Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration
Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised mul...
        Saved in:
      
    
          | Published in | Journal of geochemical exploration Vol. 236; p. 106959 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.05.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0375-6742 1879-1689  | 
| DOI | 10.1016/j.gexplo.2022.106959 | 
Cover
| Abstract | Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised multivariate classification method using the geochemical composition of magnetite in order to provide a model usable by industry and government for mineral exploration. After screening a comprehensive database of ~30 k magnetite analyses, ~17 k observations are selected for our study. These data are from 303 different deposits that belong to 9 major deposit types (BIF, Fe-Ti, IOCG, IOA, Ni-Cu-PGE, Porphyry, VMS, Skarn, V) and a varied class of non-mineralized rocks (Country rocks). We tested the three most promising supervised machine learning algorithms on our dataset (Naive Bayes, K-Nearest Neighbor, Random Forest) with 2 open source statistical platforms: Orange and R. The Random Forest (RF) algorithm yield the best predictive outcome on untransformed data with prediction accuracies of 0.80 with Orange and 0.81 with R. We also tested our RF model on three case studies: 1) IOCG-like deposits, 2) porphyry Cu-Au and Cu skarn, and 3) Scandinavian Ni-Cu-PGE deposits. Our model was able to effectively predict the deposit type for the first two case studies to the large family of Porphyry/IOCG/Skarn. For the 3rd case study, almost 61% of the observations were correctly identified as belonging to Ni-Cu-PGE deposits. Our RF model is therefore accurate enough to be used with confidence for mineral exploration.
[Display omitted]
•Magnetite analyses are used to determine the best predictive supervised multivariate classification method.•Three algorithms (Naive Bayes, K-Nearest Neighbor, Random Forest) were tested on ~17 k observations.•The Random Forest (RF) algorithm yields the best predictive outcome (81%).•The RF model is accurate enough to be used for mineral exploration for 9 deposit types. | 
    
|---|---|
| AbstractList | Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant diagrams have limits to accurately predict deposit types (prediction accuracy ~40%). This study aims to determine the best predictive supervised multivariate classification method using the geochemical composition of magnetite in order to provide a model usable by industry and government for mineral exploration. After screening a comprehensive database of ~30 k magnetite analyses, ~17 k observations are selected for our study. These data are from 303 different deposits that belong to 9 major deposit types (BIF, Fe-Ti, IOCG, IOA, Ni-Cu-PGE, Porphyry, VMS, Skarn, V) and a varied class of non-mineralized rocks (Country rocks). We tested the three most promising supervised machine learning algorithms on our dataset (Naive Bayes, K-Nearest Neighbor, Random Forest) with 2 open source statistical platforms: Orange and R. The Random Forest (RF) algorithm yield the best predictive outcome on untransformed data with prediction accuracies of 0.80 with Orange and 0.81 with R. We also tested our RF model on three case studies: 1) IOCG-like deposits, 2) porphyry Cu-Au and Cu skarn, and 3) Scandinavian Ni-Cu-PGE deposits. Our model was able to effectively predict the deposit type for the first two case studies to the large family of Porphyry/IOCG/Skarn. For the 3rd case study, almost 61% of the observations were correctly identified as belonging to Ni-Cu-PGE deposits. Our RF model is therefore accurate enough to be used with confidence for mineral exploration.
[Display omitted]
•Magnetite analyses are used to determine the best predictive supervised multivariate classification method.•Three algorithms (Naive Bayes, K-Nearest Neighbor, Random Forest) were tested on ~17 k observations.•The Random Forest (RF) algorithm yields the best predictive outcome (81%).•The RF model is accurate enough to be used for mineral exploration for 9 deposit types. | 
    
| ArticleNumber | 106959 | 
    
| Author | De Bronac de Vazelhes, Victor Bédard, Émilie Beaudoin, Georges  | 
    
| Author_xml | – sequence: 1 givenname: Émilie surname: Bédard fullname: Bédard, Émilie email: explomin@ggl.ulaval.ca – sequence: 2 givenname: Victor surname: De Bronac de Vazelhes fullname: De Bronac de Vazelhes, Victor – sequence: 3 givenname: Georges surname: Beaudoin fullname: Beaudoin, Georges email: georges.beaudoin@ggl.ulaval.ca  | 
    
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw_5A1uTbHaz8SBI8QsKetBzyGYnJWW_TGLRf2_a9eRBTwMz87zMPAs064ceELqkZEUJLa92qy18ju2wYoSx1CplIU_QnFZCZrSs5AzNSS6KrBScnaFFCDtCCBW8nKP3F_B28J3uDeDB4tFD40x0e8DhYwS_dwEabFodgrPO6OiGHndDA204rEevEwctdNDHgF2a6W0P0UXAKRZ3rgevW3w8zx_pc3RqdRvg4qcu0dv93ev6Mds8PzytbzeZzpmMWW6oqXJeCcZpTXPgktumTg_aXBIrOC2qojG0qpkxhJSaiUZQyUidlhgwli8Rn3KNH0LwYNXoXaf9l6JEHbSpnZq0qYM2NWlL2PUvzLh4PDz96tr_4JsJTnpg78CrYBwktY3zYKJqBvd3wDdY1pAn | 
    
| CitedBy_id | crossref_primary_10_1016_j_oregeorev_2025_106447 crossref_primary_10_3390_rs15225295 crossref_primary_10_1016_j_oregeorev_2023_105566 crossref_primary_10_1016_j_oregeorev_2023_105493 crossref_primary_10_1007_s13146_024_00994_x crossref_primary_10_1016_j_oregeorev_2024_106374 crossref_primary_10_3390_min12060689 crossref_primary_10_1007_s00126_023_01204_9 crossref_primary_10_1016_j_gexplo_2024_107540 crossref_primary_10_1180_mgm_2023_69 crossref_primary_10_3390_min13081009 crossref_primary_10_1016_j_gexplo_2024_107555 crossref_primary_10_1016_j_compag_2024_109688 crossref_primary_10_1016_j_jafrearsci_2023_105024 crossref_primary_10_5382_econgeo_5020 crossref_primary_10_1007_s00126_024_01246_7 crossref_primary_10_1180_mgm_2022_39  | 
    
| Cites_doi | 10.3390/app11020796 10.1007/s00126-006-0061-y 10.1007/s00126-008-0178-2 10.1016/j.gsf.2018.05.015 10.1007/s00126-020-00953-1 10.1016/j.cageo.2007.09.015 10.1130/0016-7606(1950)61[635:SOHDM]2.0.CO;2 10.1023/A:1010933404324 10.1016/j.gexplo.2014.11.010 10.1016/j.csda.2009.11.023 10.1016/j.gexplo.2021.106859 10.1016/j.gexplo.2018.01.019 10.1016/j.fishres.2017.02.010 10.2113/gsecongeo.102.8.1415 10.5382/econgeo.4654 10.1016/j.jas.2015.04.002 10.1023/A:1007413511361 10.1016/j.gca.2012.04.032 10.1029/2017GC007401 10.1007/s11263-015-0812-2 10.1007/s00126-014-0539-y 10.1111/j.1525-1314.1998.00144.x 10.1016/j.chemolab.2015.02.019 10.1007/s00531-017-1490-9 10.1093/petrology/5.2.310 10.5382/econgeo.4651 10.1007/s11004-007-9100-1 10.1186/s12966-020-01029-z 10.1007/s00126-011-0334-y 10.1016/j.oregeorev.2018.04.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2022 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.gexplo.2022.106959 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1879-1689 | 
    
| ExternalDocumentID | 10_1016_j_gexplo_2022_106959 S0375674222000176  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XOL XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-a329t-3c1c83487241b13e494fdb202f390f741585dc18b2cc006a27d71920bdb22e223 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0375-6742 | 
    
| IngestDate | Thu Oct 09 00:45:57 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:40:15 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Magnetite Deposit types Mineral exploration Machine learning Random Forest  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a329t-3c1c83487241b13e494fdb202f390f741585dc18b2cc006a27d71920bdb22e223 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_gexplo_2022_106959 crossref_citationtrail_10_1016_j_gexplo_2022_106959 elsevier_sciencedirect_doi_10_1016_j_gexplo_2022_106959  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2022 2022-05-00  | 
    
| PublicationDateYYYYMMDD | 2022-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Journal of geochemical exploration | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Sun, Shrivastava, Singh, Gupta (bb0260) 2017 Helsel (bb0110) 2012 Ueki, Hino, Kuwatani (bb0275) 2018; 19 Singoyi, Danyushevsky, Davidson, Large, Zaw (bb0255) 2006 Bergman, Lindahl (bb0020) 2015 Wang, Wang, Dong, Qin, Evans, Zhang, Ren (bb0280) 2018; 107 Lagoeiro (bb0145) 1998; 16 Moilanen, Hanski, Konnunaho, Törmänen, Yang, Lahaye, O’Brien, Illikainen (bb0185) 2020 Bolton, Jensen, Wallace, Praet, Fortin, Kaufman, De Batist (bb0030) 2020; 35 Huang, Beaudoin (bb0125) 2019; 114 McLachlan (bb0180) 2004 Buddington, Lindsley (bb0040) 1964; 5 (bb0220) 2020 Oonk, Spijker (bb0200) 2015; 59 Aitchison (bb0005) 1986 Althnian, AlSaeed, Al-Baity, Samha, Dris, Alzakari, Abou Elwafa, Kurdi (bb0010) 2021; 11 Matthews (bb0175) 1976; 61 Liaw, Wiener (bb0155) 2002; 2 Gregory, Cracknell, Large, McGoldrick, Kuhn, Maslennikov, Baker, Fox, Belousov, Figueroa, Steadman, Fabris, Lyons (bb0095) 2019; 114 Kuhn (bb0140) 2020 Koutroumbas, Theodoridis (bb0135) 2008 Bérubé, Olivo, Chouteau, Perrouty, Shamsipour, Enkin, Morris, Feltrin, Thiémonge (bb0025) 2018; 96 Dare, Barnes, Beaudoin (bb0055) 2012; 88 Sylvester, Jackson (bb0265) 2016; 12 Palarea-Albaladejo, Martín-Fernández, Gómez-García (bb0215) 2007; 39 Scheka, Platkov, Vezhosek, Levashov, Oktyabrsky (bb0240) 1980 Trunk (bb0270) 1979; 3 Majka (bb0165) 2019 Weiss (bb0285) 2013 Hutton (bb0130) 1950; 61 Caté, Schetselaar, Mercier-Langevin, Ross (bb0050) 2018; 188 Dupuis, Beaudoin (bb0075) 2011; 46 Palarea-Albaladejo, Martín-Fernández (bb0210) 2015; 143 Palarea-Albaladejo, Martín-Fernández (bb0205) 2008; 34 Durden, Hosking, Bett, Cline, Ruhl (bb0080) 2021; v. 196 Reimann, Filzmoser, Garrett, Dutter (bb0235) 2008 MacIntyre, Eckberg, Morgan, Enns, Cruise, Hitzman (bb0160) 2005; 37 Bastrakov, Skirrow, Davidson (bb0015) 2007; 102 Deer, Howie, Zussman (bb0060) 1992 Guo, Leng, Zhang, Zafar, Chen, Zhang, Tian, Tian, Lai (bb0100) 2020; 116 Fisher, Kendrick (bb0085) 2008; 43 Hron, Templ, Filzmoser (bb0120) 2010; 54 Rasmussen, Palarea-Albaladejo, Johansson, Crowley, Stevens, Gupta, Karstad, Holtermann (bb0225) 2020; 17 Lee (bb0150) 2020 Carew (bb0045) 2004 Manéglia, Beaudoin, Simard (bb0170) 2018; 18 He, Ma (bb0105) 2013 Zhao, Brugger, Pring (bb0290) 2019; 10 Breiman (bb0035) 2001; v. 45 Demsar, Curk, Erjavec, Gorup, Hocevar, Milutinovic, Mozina, Polajnar, Toplak, Staric, Stajdohar, Umek, Zagar, Zbontar, Zitnik, Zupan (bb0065) 2013; 14 Razjigaeva, Naumova (bb0230) 1992; 62 Simard, Beaudoin, Bernard, Hupé (bb0245) 2006; 41 Domingos, Pazzani (bb0070) 1997; 29 O'Brien, Spry, Nettleton, Xu, Teale (bb0195) 2015; 149 Simon, Knipping, Reich, Barra, Deditius, Bilenker, Childress (bb0250) 2018; v. 21 Flem, Moen, Finne, Viljugrein, Kritoffersen (bb0090) 2017; 190 Zhu, Vondrick, Fowlkes, Ramanan (bb0295) 2015; 119 Hong, Zuo, Huang, Xiong (bb0115) 2021; 230 Nadoll, Mauk, Leveille, Koenig (bb0190) 2015; 50 Singoyi (10.1016/j.gexplo.2022.106959_bb0255) 2006 Sun (10.1016/j.gexplo.2022.106959_bb0260) 2017 Weiss (10.1016/j.gexplo.2022.106959_bb0285) 2013 Dupuis (10.1016/j.gexplo.2022.106959_bb0075) 2011; 46 Althnian (10.1016/j.gexplo.2022.106959_bb0010) 2021; 11 Demsar (10.1016/j.gexplo.2022.106959_bb0065) 2013; 14 Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0205) 2008; 34 Hutton (10.1016/j.gexplo.2022.106959_bb0130) 1950; 61 Hron (10.1016/j.gexplo.2022.106959_bb0120) 2010; 54 Majka (10.1016/j.gexplo.2022.106959_bb0165) 2019 O'Brien (10.1016/j.gexplo.2022.106959_bb0195) 2015; 149 Bergman (10.1016/j.gexplo.2022.106959_bb0020) 2015 Bastrakov (10.1016/j.gexplo.2022.106959_bb0015) 2007; 102 MacIntyre (10.1016/j.gexplo.2022.106959_bb0160) 2005; 37 Simon (10.1016/j.gexplo.2022.106959_bb0250) 2018; v. 21 Carew (10.1016/j.gexplo.2022.106959_bb0045) 2004 Trunk (10.1016/j.gexplo.2022.106959_bb0270) 1979; 3 Flem (10.1016/j.gexplo.2022.106959_bb0090) 2017; 190 Huang (10.1016/j.gexplo.2022.106959_bb0125) 2019; 114 Breiman (10.1016/j.gexplo.2022.106959_bb0035) 2001; v. 45 Wang (10.1016/j.gexplo.2022.106959_bb0280) 2018; 107 Manéglia (10.1016/j.gexplo.2022.106959_bb0170) 2018; 18 (10.1016/j.gexplo.2022.106959_bb0220) 2020 Bolton (10.1016/j.gexplo.2022.106959_bb0030) 2020; 35 Domingos (10.1016/j.gexplo.2022.106959_bb0070) 1997; 29 Fisher (10.1016/j.gexplo.2022.106959_bb0085) 2008; 43 Scheka (10.1016/j.gexplo.2022.106959_bb0240) 1980 Lee (10.1016/j.gexplo.2022.106959_bb0150) 2020 Oonk (10.1016/j.gexplo.2022.106959_bb0200) 2015; 59 Matthews (10.1016/j.gexplo.2022.106959_bb0175) 1976; 61 Hong (10.1016/j.gexplo.2022.106959_bb0115) 2021; 230 Ueki (10.1016/j.gexplo.2022.106959_bb0275) 2018; 19 Deer (10.1016/j.gexplo.2022.106959_bb0060) 1992 Simard (10.1016/j.gexplo.2022.106959_bb0245) 2006; 41 Sylvester (10.1016/j.gexplo.2022.106959_bb0265) 2016; 12 Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0215) 2007; 39 He (10.1016/j.gexplo.2022.106959_bb0105) 2013 Bérubé (10.1016/j.gexplo.2022.106959_bb0025) 2018; 96 Guo (10.1016/j.gexplo.2022.106959_bb0100) 2020; 116 Koutroumbas (10.1016/j.gexplo.2022.106959_bb0135) 2008 Caté (10.1016/j.gexplo.2022.106959_bb0050) 2018; 188 Rasmussen (10.1016/j.gexplo.2022.106959_bb0225) 2020; 17 Moilanen (10.1016/j.gexplo.2022.106959_bb0185) 2020 Nadoll (10.1016/j.gexplo.2022.106959_bb0190) 2015; 50 Liaw (10.1016/j.gexplo.2022.106959_bb0155) 2002; 2 Buddington (10.1016/j.gexplo.2022.106959_bb0040) 1964; 5 Reimann (10.1016/j.gexplo.2022.106959_bb0235) 2008 Razjigaeva (10.1016/j.gexplo.2022.106959_bb0230) 1992; 62 Durden (10.1016/j.gexplo.2022.106959_bb0080) 2021; v. 196 Palarea-Albaladejo (10.1016/j.gexplo.2022.106959_bb0210) 2015; 143 Aitchison (10.1016/j.gexplo.2022.106959_bb0005) 1986 Dare (10.1016/j.gexplo.2022.106959_bb0055) 2012; 88 McLachlan (10.1016/j.gexplo.2022.106959_bb0180) 2004 Gregory (10.1016/j.gexplo.2022.106959_bb0095) 2019; 114 Zhu (10.1016/j.gexplo.2022.106959_bb0295) 2015; 119 Lagoeiro (10.1016/j.gexplo.2022.106959_bb0145) 1998; 16 Zhao (10.1016/j.gexplo.2022.106959_bb0290) 2019; 10 Kuhn (10.1016/j.gexplo.2022.106959_bb0140) 2020 Helsel (10.1016/j.gexplo.2022.106959_bb0110) 2012  | 
    
| References_xml | – volume: 18 start-page: 241 year: 2018 end-page: 251 ident: bb0170 publication-title: Indicator Minerals of the Meliadine Orogenic Gold Deposits, Nunavut (Canada), and Application to Till Surveys: Geochemistry: Exploration, Environment, Analysis – volume: 62 start-page: 802 year: 1992 end-page: 809 ident: bb0230 article-title: Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study publication-title: Journal of Sedimentary Petrology – volume: 19 start-page: 1327 year: 2018 end-page: 1347 ident: bb0275 article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: a machine-learning-based approach publication-title: Geochemistry Geophysics Geosystems – year: 2020 ident: bb0150 article-title: NADA: Nondetects and Data Analysis for Environmental Data: R Package Version 1.6-1.1 – year: 2008 ident: bb0235 article-title: Statistical data analysis explained: applied environmental statistics with R – volume: 41 start-page: 607 year: 2006 end-page: 636 ident: bb0245 article-title: Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada publication-title: Mineral. Deposita – start-page: 843 year: 2017 end-page: 852 ident: bb0260 article-title: Revisiting Unreasonable Effectiveness of Data in Deep Learning Era publication-title: Proceedings of the IEEE Conference on Computer Vision (ICCV) – start-page: 696 year: 1992 ident: bb0060 publication-title: An introduction to rock-forming minerals – volume: 39 start-page: 625 year: 2007 end-page: 645 ident: bb0215 article-title: A parametric approach for dealing with compositional rounded zeros publication-title: Math. Geol. – volume: 46 start-page: 319 year: 2011 end-page: 335 ident: bb0075 article-title: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types publication-title: Miner. Depos. – volume: v. 21 start-page: 89 year: 2018 end-page: 114 ident: bb0250 article-title: Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt: Society of Economic Geologists special publication-title: Publication – volume: 11 start-page: 796 year: 2021 ident: bb0010 article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain publication-title: Appl. Sci. – start-page: 13 year: 2013 end-page: 42 ident: bb0285 article-title: Foundations of Imbalanced Learning publication-title: Imbalanced Learning : Foundations, Algorithms, and Applications – volume: 107 start-page: 291 year: 2018 end-page: 319 ident: bb0280 article-title: Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications publication-title: Int. J. Earth Sci. – volume: 3 start-page: 306 year: 1979 end-page: 307 ident: bb0270 publication-title: A Problem of Dimensionality: A Simple Example": IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI-1 – year: 2004 ident: bb0045 article-title: Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt – year: 2020 ident: bb0140 article-title: caret: Classification and Regression Training: R package version 6.0-86 – volume: 61 start-page: 635 year: 1950 end-page: 713 ident: bb0130 article-title: Studies of heavy detrital minerals publication-title: Geol. Soc. Am. Bull. – volume: 188 start-page: 216 year: 2018 end-page: 228 ident: bb0050 article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: a case study from the Lalor volcanogenic massive sulphide depositSnow Lake, Manitoba, Canada publication-title: Journal of Geochemical Exploration – volume: 230 year: 2021 ident: bb0115 article-title: Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition publication-title: J. Geochem. Explor. – volume: 10 start-page: 29 year: 2019 end-page: 41 ident: bb0290 article-title: Mechanism and kinetics of hydrothermal replacement of magnetite by hematite publication-title: Geosci. Front. – start-page: 31 year: 2015 end-page: 39 ident: bb0020 article-title: Optimising archaeologic ceramics XRF analyses publication-title: Proceedings of the 6th International Workshop on Compositional Data Analysis, L’Escala, Spain, 2015 – volume: 119 start-page: 76 year: 2015 end-page: 92 ident: bb0295 article-title: Do we need more training data? publication-title: Int. J. Comput. Vis. – year: 2020 ident: bb0220 article-title: R: A Language and Environment for Statistical Computing – volume: v. 196 year: 2021 ident: bb0080 article-title: Automated classification of fauna in seabed photographs: the impact of training and validation dataset size, with considerations for the class imbalance publication-title: Prog. Oceanogr. – start-page: 147 year: 1980 ident: bb0240 article-title: The trace element paragenesis of magnetite – year: 2008 ident: bb0135 article-title: Pattern Recognition – year: 2019 ident: bb0165 article-title: naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R: R package version 0.9.7 – volume: 34 start-page: 902 year: 2008 end-page: 917 ident: bb0205 article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets publication-title: Comput. Geosci. – volume: 114 start-page: 953 year: 2019 end-page: 979 ident: bb0125 article-title: Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes publication-title: Economic Geology – volume: 190 start-page: 183 year: 2017 end-page: 196 ident: bb0090 article-title: Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries publication-title: Fish. Res. – year: 2004 ident: bb0180 article-title: Discriminant Analysis and Statistical Pattern Recognition – volume: 14 start-page: 2349 year: 2013 end-page: 2353 ident: bb0065 article-title: Orange: data mining toolbox in python publication-title: Journal of Machine Learning Research – volume: 50 start-page: 493 year: 2015 end-page: 515 ident: bb0190 article-title: Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States publication-title: Mineral. Deposita – year: 2020 ident: bb0185 article-title: Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration publication-title: Mineral. Deposita – volume: 29 start-page: 103 year: 1997 end-page: 130 ident: bb0070 article-title: On the Optimality of the Simple Bayesian Classifier Under Zero-one loss publication-title: Mach. Learn. – volume: 16 start-page: 415 year: 1998 end-page: 423 ident: bb0145 article-title: Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals publication-title: J. Metamorph. Geol. – volume: 35 start-page: 1 year: 2020 end-page: 12 ident: bb0030 article-title: Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras publication-title: J. Quat. Sci. – volume: 102 start-page: 1415 year: 2007 end-page: 1440 ident: bb0015 article-title: Fluid evolution and origins of Iron Oxide Cu-Au prospects in the Olympic Dam DistrictGawler Craton, South Australia publication-title: Economic Geology – year: 1986 ident: bb0005 article-title: The statistical analysis of compositional data publication-title: Monographs on Statistics and Applied Probability – volume: v. 45 start-page: 5 year: 2001 end-page: 32 ident: bb0035 article-title: Random Forests publication-title: Mach. Learn. – volume: 149 start-page: 74 year: 2015 end-page: 86 ident: bb0195 article-title: Using random forests to distinguish gahnite compositions as an exploration guide to broken hill-type Pb–Zn–Ag deposits in the Broken Hill Domain, Australia publication-title: J. Geochem. Explor. – volume: 37 start-page: 516 year: 2005 ident: bb0160 article-title: Amargosa prospect, Baja California Norte, Mexico: intense regional metasomatism as a result of IOCG-style alteration: GSA annual meeting, Salt Lake City, United States, 2005 publication-title: Abstracts with Programs – year: 2006 ident: bb0255 article-title: Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique [abs] publication-title: SEG Keystone Conference, Denver, United-States, 2006, Conference proceedings, CD-ROM – volume: 59 start-page: 80 year: 2015 end-page: 88 ident: bb0200 article-title: A supervised machine-learning approach towards geochemical predictive modelling in archaeology publication-title: J. Archaeol. Sci. – volume: 114 start-page: 771 year: 2019 end-page: 786 ident: bb0095 article-title: Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite using Laser Ablation-Inductively coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of large Data Sets publication-title: Econ. Geol. – volume: 116 year: 2020 ident: bb0100 article-title: Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan publication-title: SW China: Ore Geology Reviews – volume: 96 start-page: 130 year: 2018 end-page: 145 ident: bb0025 article-title: Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada publication-title: Ore Geology Reviews – volume: 43 start-page: 483 year: 2008 end-page: 497 ident: bb0085 article-title: Metamorphic fluid origins in the Osborne Fe-oxide-Cu-au deposit, Australia: evidence from noble gases and halogens publication-title: Miner. Depos. – volume: 61 start-page: 927 year: 1976 end-page: 932 ident: bb0175 article-title: Magnetite formation by the reduction of hematite with iron under hydrothermal conditions publication-title: Am. Miner. – volume: 54 start-page: 3095 year: 2010 end-page: 3107 ident: bb0120 article-title: Imputation of missing values for compositional data using classical and robust methods publication-title: Comput. Stat. Data Anal. – volume: 17 start-page: 126 year: 2020 ident: bb0225 article-title: Zero problems with compositional data of physical behaviors: a comparison of three zero replacement methods publication-title: Int. J. Behav. Nutr. Phys. Act. – volume: 12 start-page: 307 year: 2016 end-page: 310 ident: bb0265 article-title: A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): elements – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0155 article-title: Classification and Regression by randomForest publication-title: R News – year: 2012 ident: bb0110 article-title: Statistics for censored environmental data using Minitab and R – volume: 143 start-page: 85 year: 2015 end-page: 96 ident: bb0210 article-title: zCompositions — R package for multivariate imputation of left-censored data under a compositional approach publication-title: Chemom. Intell. Lab. Syst. – volume: 88 start-page: 27 year: 2012 end-page: 50 ident: bb0055 article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination publication-title: Geochimica et Cosmochimica Acta – volume: 5 start-page: 310 year: 1964 end-page: 357 ident: bb0040 article-title: Iron–titanium oxide minerals and synthetic equivalents publication-title: J. Petrol. – year: 2013 ident: bb0105 article-title: Imbalanced Learning: Foundations, Algorithms, and Applications – year: 2008 ident: 10.1016/j.gexplo.2022.106959_bb0135 – volume: 11 start-page: 796 year: 2021 ident: 10.1016/j.gexplo.2022.106959_bb0010 article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain publication-title: Appl. Sci. doi: 10.3390/app11020796 – volume: 35 start-page: 1 issue: 1–2 year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0030 article-title: Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras publication-title: J. Quat. Sci. – volume: 41 start-page: 607 issue: 6 year: 2006 ident: 10.1016/j.gexplo.2022.106959_bb0245 article-title: Metallogeny of the Mont-de-l’Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada publication-title: Mineral. Deposita doi: 10.1007/s00126-006-0061-y – volume: 62 start-page: 802 year: 1992 ident: 10.1016/j.gexplo.2022.106959_bb0230 article-title: Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study publication-title: Journal of Sedimentary Petrology – volume: 43 start-page: 483 year: 2008 ident: 10.1016/j.gexplo.2022.106959_bb0085 article-title: Metamorphic fluid origins in the Osborne Fe-oxide-Cu-au deposit, Australia: evidence from noble gases and halogens publication-title: Miner. Depos. doi: 10.1007/s00126-008-0178-2 – volume: 10 start-page: 29 year: 2019 ident: 10.1016/j.gexplo.2022.106959_bb0290 article-title: Mechanism and kinetics of hydrothermal replacement of magnetite by hematite publication-title: Geosci. Front. doi: 10.1016/j.gsf.2018.05.015 – year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0185 article-title: Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration publication-title: Mineral. Deposita doi: 10.1007/s00126-020-00953-1 – volume: 34 start-page: 902 year: 2008 ident: 10.1016/j.gexplo.2022.106959_bb0205 article-title: A modified EM alr-algorithm for replacing rounded zeros in compositional data sets publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2007.09.015 – year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0140 – volume: 14 start-page: 2349 issue: Aug year: 2013 ident: 10.1016/j.gexplo.2022.106959_bb0065 article-title: Orange: data mining toolbox in python publication-title: Journal of Machine Learning Research – volume: 61 start-page: 635 year: 1950 ident: 10.1016/j.gexplo.2022.106959_bb0130 article-title: Studies of heavy detrital minerals publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1950)61[635:SOHDM]2.0.CO;2 – volume: v. 45 start-page: 5 year: 2001 ident: 10.1016/j.gexplo.2022.106959_bb0035 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 149 start-page: 74 issue: C year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0195 article-title: Using random forests to distinguish gahnite compositions as an exploration guide to broken hill-type Pb–Zn–Ag deposits in the Broken Hill Domain, Australia publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.11.010 – start-page: 696 year: 1992 ident: 10.1016/j.gexplo.2022.106959_bb0060 – year: 2004 ident: 10.1016/j.gexplo.2022.106959_bb0180 – volume: 54 start-page: 3095 issue: 12 year: 2010 ident: 10.1016/j.gexplo.2022.106959_bb0120 article-title: Imputation of missing values for compositional data using classical and robust methods publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.11.023 – volume: 230 year: 2021 ident: 10.1016/j.gexplo.2022.106959_bb0115 article-title: Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2021.106859 – volume: 37 start-page: 516 issue: 7 year: 2005 ident: 10.1016/j.gexplo.2022.106959_bb0160 article-title: Amargosa prospect, Baja California Norte, Mexico: intense regional metasomatism as a result of IOCG-style alteration: GSA annual meeting, Salt Lake City, United States, 2005 publication-title: Abstracts with Programs – start-page: 843 year: 2017 ident: 10.1016/j.gexplo.2022.106959_bb0260 article-title: Revisiting Unreasonable Effectiveness of Data in Deep Learning Era – volume: 12 start-page: 307 issue: 5 year: 2016 ident: 10.1016/j.gexplo.2022.106959_bb0265 article-title: A brief history of laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS): elements – volume: v. 196 year: 2021 ident: 10.1016/j.gexplo.2022.106959_bb0080 article-title: Automated classification of fauna in seabed photographs: the impact of training and validation dataset size, with considerations for the class imbalance publication-title: Prog. Oceanogr. – year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0150 – volume: 61 start-page: 927 year: 1976 ident: 10.1016/j.gexplo.2022.106959_bb0175 article-title: Magnetite formation by the reduction of hematite with iron under hydrothermal conditions publication-title: Am. Miner. – volume: 188 start-page: 216 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0050 article-title: Classification of lithostratigraphic and alteration units from drillhole lithogeochemical data using machine learning: a case study from the Lalor volcanogenic massive sulphide depositSnow Lake, Manitoba, Canada publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2018.01.019 – volume: v. 21 start-page: 89 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0250 article-title: Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt: Society of Economic Geologists special publication-title: Publication – volume: 190 start-page: 183 year: 2017 ident: 10.1016/j.gexplo.2022.106959_bb0090 article-title: Trace element composition of smolt scales from Atlantic salmon (Salmo salar L.), geographic variation between hatcheries publication-title: Fish. Res. doi: 10.1016/j.fishres.2017.02.010 – year: 2012 ident: 10.1016/j.gexplo.2022.106959_bb0110 – volume: 102 start-page: 1415 year: 2007 ident: 10.1016/j.gexplo.2022.106959_bb0015 article-title: Fluid evolution and origins of Iron Oxide Cu-Au prospects in the Olympic Dam DistrictGawler Craton, South Australia publication-title: Economic Geology doi: 10.2113/gsecongeo.102.8.1415 – volume: 114 start-page: 771 issue: 4 year: 2019 ident: 10.1016/j.gexplo.2022.106959_bb0095 article-title: Distinguishing Ore Deposit Type and Barren Sedimentary Pyrite using Laser Ablation-Inductively coupled Plasma-Mass Spectrometry Trace Element Data and Statistical Analysis of large Data Sets publication-title: Econ. Geol. doi: 10.5382/econgeo.4654 – year: 2019 ident: 10.1016/j.gexplo.2022.106959_bb0165 – start-page: 147 year: 1980 ident: 10.1016/j.gexplo.2022.106959_bb0240 article-title: The trace element paragenesis of magnetite – year: 2004 ident: 10.1016/j.gexplo.2022.106959_bb0045 – volume: 59 start-page: 80 issue: C year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0200 article-title: A supervised machine-learning approach towards geochemical predictive modelling in archaeology publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2015.04.002 – year: 2008 ident: 10.1016/j.gexplo.2022.106959_bb0235 – volume: 29 start-page: 103 year: 1997 ident: 10.1016/j.gexplo.2022.106959_bb0070 article-title: On the Optimality of the Simple Bayesian Classifier Under Zero-one loss publication-title: Mach. Learn. doi: 10.1023/A:1007413511361 – volume: 88 start-page: 27 year: 2012 ident: 10.1016/j.gexplo.2022.106959_bb0055 article-title: Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2012.04.032 – year: 2006 ident: 10.1016/j.gexplo.2022.106959_bb0255 article-title: Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique [abs] – volume: 18 start-page: 241 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0170 – volume: 116 year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0100 article-title: Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region, northwestern Yunnan publication-title: SW China: Ore Geology Reviews – volume: 19 start-page: 1327 issue: 4 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0275 article-title: Geochemical discrimination and characteristics of magmatic tectonic settings: a machine-learning-based approach publication-title: Geochemistry Geophysics Geosystems doi: 10.1029/2017GC007401 – volume: 119 start-page: 76 year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0295 article-title: Do we need more training data? publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0812-2 – volume: 50 start-page: 493 issue: 4 year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0190 article-title: Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States publication-title: Mineral. Deposita doi: 10.1007/s00126-014-0539-y – year: 1986 ident: 10.1016/j.gexplo.2022.106959_bb0005 article-title: The statistical analysis of compositional data – volume: 16 start-page: 415 year: 1998 ident: 10.1016/j.gexplo.2022.106959_bb0145 article-title: Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals publication-title: J. Metamorph. Geol. doi: 10.1111/j.1525-1314.1998.00144.x – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.gexplo.2022.106959_bb0155 article-title: Classification and Regression by randomForest publication-title: R News – volume: 143 start-page: 85 issue: C year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0210 article-title: zCompositions — R package for multivariate imputation of left-censored data under a compositional approach publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.02.019 – year: 2013 ident: 10.1016/j.gexplo.2022.106959_bb0105 – start-page: 13 year: 2013 ident: 10.1016/j.gexplo.2022.106959_bb0285 article-title: Foundations of Imbalanced Learning – volume: 107 start-page: 291 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0280 article-title: Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications publication-title: Int. J. Earth Sci. doi: 10.1007/s00531-017-1490-9 – start-page: 31 year: 2015 ident: 10.1016/j.gexplo.2022.106959_bb0020 article-title: Optimising archaeologic ceramics XRF analyses – year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0220 – volume: 5 start-page: 310 year: 1964 ident: 10.1016/j.gexplo.2022.106959_bb0040 article-title: Iron–titanium oxide minerals and synthetic equivalents publication-title: J. Petrol. doi: 10.1093/petrology/5.2.310 – volume: 114 start-page: 953 year: 2019 ident: 10.1016/j.gexplo.2022.106959_bb0125 article-title: Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes publication-title: Economic Geology doi: 10.5382/econgeo.4651 – volume: 39 start-page: 625 year: 2007 ident: 10.1016/j.gexplo.2022.106959_bb0215 article-title: A parametric approach for dealing with compositional rounded zeros publication-title: Math. Geol. doi: 10.1007/s11004-007-9100-1 – volume: 17 start-page: 126 year: 2020 ident: 10.1016/j.gexplo.2022.106959_bb0225 article-title: Zero problems with compositional data of physical behaviors: a comparison of three zero replacement methods publication-title: Int. J. Behav. Nutr. Phys. Act. doi: 10.1186/s12966-020-01029-z – volume: 46 start-page: 319 issue: 4 year: 2011 ident: 10.1016/j.gexplo.2022.106959_bb0075 article-title: Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types publication-title: Miner. Depos. doi: 10.1007/s00126-011-0334-y – volume: 96 start-page: 130 year: 2018 ident: 10.1016/j.gexplo.2022.106959_bb0025 article-title: Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2018.04.011 – volume: 3 start-page: 306 year: 1979 ident: 10.1016/j.gexplo.2022.106959_bb0270  | 
    
| SSID | ssj0001746 | 
    
| Score | 2.4571564 | 
    
| Snippet | Magnetite is a reliable indicator mineral for exploration because it records petrogenetic processes and discriminate deposit types. Binary discriminant... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 106959 | 
    
| SubjectTerms | Deposit types Machine learning Magnetite Mineral exploration Random Forest  | 
    
| Title | Performance of predictive supervised classification models of trace elements in magnetite for mineral exploration | 
    
| URI | https://dx.doi.org/10.1016/j.gexplo.2022.106959 | 
    
| Volume | 236 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuLnyMFr3dqkTXscwzEVh6CD3UqTpqOiW127q3-77yWtmyAKHpvmleYlfR_NL79HyJWXIA8YfN9JonxIUJhwEsaY4weQM-swCqThmX0YB6MJv5v60xYZNGdhEFZZ235r0421rlu6tTa7RZ53n7B6ayDwF4ZhfUHabc4FVjG4_ljDPCDitvuVAkH23GuOzxmM10wj0A2yRM-DpiBCxtKf3NOGyxnukd06VqR9-zr7pKXnB2Rng0HwkLw_roH_dJHRYokbL2jCaLkq0A6UOqUKQ2TEBJlpoKb6TYndq2UCctpCyEuaw71kNseDZ5rCY-lbbkipqRmAXStHZDK8eR6MnLqKAijdiyqHKVeFDPIS8NXSZZpHPEslDDljUS_DgCL0U-WG0lMKPsHEE6mAsK8noZOnIXo4Ju35Yq5PCHVT7kOYq7gINM9kJEORsNSVPlc65H56SlijvFjVFONY6eI1brBkL7FVeYwqj63KT4nzJVVYio0_-otmXuJvSyUGL_Cr5Nm_Jc_JNl5ZpOMFaVfLlb6EaKSSHbPcOmSrf3s_Gn8CfXjgQw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFOMZw5cy2iSNu0RTUwDtgkJkHarmjRFQ9CNPa78duykZUNCIHFt4qpxEvtz88Um5JylmAcM9nea6gACFC69lHPuBSHEzCaKQ2XzzPb6YedJ3A6CQY20qrswSKssbb-z6dZal0-apTab4-Gw-YDVW0OJvzBs1pdwhayKgEmMwC4-FjwPgNzuwFIiy16w6v6cJXk9G2S6QZjIGDwKY0xZ-pN_WvI57S2yWYJFeuW-Z5vUTLFDNpZSCO6S9_sF85-Ocjqe4MkL2jA6nY_REExNRjViZCQF2XmgtvzNFLvPJinIGcchn9IhtKXPBd48MxReS9-GNis1tQNwi2WPPLWvH1sdryyjAFpn8czj2tcRh8AEnLXyuRGxyDMFQ855fJkjooiCTPuRYlrDHkyZzCTgvksFnZgB-LBP6sWoMAeE-pkIAOdqIUMjchWrSKY881UgtIlEkDUIr5SX6DLHOJa6eE0qMtlL4lSeoMoTp_IG8b6kxi7Hxh_9ZTUvybe1koAb-FXy8N-SZ2St89jrJt2b_t0RWccWR3s8JvXZZG5OAJrM1Kldep_GOeHY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+predictive+supervised+classification+models+of+trace+elements+in+magnetite+for+mineral+exploration&rft.jtitle=Journal+of+geochemical+exploration&rft.au=B%C3%A9dard%2C+%C3%89milie&rft.au=De+Bronac+de+Vazelhes%2C+Victor&rft.au=Beaudoin%2C+Georges&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0375-6742&rft.eissn=1879-1689&rft.volume=236&rft_id=info:doi/10.1016%2Fj.gexplo.2022.106959&rft.externalDocID=S0375674222000176 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6742&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6742&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6742&client=summon |