Rock slope stability assessment based on the critical failure state curve for the generalized Hoek‒Brown criterion
The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a...
Saved in:
| Published in | Environmental earth sciences Vol. 83; no. 6; p. 168 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1866-6280 1866-6299 |
| DOI | 10.1007/s12665-024-11485-6 |
Cover
| Abstract | The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters
m
i
and slope angles
β,
considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock
σ
ci
and the parameter combination
s
α
with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application. |
|---|---|
| AbstractList | The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters mi and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σci and the parameter combination sα with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application. The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters m i and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σ ci and the parameter combination s α with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application. The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of rock slopes. Various reduction strategies have been proposed and applied by the civil and mining engineering community. This paper proposed a new SRM for rock slopes with the GHB criterion based on the critical failure state curve (CFSC). The existence of the CFSC has been proven by theoretical analysis, and the explicit expression of the CFSCs for different parameters mᵢ and slope angles β, considering the influence of disturbance factor D, has been obtained by curve fitting based on a great deal of simulation data. The new SRM provides a graphic method to determine the parameters at the critical failure state from the initial state by reducing the compressive strength of intact rock σcᵢ and the parameter combination sᵅ with the same ratio and proposes a definition of the factor of safety (FOS) based on the parameters of the two states. This method was applied to nine slope examples to verify its validity and accuracy. The relative errors between the critical state parameters obtained from the graphic method and that from the simulation analysis are less than 10%, which proves the accuracy of the CFSCs. The FOSs obtained by the proposed definition are compared with those obtained by the Bishop simplified method and the local linearization method (LLM), and the results are very close. The relative error is less than ± 5% compared with the LLM, and the stability state predicted is perfectly accurate. However, the calculation procedure is largely simplified, and the calculation speed is largely improved. A practical case of an open pit limestone slope with multiple steps was detailed analysed by the proposed SRM based on CFSC. The FOS results comparison with other existing method has demonstrated its feasibility and reliability in engineering application. |
| ArticleNumber | 168 |
| Author | Jin, Shenyi Sun, Xiaoyun Zhang, Wenlian Yuan, Wei Liu, Ting |
| Author_xml | – sequence: 1 givenname: Wenlian surname: Zhang fullname: Zhang, Wenlian organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University, School of Civil Engineering, Shijiazhuang Tiedao University – sequence: 2 givenname: Xiaoyun surname: Sun fullname: Sun, Xiaoyun email: sunxy1971@126.com organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University, Hebei Provincial Collaborative Innovation Center of Transportation Power Grid Intelligent Integration Technology and Equipment, Shijiazhuang Tiedao University – sequence: 3 givenname: Wei surname: Yuan fullname: Yuan, Wei organization: School of Civil Engineering, Shijiazhuang Tiedao University – sequence: 4 givenname: Ting surname: Liu fullname: Liu, Ting organization: School of Electric and Electronic Engineering, Shijiazhuang Tiedao University – sequence: 5 givenname: Shenyi surname: Jin fullname: Jin, Shenyi organization: School of Civil Engineering, Shijiazhuang Tiedao University |
| BookMark | eNp9kc1KAzEQx4MoWKsv4CngxctqPnbT3aMWv0AQRM8h3U40uk1qJqvUk8_gI_okxlYUPJhLhuH3G5L5b5F1HzwQssvZAWdsdIhcKFUVTJQF52VdFWqNDHitVKFE06z_1DXbJDuIDywfyWXD1ICk69A-UuzCHCgmM3GdSwtqEAFxBj7RiUGY0uBpugfaRpdcazpqjev6uFRSbvfxGagNcQndgYdoOveavfMAjx9v78cxvPilDdEFv002rOkQdr7vIbk9PbkZnxeXV2cX46PLwkihUiFbVkP-UG14WQpjKqgFs60VqpxMJ1xayfjIKqaYaUquOChTjmzeSK6nxjI5JPurufMYnnrApGcOW-g64yH0qCWvpBKC8yaje3_Qh9BHn1-nRVOVslKVFJkSK6qNATGC1fPoZiYuNGf6Kwu9ykLnLPQyC62yJFcSZtjfQfwd_Y_1Ca4ojzI |
| Cites_doi | 10.1007/s00603-005-0056-5 10.16285/j.rsm.2005.02.035 10.1061/AJGEB6.0001029 10.1016/j.tust.2008.03.002 10.1016/j.compgeo.2012.04.008 10.16285/j.rsm.2016.S2.088 10.1201/noe0415444019-c38 10.1016/j.ijrmms.2018.10.005 10.1016/j.ijrmms.2013.09.002 10.1016/j.ijrmms.2007.05.003 10.1007/s12665-019-8573-9 10.1016/j.compgeo.2011.03.003 10.1080/19648189.2018.1538904 10.1016/j.ijrmms.2007.08.010 10.1016/j.compgeo.2014.10.008 10.1139/cgj-2013-0191 10.1016/j.enggeo.2016.09.017 10.1007/s00603-008-0022-0 10.16285/j.rsm.2008.11.037 10.1016/j.jrmge.2018.08.001 10.1007/s10706-012-9517-2 10.1016/j.compgeo.2019.103240 10.1016/j.compgeo.2009.11.002 10.1007/s00603-009-0044-2 10.16285/j.rsm.2021.0170 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s12665-024-11485-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1866-6299 |
| EndPage | 168 |
| ExternalDocumentID | 10_1007_s12665_024_11485_6 |
| GrantInformation_xml | – fundername: S&T Program of Hebei Province, China grantid: NO. 22375413D |
| GroupedDBID | -5A -5G -BR -DZ -EM -Y2 -~C .4S .DC 06D 0R~ 0VY 199 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40D 40E 4P2 5VS 67M 67Z 6NX 7XC 88I 8FE 8FH 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- ML. MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J PATMY PCBAR PF- PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RSV S16 S1Z S27 S3B SAP SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7V Z7W Z7Y Z7Z Z81 Z83 Z85 ZCG ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7ST 7TG 7UA 7XB 8FK C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a326t-3c08e1488a1442aa5e820fcf264bdb13f3017f6060a94161e6a47f007161daf03 |
| IEDL.DBID | U2A |
| ISSN | 1866-6280 |
| IngestDate | Sun Sep 28 05:32:59 EDT 2025 Fri Sep 26 07:22:56 EDT 2025 Wed Oct 01 01:36:22 EDT 2025 Fri Feb 21 02:43:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Numerical simulation Strength reduction method Rock slope stability Generalized Hoek‒Brown criterion Factor of safety |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a326t-3c08e1488a1442aa5e820fcf264bdb13f3017f6060a94161e6a47f007161daf03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2954356532 |
| PQPubID | 54063 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3153622119 proquest_journals_2954356532 crossref_primary_10_1007_s12665_024_11485_6 springer_journals_10_1007_s12665_024_11485_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240300 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental earth sciences |
| PublicationTitleAbbrev | Environ Earth Sci |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Liu, Shao, Li (CR12) 2015; 63 Zong, Xu (CR32) 2008; 29 Song, Yan, Mao (CR20) 2012; 31 Sun, Chai, Xu (CR22) 2016; 214 Zhang, Sun, Chen (CR29) 2022; 43 Shen, Karakus, Xu (CR18) 2012; 44 Thomas, Radu, Regina (CR23) 2008; 45 Du (CR2) 2018; 37 Hoek, Brown (CR7) 2019; 11 Shen, Karakus (CR17) 2014; 51 Krahn (CR9) 2007; 14 Shen, Karakus, Xu (CR19) 2013; 64 Priest (CR14) 2005; 38 Yuan, Li, Li (CR28) 2020; 117 Zhao, Zheng, Zhang (CR31) 2005; 26 Han, Wu, Li (CR5) 2016; 37 CR4 Melkoumian, Priest, Hunt (CR13) 2009; 42 Sari (CR16) 2019; 78 CR8 Zhao, Zheng, Shi, Wang (CR30) 2002; 24 Russo (CR15) 2008; 24 Balmer (CR1) 1952; 52 Fu, Liao (CR3) 2010; 37 Sukanya, Heinz, Katrin (CR21) 2012; 30 Wu, Jin, Gao (CR25) 2006; 28 Li, Merifield, Lyamin (CR11) 2011; 38 Hoek, Brown (CR6) 1980; 106 Wei, Fu, Ye (CR24) 2021; 25 Yang, Yin (CR27) 2010; 43 Li, Merifield, Lyamin (CR10) 2008; 45 Xu, Yang (CR26) 2018; 112 C Sukanya (11485_CR21) 2012; 30 SD Priest (11485_CR14) 2005; 38 XL Yang (11485_CR27) 2010; 43 M Sari (11485_CR16) 2019; 78 AJ Li (11485_CR10) 2008; 45 W Yuan (11485_CR28) 2020; 117 JY Shen (11485_CR17) 2014; 51 AJ Li (11485_CR11) 2011; 38 SY Liu (11485_CR12) 2015; 63 JY Shen (11485_CR18) 2012; 44 YF Wei (11485_CR24) 2021; 25 SY Zhao (11485_CR31) 2005; 26 N Melkoumian (11485_CR13) 2009; 42 SC Wu (11485_CR25) 2006; 28 G Balmer (11485_CR1) 1952; 52 SY Zhao (11485_CR30) 2002; 24 LQ Han (11485_CR5) 2016; 37 JS Xu (11485_CR26) 2018; 112 JY Shen (11485_CR19) 2013; 64 WL Zhang (11485_CR29) 2022; 43 11485_CR8 G Russo (11485_CR15) 2008; 24 11485_CR4 J Krahn (11485_CR9) 2007; 14 K Song (11485_CR20) 2012; 31 QB Zong (11485_CR32) 2008; 29 E Hoek (11485_CR6) 1980; 106 CW Sun (11485_CR22) 2016; 214 B Thomas (11485_CR23) 2008; 45 E Hoek (11485_CR7) 2019; 11 SG Du (11485_CR2) 2018; 37 WX Fu (11485_CR3) 2010; 37 |
| References_xml | – volume: 38 start-page: 299 issue: 4 year: 2005 end-page: 327 ident: CR14 article-title: Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-005-0056-5 – ident: CR4 – volume: 26 start-page: 332 issue: 2 year: 2005 end-page: 336 ident: CR31 article-title: Study on slope failure criterion in strength reduction finite element method publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2005.02.035 – volume: 106 start-page: 1013 issue: GT9 year: 1980 end-page: 1035 ident: CR6 article-title: Empirical strength criterion for rock masses publication-title: J Geotech Eng Div doi: 10.1061/AJGEB6.0001029 – volume: 24 start-page: 103 issue: 1 year: 2008 end-page: 111 ident: CR15 article-title: A new rational method for calculating the GSI publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2008.03.002 – volume: 44 start-page: 139 year: 2012 end-page: 146 ident: CR18 article-title: Direct expressions for linearization of shear strength envelopes given by the Generalized Hoek-Brown criterion using genetic programming publication-title: Comput Geotech doi: 10.1016/j.compgeo.2012.04.008 – volume: 37 start-page: 690 issue: A2 year: 2016 end-page: 696 ident: CR5 article-title: Study of non-proportional strength reduction method based on Hoek-Brown failure criterion publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2016.S2.088 – ident: CR8 – volume: 52 start-page: 1269 year: 1952 end-page: 1271 ident: CR1 article-title: A general analytical solution for Mohr’s envelope publication-title: American Society Test Mater – volume: 14 start-page: 175 issue: 2 year: 2007 end-page: 183 ident: CR9 article-title: Limit equilibrium, strength summation and strength reduction methods for assessing slope stability publication-title: Int J Life Cycle Assess doi: 10.1201/noe0415444019-c38 – volume: 112 start-page: 64 year: 2018 end-page: 76 ident: CR26 article-title: Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.10.005 – volume: 64 start-page: 210 year: 2013 end-page: 219 ident: CR19 article-title: Chart-based slope stability assessment using the generalized Hoek-Brown criterion publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.09.002 – volume: 45 start-page: 210 issue: 2 year: 2008 end-page: 222 ident: CR23 article-title: A Hoek-Brown criterion with intrinsic material strength factorization publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.05.003 – volume: 37 start-page: 1301 issue: 06 year: 2018 end-page: 1331 ident: CR2 article-title: Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes publication-title: Chin J Rock Mech Eng – volume: 78 start-page: 621 issue: 21 year: 2019 ident: CR16 article-title: Stability analysis of cut slopes using empirical, kinematical, numerical and limit equilibrium methods: case of old Jeddah-Mecca road (Saudi Arabia) publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8573-9 – volume: 38 start-page: 546 issue: 4 year: 2011 end-page: 558 ident: CR11 article-title: Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion publication-title: Comput Geotech doi: 10.1016/j.compgeo.2011.03.003 – volume: 28 start-page: 1975 issue: 11 year: 2006 end-page: 1980 ident: CR25 article-title: Numerical simulation analysis on strength reduction for slope of jointed rock masses based on generalized Hoek-Brown failure criterion publication-title: Chin J Geotech Eng – volume: 25 start-page: 599 issue: 4 year: 2021 end-page: 617 ident: CR24 article-title: Estimation of the equivalent Mohr-Coulomb parameters using the Hoek-Brown criterion and its application in slope analysis publication-title: Eur J Environ Civ Eng doi: 10.1080/19648189.2018.1538904 – volume: 45 start-page: 689 issue: 5 year: 2008 end-page: 700 ident: CR10 article-title: Stability charts for rock slopes based on the Hoek-Brown failure criterion publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.08.010 – volume: 31 start-page: 106 issue: 1 year: 2012 end-page: 112 ident: CR20 article-title: Determination of shear strength reduction factor for generalized Hoek-Brown criterion publication-title: Chin J Rock Mech Eng – volume: 63 start-page: 291 year: 2015 end-page: 298 ident: CR12 article-title: Slope stability analysis using the limit equilibrium method and two finite element methods publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.10.008 – volume: 51 start-page: 164 issue: 2 year: 2014 end-page: 172 ident: CR17 article-title: Three-dimensional numerical analysis for rock slope stability using shear strength reduction method publication-title: Can Geotech J doi: 10.1139/cgj-2013-0191 – volume: 214 start-page: 94 year: 2016 end-page: 106 ident: CR22 article-title: Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.09.017 – volume: 42 start-page: 835 issue: 6 year: 2009 end-page: 847 ident: CR13 article-title: Further development of the three-dimensional Hoek-Brown yield Criterion publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-008-0022-0 – volume: 29 start-page: 3071 issue: 11 year: 2008 end-page: 3076 ident: CR32 article-title: Stability analysis of excavating rock slope using generalized Hoek-Brown failure criterion publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2008.11.037 – volume: 11 start-page: 445 issue: 3 year: 2019 end-page: 463 ident: CR7 article-title: The Hoek-Brown failure criterion and GSI – 2018 edition publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2018.08.001 – volume: 30 start-page: 925 issue: 4 year: 2012 end-page: 934 ident: CR21 article-title: A comparative study of different approaches for factor of safety calculations by shear strength reduction technique for non-linear Hoek-Brown failure criterion publication-title: Geotech Geol Eng doi: 10.1007/s10706-012-9517-2 – volume: 117 year: 2020 ident: CR28 article-title: A strength reduction method based on the generalized Hoek-Brown (GHB) criterion for rock slope stability analysis publication-title: Comput Geotech doi: 10.1016/j.compgeo.2019.103240 – volume: 24 start-page: 343 issue: 3 year: 2002 end-page: 346 ident: CR30 article-title: Analysis on safety factor of slope by strength reduction FEM publication-title: Chin J Geotech Eng – volume: 37 start-page: 288 issue: 3 year: 2010 end-page: 298 ident: CR3 article-title: Non-linear shear strength reduction technique in slope stability calculation publication-title: Comput Geotech doi: 10.1016/j.compgeo.2009.11.002 – volume: 43 start-page: 505 issue: 4 year: 2010 end-page: 511 ident: CR27 article-title: Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-009-0044-2 – volume: 43 start-page: 607 issue: S2 year: 2022 end-page: 615 ident: CR29 article-title: Slope stability analysis method based on compressive strength reduction of rock mass publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2021.0170 – volume: 37 start-page: 1301 issue: 06 year: 2018 ident: 11485_CR2 publication-title: Chin J Rock Mech Eng – volume: 214 start-page: 94 year: 2016 ident: 11485_CR22 publication-title: Eng Geol doi: 10.1016/j.enggeo.2016.09.017 – volume: 45 start-page: 689 issue: 5 year: 2008 ident: 11485_CR10 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.08.010 – volume: 112 start-page: 64 year: 2018 ident: 11485_CR26 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2018.10.005 – volume: 43 start-page: 607 issue: S2 year: 2022 ident: 11485_CR29 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2021.0170 – volume: 64 start-page: 210 year: 2013 ident: 11485_CR19 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2013.09.002 – volume: 117 year: 2020 ident: 11485_CR28 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2019.103240 – volume: 38 start-page: 546 issue: 4 year: 2011 ident: 11485_CR11 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2011.03.003 – volume: 106 start-page: 1013 issue: GT9 year: 1980 ident: 11485_CR6 publication-title: J Geotech Eng Div doi: 10.1061/AJGEB6.0001029 – volume: 25 start-page: 599 issue: 4 year: 2021 ident: 11485_CR24 publication-title: Eur J Environ Civ Eng doi: 10.1080/19648189.2018.1538904 – volume: 26 start-page: 332 issue: 2 year: 2005 ident: 11485_CR31 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2005.02.035 – volume: 42 start-page: 835 issue: 6 year: 2009 ident: 11485_CR13 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-008-0022-0 – volume: 43 start-page: 505 issue: 4 year: 2010 ident: 11485_CR27 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-009-0044-2 – volume: 63 start-page: 291 year: 2015 ident: 11485_CR12 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.10.008 – volume: 51 start-page: 164 issue: 2 year: 2014 ident: 11485_CR17 publication-title: Can Geotech J doi: 10.1139/cgj-2013-0191 – volume: 29 start-page: 3071 issue: 11 year: 2008 ident: 11485_CR32 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2008.11.037 – volume: 30 start-page: 925 issue: 4 year: 2012 ident: 11485_CR21 publication-title: Geotech Geol Eng doi: 10.1007/s10706-012-9517-2 – volume: 37 start-page: 690 issue: A2 year: 2016 ident: 11485_CR5 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2016.S2.088 – volume: 14 start-page: 175 issue: 2 year: 2007 ident: 11485_CR9 publication-title: Int J Life Cycle Assess doi: 10.1201/noe0415444019-c38 – volume: 11 start-page: 445 issue: 3 year: 2019 ident: 11485_CR7 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2018.08.001 – volume: 24 start-page: 103 issue: 1 year: 2008 ident: 11485_CR15 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2008.03.002 – volume: 24 start-page: 343 issue: 3 year: 2002 ident: 11485_CR30 publication-title: Chin J Geotech Eng – volume: 45 start-page: 210 issue: 2 year: 2008 ident: 11485_CR23 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2007.05.003 – volume: 44 start-page: 139 year: 2012 ident: 11485_CR18 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2012.04.008 – volume: 37 start-page: 288 issue: 3 year: 2010 ident: 11485_CR3 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2009.11.002 – volume: 78 start-page: 621 issue: 21 year: 2019 ident: 11485_CR16 publication-title: Environ Earth Sci doi: 10.1007/s12665-019-8573-9 – ident: 11485_CR4 – ident: 11485_CR8 – volume: 52 start-page: 1269 year: 1952 ident: 11485_CR1 publication-title: American Society Test Mater – volume: 38 start-page: 299 issue: 4 year: 2005 ident: 11485_CR14 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-005-0056-5 – volume: 28 start-page: 1975 issue: 11 year: 2006 ident: 11485_CR25 publication-title: Chin J Geotech Eng – volume: 31 start-page: 106 issue: 1 year: 2012 ident: 11485_CR20 publication-title: Chin J Rock Mech Eng |
| SSID | ssj0000313906 |
| Score | 2.4054837 |
| Snippet | The strength reduction method (SRM) based on the generalized Hoek‒Brown (GHB) criterion has become an important and popular topic to analyse the stability of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 168 |
| SubjectTerms | Accuracy Biogeosciences Civil engineering compression strength Compressive strength Criteria Curve fitting Earth and Environmental Science Earth science Earth Sciences Environmental Science and Engineering Failure Geochemistry Geology Graphic methods Graphical methods Hydrology/Water Resources Limestone Mathematical analysis Mining engineering Original Article Parameters Reduction Reliability engineering Rock Rocks Safety factors Shear strength Simulation Simulation analysis simulation models Slope stability Stability analysis Terrestrial Pollution Theoretical analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngRn1hfRPCmwX11HwcRFbUIFhELvS3JJpGi7FbbCnryN_gT_SXOZHdbFPS8mw07SWa-ycx8A7Df0o4KXC25GyrFAyriin1peJwY3zNSZJmke8ibTtjuBte9Vm8GOnUtDKVV1jrRKmpVZHRHfkTxKB_Rh--dDJ45dY2i6GrdQkNUrRXUsaUYm4U5j5ixGjB3dtG5vZvcuhBTYWIbbhLRGw-92Kkqacp6OjRXVLAccHITWjz8aa2mEPRX1NQao8slWKxQJDstl30ZZnS-AvNXtkvv2yqM7lDLseFTMdAM0Z_Nf31jYkLCych2KVbkDOEfy6puB8yIPiWpM1tkxLLxy6tmiGntSw8lPXX_Hce1C_349fFpPXg7Gndxka9B9_Li_rzNq_YKXCBmG3E_c2KNvxkLdKo8IVoa0YDJDEIkqaTrGzz7kUEHxxEJuUE6FEFkCJOErhLG8dehkRe53gAWOTrTiSvRtqlAKSOlUa7ydBQIZRwlm3BQizEdlCwa6ZQvmYSeotBTK_Q0bMJ2Lem0OlHDdLr-TdibPMazQAEOketiPEx9VN-hR5x1TTisV2j6ib9n3Px_xi1Y8GhT2NSzbWiMXsZ6B7HISO5WG-wb6XDdow priority: 102 providerName: ProQuest |
| Title | Rock slope stability assessment based on the critical failure state curve for the generalized Hoek‒Brown criterion |
| URI | https://link.springer.com/article/10.1007/s12665-024-11485-6 https://www.proquest.com/docview/2954356532 https://www.proquest.com/docview/3153622119 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AFBBN dateStart: 20091101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1866-6299 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000313906 issn: 1866-6280 databaseCode: U2A dateStart: 20091101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfAiPrFaSwRvGth3t8cqfaBYpFiopyXZJCLKbum2Qj35G_yJ_hIn6W4XRQ-e9rBJlp1MMl8yM98AnPnSEp4tObUDIaink7hClysatpTrKM7imOt7yNtB0B9512N_nCeFZUW0e-GSNDt1meyGtkRnE3tUY3ifButQ9TWdF2rxyGmvblY0G2HLFNXUZG40cEIrz5b5fZjvFqmEmT88o8bgdLdhK0eKpL2c2h1Yk8kubPRMJd7FHsyGuJOR7CWdSIIIz8S4LghbEW0SbZ8ESROCEI_EeUUDotiTDkQnJpGIxPPpqySIW02jxyUF9dMb9uun8vnz_cOc0k1v1NQ02YdRt3N_1ad5CQXKEJfNqBtbocTfDBkenBzGfIkWX8UKYRAX3HYVru-mwkOMxVr6qCMD5jWVxh2BLZiy3AOoJGkiD4E0LRnLls3RfglPCMW5ErZwZNNjQlmC1-C8EGM0WTJlRCUnshZ6hEKPjNCjoAb1QtJRvmqySPscXUSYrlOD09Vr1HftxGCJTOdZ5OIWHTial64GF8UMlUP8_cWj_zU_hk1HK4kJN6tDZTadyxPEHzPegGq793DTwedlZ3A3bBj1-wLWdtc9 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVgguFb8itBQjwQksdm1ns3uoEP0jpW2EqlbqzdhrG1Wg3dAkrcKJZ-CBeBiehBlnNxFIcOt517Y0nvF88w_wvOsTp1JveZo5xxUVceXSBp4XQYpgTVla8kMeDbL-qXp_1j1bgp9tLQylVbZvYnyoXV2Sj_w1xaMkog8p3gy_cpoaRdHVdoSGaUYruM3YYqwp7Djw0ys04Uab-zt43y-E2Ns92e7zZsoANwhdxlyWSe7RKMgN2hbCmK5HpRjKgEjBOpvKgCLQC4jzE1OQNeAzo3qBVHOWOhMSifvegBUlVYHG38rW7uDD8dzLQ50RizjgkxrL8UzkSVO5M6vfQ_VIBdKKk1nS5dmf2nEBef-K0kblt3cHVhvUyt7O2OwuLPnqHtx8F6cCT-_D-BhfVTb6Ug89Q7QZ822nzMybfjLSlY7VFUO4ycpmugIL5pyS4lksamLl5OLSM8TQ8adPs3bY599wXb_2n399_xE9BnE1Sk1dPYDTayH0Q1iu6so_AtZLfOmL1KIudcq5YG1wqRO-p4wLibMdeNmSUQ9nXTv0oj8zEV0j0XUkus46sN5SWjcSPNILfuvAs_lnlD0KqJjK15ORlqguMkE98jrwqr2hxRb_PvHx_098Crf6J0eH-nB_cLAGtwUxSEx7W4fl8cXEP0EcNLYbDbMx-Hjd_P0bgMkZAg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dThQxFD5BiIYboiBxAbUmcKUNM53Z2dkLYlRYlx83hEDCXW2nLSGQmYXdhaxXPoOP5WP4JJ7T7exGE73jeqZtcnp-vtPzB7DZtJFJY6t5nBnDUyriyhPteN52iXBaFYWmd8gvvax7lh6cN8_n4GddC0NplbVO9IraVAW9kW9TPCpB9JGIbRfSIo53O-_7N5wmSFGktR6nocKYBbPj242FIo9DO75Hd26ws7-Ld78lRGfv9FOXh4kDXCGMGfKkiHKLDkKu0M8QSjUtGkhXOEQN2ug4cSgOLYeYP1Jt8gxsptKWIzOdxUa5KMF9H8ECBb9QSSx83Osdn0xffKhLYtsP-6QmczwTeRSqeCa1fGgqqVg65eSiNHn2p6Wcwd-_IrbeEHaewlJAsOzDhOWewZwtl-HxZz8heLwCwxPUsGxwXfUtQ-Tpc2_HTE0bgDKym4ZVJUPoyYowaYE5dUkJ8swXOLFidHtnGeJp_9PFpDX25Tdc163s1a_vP_zrgV-NElSVz-HsQQi9CvNlVdoXwFqRLWw71mhXTWqM09qZ2AjbSpVxkdENeFuTUfYnHTzkrFczEV0i0aUnuswasFFTWgZpHsgZ7zXgzfQzyiEFV1Rpq9FAJmg6MkH98hrwrr6h2Rb_PnHt_ye-hifI5_Jov3e4DouC-MNnwG3A_PB2ZF8iJBrqV4HXGHx9aPb-DXbsHTE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+slope+stability+assessment+based+on+the+critical+failure+state+curve+for+the+generalized+Hoek%E2%80%92Brown+criterion&rft.jtitle=Environmental+earth+sciences&rft.au=Zhang%2C+Wenlian&rft.au=Sun%2C+Xiaoyun&rft.au=Yuan%2C+Wei&rft.au=Liu%2C+Ting&rft.date=2024-03-01&rft.issn=1866-6280&rft.eissn=1866-6299&rft.volume=83&rft.issue=6&rft_id=info:doi/10.1007%2Fs12665-024-11485-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12665_024_11485_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-6280&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-6280&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-6280&client=summon |