa prospect, Baja California Norte, Mexico: intense regional metasomatism as a result of IOCG-style alteration: GSA annual meeting, Salt Lake City, United States, 2005
  publication-title: Abstracts with Programs
– start-page: 843
  year: 2017
  ident: 10.1016/j.gexplo.2022.106959_bb0260
  article-title: Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
– volume: 12
  start-page: 307
  issue: 5
  year: 2016
  ident: 10.1016/j.gexplo.2022.106959_bb0265
  article-title: A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): elements
– volume: v. 196
  year: 2021
  ident: 10.1016/j.gexplo.2022.106959_bb0080
  article-title: Automated classification of fauna in seabed photographs: the impact of training and validation dataset size, with considerations for the class imbalance
  publication-title: Prog. Oceanogr.
– year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0150
– volume: 61
  start-page: 927
  year: 1976
  ident: 10.1016/j.gexplo.2022.106959_bb0175
  article-title: Magnetite formation by the reduction of hematite with iron under hydrothermal conditions
  publication-title: Am. Miner.
– volume: 188
  start-page: 216
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0050
  article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: a case study from the Lalor volcanogenic massive sulphide depositSnow Lake, Manitoba, Canada
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2018.01.019
– volume: v. 21
  start-page: 89
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0250
  article-title: Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt: Society of Economic Geologists special
  publication-title: Publication
– volume: 190
  start-page: 183
  year: 2017
  ident: 10.1016/j.gexplo.2022.106959_bb0090
  article-title: Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2017.02.010
– year: 2012
  ident: 10.1016/j.gexplo.2022.106959_bb0110
– volume: 102
  start-page: 1415
  year: 2007
  ident: 10.1016/j.gexplo.2022.106959_bb0015
  article-title: Fluid evolution and origins of Iron Oxide Cu-Au prospects in the Olympic Dam DistrictGawler Craton, South Australia
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.102.8.1415
– volume: 114
  start-page: 771
  issue: 4
  year: 2019
  ident: 10.1016/j.gexplo.2022.106959_bb0095
  article-title: Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite using Laser Ablation-Inductively coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of large Data Sets
  publication-title: Econ. Geol.
  doi: 10.5382/econgeo.4654
– year: 2019
  ident: 10.1016/j.gexplo.2022.106959_bb0165
– start-page: 147
  year: 1980
  ident: 10.1016/j.gexplo.2022.106959_bb0240
  article-title: The trace element paragenesis of magnetite
– year: 2004
  ident: 10.1016/j.gexplo.2022.106959_bb0045
– volume: 59
  start-page: 80
  issue: C
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0200
  article-title: A supervised machine-learning approach towards geochemical predictive modelling in archaeology
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2015.04.002
– year: 2008
  ident: 10.1016/j.gexplo.2022.106959_bb0235
– volume: 29
  start-page: 103
  year: 1997
  ident: 10.1016/j.gexplo.2022.106959_bb0070
  article-title: On the Optimality of the Simple Bayesian Classifier Under Zero-one loss
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007413511361
– volume: 88
  start-page: 27
  year: 2012
  ident: 10.1016/j.gexplo.2022.106959_bb0055
  article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2012.04.032
– year: 2006
  ident: 10.1016/j.gexplo.2022.106959_bb0255
  article-title: Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique [abs]
– volume: 18
  start-page: 241
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0170
– volume: 116
  year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0100
  article-title: Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan
  publication-title: SW China: Ore Geology Reviews
– volume: 19
  start-page: 1327
  issue: 4
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0275
  article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: a machine-learning-based approach
  publication-title: Geochemistry Geophysics Geosystems
  doi: 10.1029/2017GC007401
– volume: 119
  start-page: 76
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0295
  article-title: Do we need more training data?
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0812-2
– volume: 50
  start-page: 493
  issue: 4
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0190
  article-title: Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States
  publication-title: Mineral. Deposita
  doi: 10.1007/s00126-014-0539-y
– year: 1986
  ident: 10.1016/j.gexplo.2022.106959_bb0005
  article-title: The statistical analysis of compositional data
– volume: 16
  start-page: 415
  year: 1998
  ident: 10.1016/j.gexplo.2022.106959_bb0145
  article-title: Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals
  publication-title: J. Metamorph. Geol.
  doi: 10.1111/j.1525-1314.1998.00144.x
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.gexplo.2022.106959_bb0155
  article-title: Classification and Regression by randomForest
  publication-title: R News
– volume: 143
  start-page: 85
  issue: C
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0210
  article-title: zCompositions — R package for multivariate imputation of left-censored data under a compositional approach
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.02.019
– year: 2013
  ident: 10.1016/j.gexplo.2022.106959_bb0105
– start-page: 13
  year: 2013
  ident: 10.1016/j.gexplo.2022.106959_bb0285
  article-title: Foundations of Imbalanced Learning
– volume: 107
  start-page: 291
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0280
  article-title: Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications
  publication-title: Int. J. Earth Sci.
  doi: 10.1007/s00531-017-1490-9
– start-page: 31
  year: 2015
  ident: 10.1016/j.gexplo.2022.106959_bb0020
  article-title: Optimising archaeologic ceramics XRF analyses
– year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0220
– volume: 5
  start-page: 310
  year: 1964
  ident: 10.1016/j.gexplo.2022.106959_bb0040
  article-title: Iron–titanium oxide minerals and synthetic equivalents
  publication-title: J. Petrol.
  doi: 10.1093/petrology/5.2.310
– volume: 114
  start-page: 953
  year: 2019
  ident: 10.1016/j.gexplo.2022.106959_bb0125
  article-title: Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes
  publication-title: Economic Geology
  doi: 10.5382/econgeo.4651
– volume: 39
  start-page: 625
  year: 2007
  ident: 10.1016/j.gexplo.2022.106959_bb0215
  article-title: A parametric approach for dealing with compositional rounded zeros
  publication-title: Math. Geol.
  doi: 10.1007/s11004-007-9100-1
– volume: 17
  start-page: 126
  year: 2020
  ident: 10.1016/j.gexplo.2022.106959_bb0225
  article-title: Zero problems with compositional data of physical behaviors: a comparison of three zero replacement methods
  publication-title: Int. J. Behav. Nutr. Phys. Act.
  doi: 10.1186/s12966-020-01029-z
– volume: 46
  start-page: 319
  issue: 4
  year: 2011
  ident: 10.1016/j.gexplo.2022.106959_bb0075
  article-title: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types
  publication-title: Miner. Depos.
  doi: 10.1007/s00126-011-0334-y
– volume: 96
  start-page: 130
  year: 2018
  ident: 10.1016/j.gexplo.2022.106959_bb0025
  article-title: Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.04.011
– volume: 3
  start-page: 306
  year: 1979
  ident: 10.1016/j.gexplo.2022.106959_bb0270
SSID ssj0001746
Score 2.4571564
Snippet Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106959
SubjectTerms Deposit types
Machine learning
Magnetite
Mineral exploration
Random Forest
Title Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration
URI https://dx.doi.org/10.1016/j.gexplo.2022.106959
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMFr3dqkTXscwzEVh6CD3UqTpqOiW127q3-77yWtmyAKHpvmleYlfR_NL79HyJWXIA8YfN9JonxIUJhwEsaY4weQM-swCqThmX0YB6MJv5v60xYZNGdhEFZZ235r0421rlu6tTa7RZ53n7B6ayDwF4ZhfUHabc4FVjG4_ljDPCDitvuVAkH23GuOzxmM10wj0A2yRM-DpiBCxtKf3NOGyxnukd06VqR9-zr7pKXnB2Rng0HwkLw_roH_dJHRYokbL2jCaLkq0A6UOqUKQ2TEBJlpoKb6TYndq2UCctpCyEuaw71kNseDZ5rCY-lbbkipqRmAXStHZDK8eR6MnLqKAijdiyqHKVeFDPIS8NXSZZpHPEslDDljUS_DgCL0U-WG0lMKPsHEE6mAsK8noZOnIXo4Ju35Yq5PCHVT7kOYq7gINM9kJEORsNSVPlc65H56SlijvFjVFONY6eI1brBkL7FVeYwqj63KT4nzJVVYio0_-otmXuJvSyUGL_Cr5Nm_Jc_JNl5ZpOMFaVfLlb6EaKSSHbPcOmSrf3s_Gn8CfXjgQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFOMZw5cy2iSNu0RTUwDtgkJkHarmjRFQ9CNPa78duykZUNCIHFt4qpxEvtz88Um5JylmAcM9nea6gACFC69lHPuBSHEzCaKQ2XzzPb6YedJ3A6CQY20qrswSKssbb-z6dZal0-apTab4-Gw-YDVW0OJvzBs1pdwhayKgEmMwC4-FjwPgNzuwFIiy16w6v6cJXk9G2S6QZjIGDwKY0xZ-pN_WvI57S2yWYJFeuW-Z5vUTLFDNpZSCO6S9_sF85-Ocjqe4MkL2jA6nY_REExNRjViZCQF2XmgtvzNFLvPJinIGcchn9IhtKXPBd48MxReS9-GNis1tQNwi2WPPLWvH1sdryyjAFpn8czj2tcRh8AEnLXyuRGxyDMFQ855fJkjooiCTPuRYlrDHkyZzCTgvksFnZgB-LBP6sWoMAeE-pkIAOdqIUMjchWrSKY881UgtIlEkDUIr5SX6DLHOJa6eE0qMtlL4lSeoMoTp_IG8b6kxi7Hxh_9ZTUvybe1koAb-FXy8N-SZ2St89jrJt2b_t0RWccWR3s8JvXZZG5OAJrM1Kldep_GOeHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+predictive+supervised+classification+models+of+trace+elements+in+magnetite+for+mineral+exploration&rft.jtitle=Journal+of+geochemical+exploration&rft.au=B%C3%A9dard%2C+%C3%89milie&rft.au=De+Bronac+de+Vazelhes%2C+Victor&rft.au=Beaudoin%2C+Georges&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0375-6742&rft.eissn=1879-1689&rft.volume=236&rft_id=info:doi/10.1016%2Fj.gexplo.2022.106959&rft.externalDocID=S0375674222000176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6742&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6742&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6742&client=summon