Integrated Techno-Economic and Sustainability Assessment of Value-Added Products Generated from Biomass Gasification: An Energy–Water–Food Nexus Approach
The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify sy...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 11; no. 10; pp. 3987 - 3998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-0485 2168-0485 |
DOI | 10.1021/acssuschemeng.2c04253 |
Cover
Abstract | The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–15. |
---|---|
AbstractList | The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–15. The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is necessary to develop assessment tools that adequately quantify the interlinkages between EWF systems and the surrounding environment and identify synergies and trade-offs that may exist. Meanwhile, biomass can be regarded as a potential replacement capable of lowering ecological footprint and resource scarcity in a variety of applications. Gasification is a favored method for biomass valorization, where the produced gas mixture is used to run power plants and generate clean energy. Furthermore, it can also be utilized in chemical industries to replace natural gas in the generation of ammonia and methanol. Assessing the strategy of various biomass utilization represents a rich research subject that can be tackled from an EWF Nexus standpoint, enabling quantifying the biomass utilization implications on the EWF systems. The economic feasibility of using biomass gasification feedstock for poly-generation of various products is examined in this study. Aspen Plus software is used to simulate three alternative gasification processes to generate the best characteristics for each application route. Furthermore, a sustainability index is used to assess the impact of each application route on EWF systems and to support financial decisions. The simulation results are incorporated into a linear programming optimization model to determine the best biomass utilization approaches considering economic feasibility and resource preservation. The optimization results demonstrate that steam gasification with syngas end-use for methanol production (95%) and power production (5%) are the most feasible biomass utilization routes, with an overall collective objective function of 997%, net water generation of 4.39, net food of zero, and net energy production of 1.78 × 10–¹⁵. |
Author | AlNouss, Ahmed Alherbawi, Mohammad Al-Ansari, Tareq McKay, Gordon |
AuthorAffiliation | Division of Sustainable Development, College of Science and Engineering |
AuthorAffiliation_xml | – name: Division of Sustainable Development, College of Science and Engineering |
Author_xml | – sequence: 1 givenname: Ahmed surname: AlNouss fullname: AlNouss, Ahmed – sequence: 2 givenname: Mohammad surname: Alherbawi fullname: Alherbawi, Mohammad – sequence: 3 givenname: Gordon surname: McKay fullname: McKay, Gordon – sequence: 4 givenname: Tareq orcidid: 0000-0002-2932-8240 surname: Al-Ansari fullname: Al-Ansari, Tareq email: talansari@hbku.edu.qa |
BookMark | eNqFkcFu1DAQhi1UJErpIyD5yCXFTuJsAqdQbUulCpAocIwm9njXVWIvHkfq3ngHzrwcT4JhewAuncuMxv83o_H_lB354JGx51KcSVHKl6CJFtJbnNFvzkot6lJVj9hxKZu2EHWrjv6qn7BToluRo-uqspXH7MeVT7iJkNDwG9RbH4q1Dj7MTnPwhn9cKIHzMLrJpT3viZAor0o8WP4ZpgWL3pgMf4jBLDoRv0SPh3k2hpm_cWEGym0gZ52G5IJ_xXvP11m22f_89v1LFsecL0Iw_B3eLcT73S4G0Ntn7LGFifD0Pp-wTxfrm_O3xfX7y6vz_rqAfEUqLAoLaK0xK92gArMyRkq9Qt1ValUqbduuHM2IJVZybLRVNVqDVjWqGZsaqhP24jA3r_26IKVhdqRxmsBjWGioRC3qplV1l6WvD1IdA1FEO2iX_lyVIrhpkGL47cvwjy_DvS-ZVv_Ru-hmiPsHOXng8vNwG5bo83c8wPwCP3uxuQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_03_362 crossref_primary_10_1016_j_apenergy_2024_124031 crossref_primary_10_1016_j_molliq_2024_125214 |
Cites_doi | 10.1016/j.jclepro.2019.04.314 10.1016/j.compchemeng.2021.107229 10.1007/978-3-030-76081-6_63 10.1016/j.compchemeng.2020.106768 10.1016/j.advwatres.2017.10.027 10.1016/j.advwatres.2018.07.007 10.3390/en9020065 10.3303/CET2292013 10.1016/j.clce.2022.100072 10.1016/j.scitotenv.2019.05.465 10.1016/j.compchemeng.2020.106758 10.1016/j.apenergy.2020.114885 10.1016/j.enconman.2020.112612 10.1016/j.jclepro.2022.130849 10.1016/j.jclepro.2017.06.097 10.1007/s10098-016-1280-2 10.1016/j.reffit.2016.07.002 10.1016/j.jclepro.2022.130706 10.1016/j.coche.2017.08.003 10.1016/j.resconrec.2021.105734 10.1021/acssuschemeng.0c01229 10.1007/s13399-011-0007-1 10.1016/j.agwat.2020.106071 10.1016/j.enconman.2022.116577 10.1016/j.jclepro.2019.118499 10.1016/j.enconman.2019.06.019 10.1016/j.rser.2020.110605 10.1016/j.enpol.2017.11.037 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.2c04253 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 3998 |
ExternalDocumentID | 10_1021_acssuschemeng_2c04253 c755832877 |
GroupedDBID | 55A AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ GGK GNL IH9 JG~ ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ 7S9 L.6 |
ID | FETCH-LOGICAL-a328t-fe0faeffdd7c6e5ad7dd11c7ec935725cf892bdbe2e31b6cf54efdef5656b64a3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Thu Jul 10 17:33:59 EDT 2025 Tue Jul 01 00:22:33 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Wed Mar 15 05:33:28 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | EWF Nexus Aspen Plus sustainability index optimal utilization biomass gasification |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a328t-fe0faeffdd7c6e5ad7dd11c7ec935725cf892bdbe2e31b6cf54efdef5656b64a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2932-8240 |
PQID | 3040468549 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_3040468549 crossref_citationtrail_10_1021_acssuschemeng_2c04253 crossref_primary_10_1021_acssuschemeng_2c04253 acs_journals_10_1021_acssuschemeng_2c04253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-13 |
PublicationDateYYYYMMDD | 2023-03-13 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationTitleAlternate | ACS Sustainable Chem. Eng |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Fouladi J. (ref39/cit39) 2021; 50 Al-Yaeeshi A. A. (ref41/cit41) 2019; 46 ref3/cit3 ref18/cit18 AlNouss A. (ref28/cit28) 2020; 48 AlNouss A. (ref22/cit22) 2018; 43 ref11/cit11 ref25/cit25 ref16/cit16 (ref36/cit36) 2010 ref23/cit23 ref8/cit8 ref5/cit5 ref2/cit2 ref43/cit43 AlNouss A. (ref29/cit29) 2019; 46 ref40/cit40 ref20/cit20 ref17/cit17 AlNouss A. (ref31/cit31) 2021; 50 Flammini A. (ref14/cit14) 2014 AlNouss A. (ref30/cit30) 2022 ref10/cit10 ref26/cit26 ref35/cit35 Al-Ansari T. (ref32/cit32) 2020; 48 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 López-Díaz D. C. (ref6/cit6) 2019; 46 AlNouss A. (ref27/cit27) 2019; 46 Alherbawi M. (ref13/cit13) 2020; 48 ref33/cit33 (ref37/cit37) 2011 (ref34/cit34) 2011 ref4/cit4 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – volume: 48 start-page: 1633 volume-title: Computer Aided Chemical Engineering year: 2020 ident: ref32/cit32 – ident: ref11/cit11 doi: 10.1016/j.jclepro.2019.04.314 – ident: ref38/cit38 doi: 10.1016/j.compchemeng.2021.107229 – volume: 46 start-page: 301 volume-title: Computer Aided Chemical Engineering year: 2019 ident: ref27/cit27 – start-page: 499 volume-title: Sustainable Energy–Water–Environment Nexus in Deserts year: 2022 ident: ref30/cit30 doi: 10.1007/978-3-030-76081-6_63 – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2010 ident: ref36/cit36 – ident: ref42/cit42 doi: 10.1016/j.compchemeng.2020.106768 – volume-title: Walking the Nexus Talk: Assessing the Water–Energy–Food Nexus in the Context of the Sustainable Energy for All Initiative year: 2014 ident: ref14/cit14 – ident: ref4/cit4 – ident: ref8/cit8 doi: 10.1016/j.advwatres.2017.10.027 – ident: ref15/cit15 doi: 10.1016/j.advwatres.2018.07.007 – volume: 50 start-page: 1567 volume-title: Computer Aided Chemical Engineering year: 2021 ident: ref31/cit31 – ident: ref16/cit16 doi: 10.3390/en9020065 – ident: ref21/cit21 doi: 10.3303/CET2292013 – ident: ref33/cit33 doi: 10.1016/j.clce.2022.100072 – ident: ref44/cit44 – ident: ref7/cit7 doi: 10.1016/j.scitotenv.2019.05.465 – ident: ref40/cit40 doi: 10.1016/j.compchemeng.2020.106758 – ident: ref24/cit24 doi: 10.1016/j.apenergy.2020.114885 – volume: 48 start-page: 1627 volume-title: Computer Aided Chemical Engineering year: 2020 ident: ref28/cit28 – volume: 46 start-page: 1567 volume-title: Computer Aided Chemical Engineering year: 2019 ident: ref6/cit6 – ident: ref26/cit26 doi: 10.1016/j.enconman.2020.112612 – volume: 46 start-page: 205 volume-title: Computer Aided Chemical Engineering year: 2019 ident: ref29/cit29 – volume: 43 start-page: 1481 volume-title: Computer Aided Chemical Engineering year: 2018 ident: ref22/cit22 – ident: ref35/cit35 doi: 10.1016/j.jclepro.2022.130849 – ident: ref3/cit3 doi: 10.1016/j.jclepro.2017.06.097 – ident: ref9/cit9 doi: 10.1007/s10098-016-1280-2 – ident: ref19/cit19 doi: 10.1016/j.reffit.2016.07.002 – volume: 46 start-page: 397 volume-title: Computer Aided Chemical Engineering year: 2019 ident: ref41/cit41 – ident: ref2/cit2 doi: 10.1016/j.jclepro.2022.130706 – volume: 48 start-page: 229 volume-title: Computer Aided Chemical Engineering year: 2020 ident: ref13/cit13 – ident: ref43/cit43 doi: 10.1016/j.coche.2017.08.003 – ident: ref18/cit18 doi: 10.1016/j.resconrec.2021.105734 – volume: 50 start-page: 1505 volume-title: Computer Aided Chemical Engineering year: 2021 ident: ref39/cit39 – ident: ref10/cit10 doi: 10.1021/acssuschemeng.0c01229 – ident: ref20/cit20 doi: 10.1007/s13399-011-0007-1 – ident: ref5/cit5 doi: 10.1016/j.agwat.2020.106071 – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2011 ident: ref34/cit34 – ident: ref1/cit1 doi: 10.1016/j.enconman.2022.116577 – ident: ref23/cit23 doi: 10.1016/j.jclepro.2019.118499 – ident: ref25/cit25 doi: 10.1016/j.enconman.2019.06.019 – ident: ref12/cit12 doi: 10.1016/j.rser.2020.110605 – volume-title: Ullmann’s Encyclopedia of Industrial Chemistry year: 2011 ident: ref37/cit37 – ident: ref17/cit17 doi: 10.1016/j.enpol.2017.11.037 |
SSID | ssj0000993281 |
Score | 2.332031 |
Snippet | The intrinsic dependency between energy–water–food (EWF) resources is becoming more obvious with the growing demand for these resources. As such, it is... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3987 |
SubjectTerms | ammonia biogasification biomass clean energy computer software ecological footprint economic feasibility energy feedstocks green chemistry methanol natural gas power generation steam synthesis gas value added |
Title | Integrated Techno-Economic and Sustainability Assessment of Value-Added Products Generated from Biomass Gasification: An Energy–Water–Food Nexus Approach |
URI | http://dx.doi.org/10.1021/acssuschemeng.2c04253 https://www.proquest.com/docview/3040468549 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2168-0485 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993281 issn: 2168-0485 databaseCode: ACS dateStart: 20130107 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fSxwxEA96vtQHW7Wl2lYi-FTIeUn2b9-2h4cKimC1vi1JJhHx2C3uLbR96nfoc79cP0kn--foIaI-LSyZbDaZmcwkM78hZE_FqdAK3RKdOmCBc4opxR2DEXpiUnBjmmoNJ6fR4UVwfBVeLZH9B27wBd9XBgeAnp4_LbseCuO5TC6TFREl3Htb2fh8fqiC5o4UTWFSwaOEIXeGfdbOQz35XclUi7vSolJudprJS3LW5-u0ASa3w3qmh-bnffjGp_7EK7LWWZ00a9lknSzZYoOs_odFuEn-HPXAEUDb83bWJy1TVQA97zOtfDDtD5rNET1p6eilmtaWZajEgJ61GLIVbRGtfX8-h4V-vvGhSPhaVT48qeGITzQr6EGTfvj31--v2PgOn5OyBHpqv9cVzTrI89fkYnLwZXzIutoNTOEKzJizI6escwCxiWyoIAbg3MTWpDKMRWhcgkwC2goruY6MCwPrwDpvX-ooUPINGRRlYd8SCjoF5wtlCZsEUhmdhhawbeDwUzCCLfIRpzfvZK_Km2t1wfOFOc-7Od8iQb_QuelQ0H0xjuljZMM52bcWBuQxgt2ei3IUWH8Lowpb1lUuUW0GUYJ--fZzBv6OvPCV7n34G5fvyWB2V9sPaA_N9E4jA_8AlzUR-w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOQAH3ojyNBInJC9rO48Nt1B1tYV2hdSW9hbZHhtVrRJUbyTgxH_ouX-OX8LYSRYWCVU9RbLsiT0e2zP2zDeEvFZ5IbRCs0QXDljinGJKccdgjJaYFNyYmK1hd57NDpIPR-nRGsmGWBjshEdKPj7i_0EX4G-xzLdo8IVLsy8jYYKwyWvkekRDCSrR5t7ybgW1HiliflLBswlDIU2H4J3_UQqHk_Grh9Pq3hwPnOkdcrjsavQzORm1Cz0yP_5Bcbz6WO6S270OSstOaO6RNVvfJ7f-QiZ8QC62BxgJoN3tOxtCmKmqge4NcVfBtfY7LZf4nrRx9LM6bS0rcUsD-qlDlPW0w7cO9EJEC31_HByTsFj54KwU5eMdLWu6FYMRf_08P8TKZ_idNg3Quf3Welr2AOgPycF0a39zxvpMDkzhRCyYs2OnrHMAuclsqiAH4Nzk1hQyzUVq3ARFBrQVVnKdGZcm1oF1QdvUWaLkI7JeN7V9TCjoAlxImyXsJJHK6CK1gHUTh7-CMWyQN8jeql-JvoqP7IJXKzyvep5vkGSY78r0mOghNcfpZc1Gy2ZfO1CQyxq8GoSpwuUb3mRUbZvWVxI30SSboJX-5Codf0luzPZ3d6qd7fnHp-SmQM0rOMZx-YysL85a-xw1pYV-EZfFb_CwGmY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxUxEA5aQfTBesXaixF8EnI8SfZy1rft5dB6ORRqteDDkmQSEctuac6C9sn_4LN_zl_iJLt78AhS9GkhZLK5zCQzycw3hDxVeSG0QrNEFw5Y4pxiSnHHYIyWmBTcmJit4c0s2z9OXp6kJ71XZYiFwU54bMnHR_wg1WfgeoQB_hzLfYtGX7g4-zgSJjCcvEqupQEGLqhFO0eL-xXUfKSIOUoFzyYMGTUdAnj-1lI4oIxfPqCW9-d46ExXyYdFd6OvyedRO9cjc_EHkuP_jec2udXrorTsmOcOuWLru-TmbwiF98iPgwFOAmh3C8-GUGaqaqBHQ_xVcLH9SssFzidtHH2nTlvLStzagB52yLKedjjXob0Q2UK3PwUHJSxWPjgtRT55Qcua7sWgxJ_fvr_Hyuf4nTYN0Jn90npa9kDo98nxdO_tzj7rMzowhYsxZ86OnbLOAeQms6mCHIBzk1tTyDQXqXETZB3QVljJdWZcmlgH1gWtU2eJkg_ISt3U9iGhoAtwIX2WsJNEKqOL1ALWTRz-CsawRp7h9Fa9RPoqPrYLXi3NedXP-RpJhjWvTI-NHlJ0nF5GNlqQnXXgIJcRPBkYqkIxDm8zqrZN6yuJm2mSTdBaf_QvHX9Mrh_uTqvXB7NX6-SGQAUs-MdxuUFW5uet3USFaa63omT8Aod7HOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Techno-Economic+and+Sustainability+Assessment+of+Value-Added+Products+Generated+from+Biomass+Gasification%3A+An+Energy%E2%80%93Water%E2%80%93Food+Nexus+Approach&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=AlNouss%2C+Ahmed&rft.au=Alherbawi%2C+Mohammad&rft.au=McKay%2C+G&rft.au=Al-Ansari%2C+Tareq&rft.date=2023-03-13&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=11&rft.issue=10+p.3987-3998&rft.spage=3987&rft.epage=3998&rft_id=info:doi/10.1021%2Facssuschemeng.2c04253&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |