Integrated Techno-Economic and Sustainability Assessment of Value-Added Products Generated from Biomass Gasification: An Energy–Water–Food Nexus Approach

The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify sy...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 11; no. 10; pp. 3987 - 3998
Main Authors AlNouss, Ahmed, Alherbawi, Mohammad, McKay, Gordon, Al-Ansari, Tareq
Format Journal Article
LanguageEnglish
Published American Chemical Society 13.03.2023
Subjects
Online AccessGet full text
ISSN2168-0485
2168-0485
DOI10.1021/acssuschemeng.2c04253

Cover

Abstract The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–15.
AbstractList The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–15.
The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–¹⁵.
Author AlNouss, Ahmed
Alherbawi, Mohammad
Al-Ansari, Tareq
McKay, Gordon
AuthorAffiliation Division of Sustainable Development, College of Science and Engineering
AuthorAffiliation_xml – name: Division of Sustainable Development, College of Science and Engineering
Author_xml – sequence: 1
  givenname: Ahmed
  surname: AlNouss
  fullname: AlNouss, Ahmed
– sequence: 2
  givenname: Mohammad
  surname: Alherbawi
  fullname: Alherbawi, Mohammad
– sequence: 3
  givenname: Gordon
  surname: McKay
  fullname: McKay, Gordon
– sequence: 4
  givenname: Tareq
  orcidid: 0000-0002-2932-8240
  surname: Al-Ansari
  fullname: Al-Ansari, Tareq
  email: talansari@hbku.edu.qa
BookMark eNqFkcFu1DAQhi1UJErpIyD5yCXFTuJsAqdQbUulCpAocIwm9njXVWIvHkfq3ngHzrwcT4JhewAuncuMxv83o_H_lB354JGx51KcSVHKl6CJFtJbnNFvzkot6lJVj9hxKZu2EHWrjv6qn7BToluRo-uqspXH7MeVT7iJkNDwG9RbH4q1Dj7MTnPwhn9cKIHzMLrJpT3viZAor0o8WP4ZpgWL3pgMf4jBLDoRv0SPh3k2hpm_cWEGym0gZ52G5IJ_xXvP11m22f_89v1LFsecL0Iw_B3eLcT73S4G0Ntn7LGFifD0Pp-wTxfrm_O3xfX7y6vz_rqAfEUqLAoLaK0xK92gArMyRkq9Qt1ValUqbduuHM2IJVZybLRVNVqDVjWqGZsaqhP24jA3r_26IKVhdqRxmsBjWGioRC3qplV1l6WvD1IdA1FEO2iX_lyVIrhpkGL47cvwjy_DvS-ZVv_Ru-hmiPsHOXng8vNwG5bo83c8wPwCP3uxuQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_03_362
crossref_primary_10_1016_j_apenergy_2024_124031
crossref_primary_10_1016_j_molliq_2024_125214
Cites_doi 10.1016/j.jclepro.2019.04.314
10.1016/j.compchemeng.2021.107229
10.1007/978-3-030-76081-6_63
10.1016/j.compchemeng.2020.106768
10.1016/j.advwatres.2017.10.027
10.1016/j.advwatres.2018.07.007
10.3390/en9020065
10.3303/CET2292013
10.1016/j.clce.2022.100072
10.1016/j.scitotenv.2019.05.465
10.1016/j.compchemeng.2020.106758
10.1016/j.apenergy.2020.114885
10.1016/j.enconman.2020.112612
10.1016/j.jclepro.2022.130849
10.1016/j.jclepro.2017.06.097
10.1007/s10098-016-1280-2
10.1016/j.reffit.2016.07.002
10.1016/j.jclepro.2022.130706
10.1016/j.coche.2017.08.003
10.1016/j.resconrec.2021.105734
10.1021/acssuschemeng.0c01229
10.1007/s13399-011-0007-1
10.1016/j.agwat.2020.106071
10.1016/j.enconman.2022.116577
10.1016/j.jclepro.2019.118499
10.1016/j.enconman.2019.06.019
10.1016/j.rser.2020.110605
10.1016/j.enpol.2017.11.037
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acssuschemeng.2c04253
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 3998
ExternalDocumentID 10_1021_acssuschemeng_2c04253
c755832877
GroupedDBID 55A
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
GGK
GNL
IH9
JG~
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
7S9
L.6
ID FETCH-LOGICAL-a328t-fe0faeffdd7c6e5ad7dd11c7ec935725cf892bdbe2e31b6cf54efdef5656b64a3
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Thu Jul 10 17:33:59 EDT 2025
Tue Jul 01 00:22:33 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Wed Mar 15 05:33:28 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords EWF Nexus
Aspen Plus
sustainability index
optimal utilization
biomass gasification
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a328t-fe0faeffdd7c6e5ad7dd11c7ec935725cf892bdbe2e31b6cf54efdef5656b64a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2932-8240
PQID 3040468549
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_3040468549
crossref_citationtrail_10_1021_acssuschemeng_2c04253
crossref_primary_10_1021_acssuschemeng_2c04253
acs_journals_10_1021_acssuschemeng_2c04253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-13
PublicationDateYYYYMMDD 2023-03-13
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-13
  day: 13
PublicationDecade 2020
PublicationTitle ACS sustainable chemistry & engineering
PublicationTitleAlternate ACS Sustainable Chem. Eng
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Fouladi J. (ref39/cit39) 2021; 50
Al-Yaeeshi A. A. (ref41/cit41) 2019; 46
ref3/cit3
ref18/cit18
AlNouss A. (ref28/cit28) 2020; 48
AlNouss A. (ref22/cit22) 2018; 43
ref11/cit11
ref25/cit25
ref16/cit16
(ref36/cit36) 2010
ref23/cit23
ref8/cit8
ref5/cit5
ref2/cit2
ref43/cit43
AlNouss A. (ref29/cit29) 2019; 46
ref40/cit40
ref20/cit20
ref17/cit17
AlNouss A. (ref31/cit31) 2021; 50
Flammini A. (ref14/cit14) 2014
AlNouss A. (ref30/cit30) 2022
ref10/cit10
ref26/cit26
ref35/cit35
Al-Ansari T. (ref32/cit32) 2020; 48
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
López-Díaz D. C. (ref6/cit6) 2019; 46
AlNouss A. (ref27/cit27) 2019; 46
Alherbawi M. (ref13/cit13) 2020; 48
ref33/cit33
(ref37/cit37) 2011
(ref34/cit34) 2011
ref4/cit4
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – volume: 48
  start-page: 1633
  volume-title: Computer Aided Chemical Engineering
  year: 2020
  ident: ref32/cit32
– ident: ref11/cit11
  doi: 10.1016/j.jclepro.2019.04.314
– ident: ref38/cit38
  doi: 10.1016/j.compchemeng.2021.107229
– volume: 46
  start-page: 301
  volume-title: Computer Aided Chemical Engineering
  year: 2019
  ident: ref27/cit27
– start-page: 499
  volume-title: Sustainable Energy–Water–Environment Nexus in Deserts
  year: 2022
  ident: ref30/cit30
  doi: 10.1007/978-3-030-76081-6_63
– volume-title: Ullmann’s Encyclopedia of Industrial Chemistry
  year: 2010
  ident: ref36/cit36
– ident: ref42/cit42
  doi: 10.1016/j.compchemeng.2020.106768
– volume-title: Walking the Nexus Talk: Assessing the Water–Energy–Food Nexus in the Context of the Sustainable Energy for All Initiative
  year: 2014
  ident: ref14/cit14
– ident: ref4/cit4
– ident: ref8/cit8
  doi: 10.1016/j.advwatres.2017.10.027
– ident: ref15/cit15
  doi: 10.1016/j.advwatres.2018.07.007
– volume: 50
  start-page: 1567
  volume-title: Computer Aided Chemical Engineering
  year: 2021
  ident: ref31/cit31
– ident: ref16/cit16
  doi: 10.3390/en9020065
– ident: ref21/cit21
  doi: 10.3303/CET2292013
– ident: ref33/cit33
  doi: 10.1016/j.clce.2022.100072
– ident: ref44/cit44
– ident: ref7/cit7
  doi: 10.1016/j.scitotenv.2019.05.465
– ident: ref40/cit40
  doi: 10.1016/j.compchemeng.2020.106758
– ident: ref24/cit24
  doi: 10.1016/j.apenergy.2020.114885
– volume: 48
  start-page: 1627
  volume-title: Computer Aided Chemical Engineering
  year: 2020
  ident: ref28/cit28
– volume: 46
  start-page: 1567
  volume-title: Computer Aided Chemical Engineering
  year: 2019
  ident: ref6/cit6
– ident: ref26/cit26
  doi: 10.1016/j.enconman.2020.112612
– volume: 46
  start-page: 205
  volume-title: Computer Aided Chemical Engineering
  year: 2019
  ident: ref29/cit29
– volume: 43
  start-page: 1481
  volume-title: Computer Aided Chemical Engineering
  year: 2018
  ident: ref22/cit22
– ident: ref35/cit35
  doi: 10.1016/j.jclepro.2022.130849
– ident: ref3/cit3
  doi: 10.1016/j.jclepro.2017.06.097
– ident: ref9/cit9
  doi: 10.1007/s10098-016-1280-2
– ident: ref19/cit19
  doi: 10.1016/j.reffit.2016.07.002
– volume: 46
  start-page: 397
  volume-title: Computer Aided Chemical Engineering
  year: 2019
  ident: ref41/cit41
– ident: ref2/cit2
  doi: 10.1016/j.jclepro.2022.130706
– volume: 48
  start-page: 229
  volume-title: Computer Aided Chemical Engineering
  year: 2020
  ident: ref13/cit13
– ident: ref43/cit43
  doi: 10.1016/j.coche.2017.08.003
– ident: ref18/cit18
  doi: 10.1016/j.resconrec.2021.105734
– volume: 50
  start-page: 1505
  volume-title: Computer Aided Chemical Engineering
  year: 2021
  ident: ref39/cit39
– ident: ref10/cit10
  doi: 10.1021/acssuschemeng.0c01229
– ident: ref20/cit20
  doi: 10.1007/s13399-011-0007-1
– ident: ref5/cit5
  doi: 10.1016/j.agwat.2020.106071
– volume-title: Ullmann’s Encyclopedia of Industrial Chemistry
  year: 2011
  ident: ref34/cit34
– ident: ref1/cit1
  doi: 10.1016/j.enconman.2022.116577
– ident: ref23/cit23
  doi: 10.1016/j.jclepro.2019.118499
– ident: ref25/cit25
  doi: 10.1016/j.enconman.2019.06.019
– ident: ref12/cit12
  doi: 10.1016/j.rser.2020.110605
– volume-title: Ullmann’s Encyclopedia of Industrial Chemistry
  year: 2011
  ident: ref37/cit37
– ident: ref17/cit17
  doi: 10.1016/j.enpol.2017.11.037
SSID ssj0000993281
Score 2.332031
Snippet The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3987
SubjectTerms ammonia
biogasification
biomass
clean energy
computer software
ecological footprint
economic feasibility
energy
feedstocks
green chemistry
methanol
natural gas
power generation
steam
synthesis gas
value added
Title Integrated Techno-Economic and Sustainability Assessment of Value-Added Products Generated from Biomass Gasification: An Energy–Water–Food Nexus Approach
URI http://dx.doi.org/10.1021/acssuschemeng.2c04253
https://www.proquest.com/docview/3040468549
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2168-0485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993281
  issn: 2168-0485
  databaseCode: ACS
  dateStart: 20130107
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA96vtQHW7Wl2lYi-FTIeUn2b9-2h4cKimC1vi1JJhHx2C3uLbR96nfoc79cP0kn--foIaI-LSyZbDaZmcwkM78hZE_FqdAK3RKdOmCBc4opxR2DEXpiUnBjmmoNJ6fR4UVwfBVeLZH9B27wBd9XBgeAnp4_LbseCuO5TC6TFREl3Htb2fh8fqiC5o4UTWFSwaOEIXeGfdbOQz35XclUi7vSolJudprJS3LW5-u0ASa3w3qmh-bnffjGp_7EK7LWWZ00a9lknSzZYoOs_odFuEn-HPXAEUDb83bWJy1TVQA97zOtfDDtD5rNET1p6eilmtaWZajEgJ61GLIVbRGtfX8-h4V-vvGhSPhaVT48qeGITzQr6EGTfvj31--v2PgOn5OyBHpqv9cVzTrI89fkYnLwZXzIutoNTOEKzJizI6escwCxiWyoIAbg3MTWpDKMRWhcgkwC2goruY6MCwPrwDpvX-ooUPINGRRlYd8SCjoF5wtlCZsEUhmdhhawbeDwUzCCLfIRpzfvZK_Km2t1wfOFOc-7Od8iQb_QuelQ0H0xjuljZMM52bcWBuQxgt2ei3IUWH8Lowpb1lUuUW0GUYJ--fZzBv6OvPCV7n34G5fvyWB2V9sPaA_N9E4jA_8AlzUR-w
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3ojyNBInJC9rO48Nt1B1tYV2hdSW9hbZHhtVrRJUbyTgxH_ouX-OX8LYSRYWCVU9RbLsiT0e2zP2zDeEvFZ5IbRCs0QXDljinGJKccdgjJaYFNyYmK1hd57NDpIPR-nRGsmGWBjshEdKPj7i_0EX4G-xzLdo8IVLsy8jYYKwyWvkekRDCSrR5t7ybgW1HiliflLBswlDIU2H4J3_UQqHk_Grh9Pq3hwPnOkdcrjsavQzORm1Cz0yP_5Bcbz6WO6S270OSstOaO6RNVvfJ7f-QiZ8QC62BxgJoN3tOxtCmKmqge4NcVfBtfY7LZf4nrRx9LM6bS0rcUsD-qlDlPW0w7cO9EJEC31_HByTsFj54KwU5eMdLWu6FYMRf_08P8TKZ_idNg3Quf3Welr2AOgPycF0a39zxvpMDkzhRCyYs2OnrHMAuclsqiAH4Nzk1hQyzUVq3ARFBrQVVnKdGZcm1oF1QdvUWaLkI7JeN7V9TCjoAlxImyXsJJHK6CK1gHUTh7-CMWyQN8jeql-JvoqP7IJXKzyvep5vkGSY78r0mOghNcfpZc1Gy2ZfO1CQyxq8GoSpwuUb3mRUbZvWVxI30SSboJX-5Codf0luzPZ3d6qd7fnHp-SmQM0rOMZx-YysL85a-xw1pYV-EZfFb_CwGmY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEA5aQfTBesXaixF8EnI8SfZy1rft5dB6ORRqteDDkmQSEctuac6C9sn_4LN_zl_iJLt78AhS9GkhZLK5zCQzycw3hDxVeSG0QrNEFw5Y4pxiSnHHYIyWmBTcmJit4c0s2z9OXp6kJ71XZYiFwU54bMnHR_wg1WfgeoQB_hzLfYtGX7g4-zgSJjCcvEqupQEGLqhFO0eL-xXUfKSIOUoFzyYMGTUdAnj-1lI4oIxfPqCW9-d46ExXyYdFd6OvyedRO9cjc_EHkuP_jec2udXrorTsmOcOuWLru-TmbwiF98iPgwFOAmh3C8-GUGaqaqBHQ_xVcLH9SssFzidtHH2nTlvLStzagB52yLKedjjXob0Q2UK3PwUHJSxWPjgtRT55Qcua7sWgxJ_fvr_Hyuf4nTYN0Jn90npa9kDo98nxdO_tzj7rMzowhYsxZ86OnbLOAeQms6mCHIBzk1tTyDQXqXETZB3QVljJdWZcmlgH1gWtU2eJkg_ISt3U9iGhoAtwIX2WsJNEKqOL1ALWTRz-CsawRp7h9Fa9RPoqPrYLXi3NedXP-RpJhjWvTI-NHlJ0nF5GNlqQnXXgIJcRPBkYqkIxDm8zqrZN6yuJm2mSTdBaf_QvHX9Mrh_uTqvXB7NX6-SGQAUs-MdxuUFW5uet3USFaa63omT8Aod7HOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Techno-Economic+and+Sustainability+Assessment+of+Value-Added+Products+Generated+from+Biomass+Gasification%3A+An+Energy%E2%80%93Water%E2%80%93Food+Nexus+Approach&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=AlNouss%2C+Ahmed&rft.au=Alherbawi%2C+Mohammad&rft.au=McKay%2C+G&rft.au=Al-Ansari%2C+Tareq&rft.date=2023-03-13&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=11&rft.issue=10+p.3987-3998&rft.spage=3987&rft.epage=3998&rft_id=info:doi/10.1021%2Facssuschemeng.2c04253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon