Rock slope stability assessment based on the critical failure state curve for the generalized Hoek‒Brown criterion

The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental earth sciences Vol. 83; no. 6; p. 168
Main Authors Zhang, Wenlian, Sun, Xiaoyun, Yuan, Wei, Liu, Ting, Jin, Shenyi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1866-6280
1866-6299
DOI10.1007/s12665-024-11485-6

Cover

Abstract The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters m i and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σ ci and the parameter combination s α with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application.
AbstractList The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters mi and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σci and the parameter combination sα with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application.
The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters m i and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σ ci and the parameter combination s α with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application.
The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters mᵢ and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σcᵢ and the parameter combination sᵅ with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application.
ArticleNumber 168
Author Jin, Shenyi
Sun, Xiaoyun
Zhang, Wenlian
Yuan, Wei
Liu, Ting
Author_xml – sequence: 1
  givenname: Wenlian
  surname: Zhang
  fullname: Zhang, Wenlian
  organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University, School of Civil Engineering, Shijiazhuang Tiedao University
– sequence: 2
  givenname: Xiaoyun
  surname: Sun
  fullname: Sun, Xiaoyun
  email: sunxy1971@126.com
  organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University, Hebei Provincial Collaborative Innovation Center of Transportation Power Grid Intelligent Integration Technology and Equipment, Shijiazhuang Tiedao University
– sequence: 3
  givenname: Wei
  surname: Yuan
  fullname: Yuan, Wei
  organization: School of Civil Engineering, Shijiazhuang Tiedao University
– sequence: 4
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University
– sequence: 5
  givenname: Shenyi
  surname: Jin
  fullname: Jin, Shenyi
  organization: School of Civil Engineering, Shijiazhuang Tiedao University
BookMark eNp9kc1KAzEQx4MoWKsv4CngxctqPnbT3aMWv0AQRM8h3U40uk1qJqvUk8_gI_okxlYUPJhLhuH3G5L5b5F1HzwQssvZAWdsdIhcKFUVTJQF52VdFWqNDHitVKFE06z_1DXbJDuIDywfyWXD1ICk69A-UuzCHCgmM3GdSwtqEAFxBj7RiUGY0uBpugfaRpdcazpqjev6uFRSbvfxGagNcQndgYdoOveavfMAjx9v78cxvPilDdEFv002rOkQdr7vIbk9PbkZnxeXV2cX46PLwkihUiFbVkP-UG14WQpjKqgFs60VqpxMJ1xayfjIKqaYaUquOChTjmzeSK6nxjI5JPurufMYnnrApGcOW-g64yH0qCWvpBKC8yaje3_Qh9BHn1-nRVOVslKVFJkSK6qNATGC1fPoZiYuNGf6Kwu9ykLnLPQyC62yJFcSZtjfQfwd_Y_1Ca4ojzI
Cites_doi 10.1007/s00603-005-0056-5
10.16285/j.rsm.2005.02.035
10.1061/AJGEB6.0001029
10.1016/j.tust.2008.03.002
10.1016/j.compgeo.2012.04.008
10.16285/j.rsm.2016.S2.088
10.1201/noe0415444019-c38
10.1016/j.ijrmms.2018.10.005
10.1016/j.ijrmms.2013.09.002
10.1016/j.ijrmms.2007.05.003
10.1007/s12665-019-8573-9
10.1016/j.compgeo.2011.03.003
10.1080/19648189.2018.1538904
10.1016/j.ijrmms.2007.08.010
10.1016/j.compgeo.2014.10.008
10.1139/cgj-2013-0191
10.1016/j.enggeo.2016.09.017
10.1007/s00603-008-0022-0
10.16285/j.rsm.2008.11.037
10.1016/j.jrmge.2018.08.001
10.1007/s10706-012-9517-2
10.1016/j.compgeo.2019.103240
10.1016/j.compgeo.2009.11.002
10.1007/s00603-009-0044-2
10.16285/j.rsm.2021.0170
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s12665-024-11485-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-6299
EndPage 168
ExternalDocumentID 10_1007_s12665_024_11485_6
GrantInformation_xml – fundername: S&T Program of Hebei Province, China
  grantid: NO. 22375413D
GroupedDBID -5A
-5G
-BR
-DZ
-EM
-Y2
-~C
.4S
.DC
06D
0R~
0VY
199
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40D
40E
4P2
5VS
67M
67Z
6NX
7XC
88I
8FE
8FH
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECGQY
EDH
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
ML.
MQGED
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PATMY
PCBAR
PF-
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RSV
S16
S1Z
S27
S3B
SAP
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
Z85
ZCG
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7ST
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-a326t-3c08e1488a1442aa5e820fcf264bdb13f3017f6060a94161e6a47f007161daf03
IEDL.DBID U2A
ISSN 1866-6280
IngestDate Sun Sep 28 05:32:59 EDT 2025
Fri Sep 26 07:22:56 EDT 2025
Wed Oct 01 01:36:22 EDT 2025
Fri Feb 21 02:43:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Numerical simulation
Strength reduction method
Rock slope stability
Generalized Hoek‒Brown criterion
Factor of safety
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a326t-3c08e1488a1442aa5e820fcf264bdb13f3017f6060a94161e6a47f007161daf03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2954356532
PQPubID 54063
PageCount 1
ParticipantIDs proquest_miscellaneous_3153622119
proquest_journals_2954356532
crossref_primary_10_1007_s12665_024_11485_6
springer_journals_10_1007_s12665_024_11485_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental earth sciences
PublicationTitleAbbrev Environ Earth Sci
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liu, Shao, Li (CR12) 2015; 63
Zong, Xu (CR32) 2008; 29
Song, Yan, Mao (CR20) 2012; 31
Sun, Chai, Xu (CR22) 2016; 214
Zhang, Sun, Chen (CR29) 2022; 43
Shen, Karakus, Xu (CR18) 2012; 44
Thomas, Radu, Regina (CR23) 2008; 45
Du (CR2) 2018; 37
Hoek, Brown (CR7) 2019; 11
Shen, Karakus (CR17) 2014; 51
Krahn (CR9) 2007; 14
Shen, Karakus, Xu (CR19) 2013; 64
Priest (CR14) 2005; 38
Yuan, Li, Li (CR28) 2020; 117
Zhao, Zheng, Zhang (CR31) 2005; 26
Han, Wu, Li (CR5) 2016; 37
CR4
Melkoumian, Priest, Hunt (CR13) 2009; 42
Sari (CR16) 2019; 78
CR8
Zhao, Zheng, Shi, Wang (CR30) 2002; 24
Russo (CR15) 2008; 24
Balmer (CR1) 1952; 52
Fu, Liao (CR3) 2010; 37
Sukanya, Heinz, Katrin (CR21) 2012; 30
Wu, Jin, Gao (CR25) 2006; 28
Li, Merifield, Lyamin (CR11) 2011; 38
Hoek, Brown (CR6) 1980; 106
Wei, Fu, Ye (CR24) 2021; 25
Yang, Yin (CR27) 2010; 43
Li, Merifield, Lyamin (CR10) 2008; 45
Xu, Yang (CR26) 2018; 112
C Sukanya (11485_CR21) 2012; 30
SD Priest (11485_CR14) 2005; 38
XL Yang (11485_CR27) 2010; 43
M Sari (11485_CR16) 2019; 78
AJ Li (11485_CR10) 2008; 45
W Yuan (11485_CR28) 2020; 117
JY Shen (11485_CR17) 2014; 51
AJ Li (11485_CR11) 2011; 38
SY Liu (11485_CR12) 2015; 63
JY Shen (11485_CR18) 2012; 44
YF Wei (11485_CR24) 2021; 25
SY Zhao (11485_CR31) 2005; 26
N Melkoumian (11485_CR13) 2009; 42
SC Wu (11485_CR25) 2006; 28
G Balmer (11485_CR1) 1952; 52
SY Zhao (11485_CR30) 2002; 24
LQ Han (11485_CR5) 2016; 37
JS Xu (11485_CR26) 2018; 112
JY Shen (11485_CR19) 2013; 64
WL Zhang (11485_CR29) 2022; 43
11485_CR8
G Russo (11485_CR15) 2008; 24
11485_CR4
J Krahn (11485_CR9) 2007; 14
K Song (11485_CR20) 2012; 31
QB Zong (11485_CR32) 2008; 29
E Hoek (11485_CR6) 1980; 106
CW Sun (11485_CR22) 2016; 214
B Thomas (11485_CR23) 2008; 45
E Hoek (11485_CR7) 2019; 11
SG Du (11485_CR2) 2018; 37
WX Fu (11485_CR3) 2010; 37
References_xml – volume: 38
  start-page: 299
  issue: 4
  year: 2005
  end-page: 327
  ident: CR14
  article-title: Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-005-0056-5
– ident: CR4
– volume: 26
  start-page: 332
  issue: 2
  year: 2005
  end-page: 336
  ident: CR31
  article-title: Study on slope failure criterion in strength reduction finite element method
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2005.02.035
– volume: 106
  start-page: 1013
  issue: GT9
  year: 1980
  end-page: 1035
  ident: CR6
  article-title: Empirical strength criterion for rock masses
  publication-title: J Geotech Eng Div
  doi: 10.1061/AJGEB6.0001029
– volume: 24
  start-page: 103
  issue: 1
  year: 2008
  end-page: 111
  ident: CR15
  article-title: A new rational method for calculating the GSI
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2008.03.002
– volume: 44
  start-page: 139
  year: 2012
  end-page: 146
  ident: CR18
  article-title: Direct expressions for linearization of shear strength envelopes given by the Generalized Hoek-Brown criterion using genetic programming
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2012.04.008
– volume: 37
  start-page: 690
  issue: A2
  year: 2016
  end-page: 696
  ident: CR5
  article-title: Study of non-proportional strength reduction method based on Hoek-Brown failure criterion
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2016.S2.088
– ident: CR8
– volume: 52
  start-page: 1269
  year: 1952
  end-page: 1271
  ident: CR1
  article-title: A general analytical solution for Mohr’s envelope
  publication-title: American Society Test Mater
– volume: 14
  start-page: 175
  issue: 2
  year: 2007
  end-page: 183
  ident: CR9
  article-title: Limit equilibrium, strength summation and strength reduction methods for assessing slope stability
  publication-title: Int J Life Cycle Assess
  doi: 10.1201/noe0415444019-c38
– volume: 112
  start-page: 64
  year: 2018
  end-page: 76
  ident: CR26
  article-title: Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.10.005
– volume: 64
  start-page: 210
  year: 2013
  end-page: 219
  ident: CR19
  article-title: Chart-based slope stability assessment using the generalized Hoek-Brown criterion
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.09.002
– volume: 45
  start-page: 210
  issue: 2
  year: 2008
  end-page: 222
  ident: CR23
  article-title: A Hoek-Brown criterion with intrinsic material strength factorization
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.05.003
– volume: 37
  start-page: 1301
  issue: 06
  year: 2018
  end-page: 1331
  ident: CR2
  article-title: Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes
  publication-title: Chin J Rock Mech Eng
– volume: 78
  start-page: 621
  issue: 21
  year: 2019
  ident: CR16
  article-title: Stability analysis of cut slopes using empirical, kinematical, numerical and limit equilibrium methods: case of old Jeddah-Mecca road (Saudi Arabia)
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8573-9
– volume: 38
  start-page: 546
  issue: 4
  year: 2011
  end-page: 558
  ident: CR11
  article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2011.03.003
– volume: 28
  start-page: 1975
  issue: 11
  year: 2006
  end-page: 1980
  ident: CR25
  article-title: Numerical simulation analysis on strength reduction for slope of jointed rock masses based on generalized Hoek-Brown failure criterion
  publication-title: Chin J Geotech Eng
– volume: 25
  start-page: 599
  issue: 4
  year: 2021
  end-page: 617
  ident: CR24
  article-title: Estimation of the equivalent Mohr-Coulomb parameters using the Hoek-Brown criterion and its application in slope analysis
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2018.1538904
– volume: 45
  start-page: 689
  issue: 5
  year: 2008
  end-page: 700
  ident: CR10
  article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.08.010
– volume: 31
  start-page: 106
  issue: 1
  year: 2012
  end-page: 112
  ident: CR20
  article-title: Determination of shear strength reduction factor for generalized Hoek-Brown criterion
  publication-title: Chin J Rock Mech Eng
– volume: 63
  start-page: 291
  year: 2015
  end-page: 298
  ident: CR12
  article-title: Slope stability analysis using the limit equilibrium method and two finite element methods
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.10.008
– volume: 51
  start-page: 164
  issue: 2
  year: 2014
  end-page: 172
  ident: CR17
  article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2013-0191
– volume: 214
  start-page: 94
  year: 2016
  end-page: 106
  ident: CR22
  article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2016.09.017
– volume: 42
  start-page: 835
  issue: 6
  year: 2009
  end-page: 847
  ident: CR13
  article-title: Further development of the three-dimensional Hoek-Brown yield Criterion
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-008-0022-0
– volume: 29
  start-page: 3071
  issue: 11
  year: 2008
  end-page: 3076
  ident: CR32
  article-title: Stability analysis of excavating rock slope using generalized Hoek-Brown failure criterion
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2008.11.037
– volume: 11
  start-page: 445
  issue: 3
  year: 2019
  end-page: 463
  ident: CR7
  article-title: The Hoek-Brown failure criterion and GSI – 2018 edition
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2018.08.001
– volume: 30
  start-page: 925
  issue: 4
  year: 2012
  end-page: 934
  ident: CR21
  article-title: A comparative study of different approaches for factor of safety calculations by shear strength reduction technique for non-linear Hoek-Brown failure criterion
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-012-9517-2
– volume: 117
  year: 2020
  ident: CR28
  article-title: A strength reduction method based on the generalized Hoek-Brown (GHB) criterion for rock slope stability analysis
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2019.103240
– volume: 24
  start-page: 343
  issue: 3
  year: 2002
  end-page: 346
  ident: CR30
  article-title: Analysis on safety factor of slope by strength reduction FEM
  publication-title: Chin J Geotech Eng
– volume: 37
  start-page: 288
  issue: 3
  year: 2010
  end-page: 298
  ident: CR3
  article-title: Non-linear shear strength reduction technique in slope stability calculation
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2009.11.002
– volume: 43
  start-page: 505
  issue: 4
  year: 2010
  end-page: 511
  ident: CR27
  article-title: Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-009-0044-2
– volume: 43
  start-page: 607
  issue: S2
  year: 2022
  end-page: 615
  ident: CR29
  article-title: Slope stability analysis method based on compressive strength reduction of rock mass
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2021.0170
– volume: 37
  start-page: 1301
  issue: 06
  year: 2018
  ident: 11485_CR2
  publication-title: Chin J Rock Mech Eng
– volume: 214
  start-page: 94
  year: 2016
  ident: 11485_CR22
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2016.09.017
– volume: 45
  start-page: 689
  issue: 5
  year: 2008
  ident: 11485_CR10
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.08.010
– volume: 112
  start-page: 64
  year: 2018
  ident: 11485_CR26
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2018.10.005
– volume: 43
  start-page: 607
  issue: S2
  year: 2022
  ident: 11485_CR29
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2021.0170
– volume: 64
  start-page: 210
  year: 2013
  ident: 11485_CR19
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.09.002
– volume: 117
  year: 2020
  ident: 11485_CR28
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2019.103240
– volume: 38
  start-page: 546
  issue: 4
  year: 2011
  ident: 11485_CR11
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2011.03.003
– volume: 106
  start-page: 1013
  issue: GT9
  year: 1980
  ident: 11485_CR6
  publication-title: J Geotech Eng Div
  doi: 10.1061/AJGEB6.0001029
– volume: 25
  start-page: 599
  issue: 4
  year: 2021
  ident: 11485_CR24
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2018.1538904
– volume: 26
  start-page: 332
  issue: 2
  year: 2005
  ident: 11485_CR31
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2005.02.035
– volume: 42
  start-page: 835
  issue: 6
  year: 2009
  ident: 11485_CR13
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-008-0022-0
– volume: 43
  start-page: 505
  issue: 4
  year: 2010
  ident: 11485_CR27
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-009-0044-2
– volume: 63
  start-page: 291
  year: 2015
  ident: 11485_CR12
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.10.008
– volume: 51
  start-page: 164
  issue: 2
  year: 2014
  ident: 11485_CR17
  publication-title: Can Geotech J
  doi: 10.1139/cgj-2013-0191
– volume: 29
  start-page: 3071
  issue: 11
  year: 2008
  ident: 11485_CR32
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2008.11.037
– volume: 30
  start-page: 925
  issue: 4
  year: 2012
  ident: 11485_CR21
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-012-9517-2
– volume: 37
  start-page: 690
  issue: A2
  year: 2016
  ident: 11485_CR5
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2016.S2.088
– volume: 14
  start-page: 175
  issue: 2
  year: 2007
  ident: 11485_CR9
  publication-title: Int J Life Cycle Assess
  doi: 10.1201/noe0415444019-c38
– volume: 11
  start-page: 445
  issue: 3
  year: 2019
  ident: 11485_CR7
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2018.08.001
– volume: 24
  start-page: 103
  issue: 1
  year: 2008
  ident: 11485_CR15
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2008.03.002
– volume: 24
  start-page: 343
  issue: 3
  year: 2002
  ident: 11485_CR30
  publication-title: Chin J Geotech Eng
– volume: 45
  start-page: 210
  issue: 2
  year: 2008
  ident: 11485_CR23
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.05.003
– volume: 44
  start-page: 139
  year: 2012
  ident: 11485_CR18
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2012.04.008
– volume: 37
  start-page: 288
  issue: 3
  year: 2010
  ident: 11485_CR3
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2009.11.002
– volume: 78
  start-page: 621
  issue: 21
  year: 2019
  ident: 11485_CR16
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-019-8573-9
– ident: 11485_CR4
– ident: 11485_CR8
– volume: 52
  start-page: 1269
  year: 1952
  ident: 11485_CR1
  publication-title: American Society Test Mater
– volume: 38
  start-page: 299
  issue: 4
  year: 2005
  ident: 11485_CR14
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-005-0056-5
– volume: 28
  start-page: 1975
  issue: 11
  year: 2006
  ident: 11485_CR25
  publication-title: Chin J Geotech Eng
– volume: 31
  start-page: 106
  issue: 1
  year: 2012
  ident: 11485_CR20
  publication-title: Chin J Rock Mech Eng
SSID ssj0000313906
Score 2.4054837
Snippet The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 168
SubjectTerms Accuracy
Biogeosciences
Civil engineering
compression strength
Compressive strength
Criteria
Curve fitting
Earth and Environmental Science
Earth science
Earth Sciences
Environmental Science and Engineering
Failure
Geochemistry
Geology
Graphic methods
Graphical methods
Hydrology/Water Resources
Limestone
Mathematical analysis
Mining engineering
Original Article
Parameters
Reduction
Reliability engineering
Rock
Rocks
Safety factors
Shear strength
Simulation
Simulation analysis
simulation models
Slope stability
Stability analysis
Terrestrial Pollution
Theoretical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngRn1hfRPCmwX11HwcRFbUIFhELvS3JJpGi7FbbCnryN_gT_SXOZHdbFPS8mw07SWa-ycx8A7Df0o4KXC25GyrFAyriin1peJwY3zNSZJmke8ibTtjuBte9Vm8GOnUtDKVV1jrRKmpVZHRHfkTxKB_Rh--dDJ45dY2i6GrdQkNUrRXUsaUYm4U5j5ixGjB3dtG5vZvcuhBTYWIbbhLRGw-92Kkqacp6OjRXVLAccHITWjz8aa2mEPRX1NQao8slWKxQJDstl30ZZnS-AvNXtkvv2yqM7lDLseFTMdAM0Z_Nf31jYkLCych2KVbkDOEfy6puB8yIPiWpM1tkxLLxy6tmiGntSw8lPXX_Hce1C_349fFpPXg7Gndxka9B9_Li_rzNq_YKXCBmG3E_c2KNvxkLdKo8IVoa0YDJDEIkqaTrGzz7kUEHxxEJuUE6FEFkCJOErhLG8dehkRe53gAWOTrTiSvRtqlAKSOlUa7ydBQIZRwlm3BQizEdlCwa6ZQvmYSeotBTK_Q0bMJ2Lem0OlHDdLr-TdibPMazQAEOketiPEx9VN-hR5x1TTisV2j6ib9n3Px_xi1Y8GhT2NSzbWiMXsZ6B7HISO5WG-wb6XDdow
  priority: 102
  providerName: ProQuest
Title Rock slope stability assessment based on the critical failure state curve for the generalized Hoek‒Brown criterion
URI https://link.springer.com/article/10.1007/s12665-024-11485-6
https://www.proquest.com/docview/2954356532
https://www.proquest.com/docview/3153622119
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AFBBN
  dateStart: 20091101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1866-6299
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000313906
  issn: 1866-6280
  databaseCode: U2A
  dateStart: 20091101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfAiPrFaSwRvGth3t8cqfaBYpFiopyXZJCLKbum2Qj35G_yJ_hIn6W4XRQ-e9rBJlp1MMl8yM98AnPnSEp4tObUDIaink7hClysatpTrKM7imOt7yNtB0B9512N_nCeFZUW0e-GSNDt1meyGtkRnE3tUY3ifButQ9TWdF2rxyGmvblY0G2HLFNXUZG40cEIrz5b5fZjvFqmEmT88o8bgdLdhK0eKpL2c2h1Yk8kubPRMJd7FHsyGuJOR7CWdSIIIz8S4LghbEW0SbZ8ESROCEI_EeUUDotiTDkQnJpGIxPPpqySIW02jxyUF9dMb9uun8vnz_cOc0k1v1NQ02YdRt3N_1ad5CQXKEJfNqBtbocTfDBkenBzGfIkWX8UKYRAX3HYVru-mwkOMxVr6qCMD5jWVxh2BLZiy3AOoJGkiD4E0LRnLls3RfglPCMW5ErZwZNNjQlmC1-C8EGM0WTJlRCUnshZ6hEKPjNCjoAb1QtJRvmqySPscXUSYrlOD09Vr1HftxGCJTOdZ5OIWHTial64GF8UMlUP8_cWj_zU_hk1HK4kJN6tDZTadyxPEHzPegGq793DTwedlZ3A3bBj1-wLWdtc9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVgguFb8itBQjwQksdm1ns3uoEP0jpW2EqlbqzdhrG1Wg3dAkrcKJZ-CBeBiehBlnNxFIcOt517Y0nvF88w_wvOsTp1JveZo5xxUVceXSBp4XQYpgTVla8kMeDbL-qXp_1j1bgp9tLQylVbZvYnyoXV2Sj_w1xaMkog8p3gy_cpoaRdHVdoSGaUYruM3YYqwp7Djw0ys04Uab-zt43y-E2Ns92e7zZsoANwhdxlyWSe7RKMgN2hbCmK5HpRjKgEjBOpvKgCLQC4jzE1OQNeAzo3qBVHOWOhMSifvegBUlVYHG38rW7uDD8dzLQ50RizjgkxrL8UzkSVO5M6vfQ_VIBdKKk1nS5dmf2nEBef-K0kblt3cHVhvUyt7O2OwuLPnqHtx8F6cCT-_D-BhfVTb6Ug89Q7QZ822nzMybfjLSlY7VFUO4ycpmugIL5pyS4lksamLl5OLSM8TQ8adPs3bY599wXb_2n399_xE9BnE1Sk1dPYDTayH0Q1iu6so_AtZLfOmL1KIudcq5YG1wqRO-p4wLibMdeNmSUQ9nXTv0oj8zEV0j0XUkus46sN5SWjcSPNILfuvAs_lnlD0KqJjK15ORlqguMkE98jrwqr2hxRb_PvHx_098Crf6J0eH-nB_cLAGtwUxSEx7W4fl8cXEP0EcNLYbDbMx-Hjd_P0bgMkZAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dThQxFD5BiIYboiBxAbUmcKUNM53Z2dkLYlRYlx83hEDCXW2nLSGQmYXdhaxXPoOP5WP4JJ7T7exGE73jeqZtcnp-vtPzB7DZtJFJY6t5nBnDUyriyhPteN52iXBaFYWmd8gvvax7lh6cN8_n4GddC0NplbVO9IraVAW9kW9TPCpB9JGIbRfSIo53O-_7N5wmSFGktR6nocKYBbPj242FIo9DO75Hd26ws7-Ld78lRGfv9FOXh4kDXCGMGfKkiHKLDkKu0M8QSjUtGkhXOEQN2ug4cSgOLYeYP1Jt8gxsptKWIzOdxUa5KMF9H8ECBb9QSSx83Osdn0xffKhLYtsP-6QmczwTeRSqeCa1fGgqqVg65eSiNHn2p6Wcwd-_IrbeEHaewlJAsOzDhOWewZwtl-HxZz8heLwCwxPUsGxwXfUtQ-Tpc2_HTE0bgDKym4ZVJUPoyYowaYE5dUkJ8swXOLFidHtnGeJp_9PFpDX25Tdc163s1a_vP_zrgV-NElSVz-HsQQi9CvNlVdoXwFqRLWw71mhXTWqM09qZ2AjbSpVxkdENeFuTUfYnHTzkrFczEV0i0aUnuswasFFTWgZpHsgZ7zXgzfQzyiEFV1Rpq9FAJmg6MkH98hrwrr6h2Rb_PnHt_ye-hifI5_Jov3e4DouC-MNnwG3A_PB2ZF8iJBrqV4HXGHx9aPb-DXbsHTE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+slope+stability+assessment+based+on+the+critical+failure+state+curve+for+the+generalized+Hoek%E2%80%92Brown+criterion&rft.jtitle=Environmental+earth+sciences&rft.au=Zhang%2C+Wenlian&rft.au=Sun%2C+Xiaoyun&rft.au=Yuan%2C+Wei&rft.au=Liu%2C+Ting&rft.date=2024-03-01&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=83&rft.issue=6&rft_id=info:doi/10.1007%2Fs12665-024-11485-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12665_024_11485_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon