Emerging trends in applications and infrastructures for computational biology, bioinformatics, and systems biology : systems and applications

Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications covers the latest trends in the field with special emphasis on their applications. The first part covers the major areas of computational biology, development...

Full description

Saved in:
Bibliographic Details
Main Authors Tran, Quoc-Nam, Arabnia, Hamid
Format eBook Book
LanguageEnglish
Published Cambridge, Mass Morgan Kaufmann, an imprint of Elsevier 2016
Elsevier Science & Technology
Morgan Kaufmann
Edition1
SeriesEmerging trends in computer science and applied computing
Subjects
Online AccessGet full text
ISBN9780128042038
0128042036
DOI10.1016/C2015-0-01779-8

Cover

Table of Contents:
  • Appendix D.3. Watson-Crick Base Pairing Constraint -- Appendix D.4. Base Pair Stacking Constraint -- References -- Chapter 10: Effects of Excessive Water Intake on Body-Fluid Homeostasis and the Cardiovascular System - a Computer Simulat ... -- 10.1. Introduction -- 10.2. Computational Model -- 10.2.1. Cardiovascular hemodynamics: CVSim -- 10.2.2. Body-Fluid Homeostasis: A Renal Function Model -- 10.2.3. Coupling of Systems Models -- 10.3. Results and Validation -- 10.3.1. Modeling of Short-Term Responses -- 10.3.1.1. Cardiovascular responses -- 10.3.1.2. Body-fluid homeostasis -- 10.3.2. Modeling of Long-Term Responses to Chronic Excessive Water Intake -- 10.4. Conclusions -- References -- Chapter 11: A DNA-Based Migration Modeling of the Lizards in Florida Scrub Habitat -- 11.1. Introduction -- 11.2. Related Works -- 11.3. Methodology -- 11.3.1. ECON Clustering -- 11.3.2. Discovery of Migration Patterns -- 11.3.3. Analysis of the Migration Patterns -- 11.4. Empirical Results -- 11.5. Conclusion and Future Research -- References -- Chapter 12: Reconstruction of Gene Regulatory Networks Using Principal Component Analysis -- 12.1. Introduction -- 12.2. Methods -- 12.2.1. State Space Model -- 12.2.2. Simplified Linear Model -- 12.3. Results and Discussion -- 12.4. Conclusion -- References -- Chapter 13: nD-PDPA: n-Dimensional Probability Density Profile Analysis -- 13.1. Introduction -- 13.2. Residual Dipolar Coupling -- 13.3. Method -- 13.4. Scoring of nD-PDPA -- 13.5. Data Preparation -- 13.6. Results and Discussion -- 13.6.1. Experiment 1 -- 13.6.2. Experiment 2 -- 13.6.3. Experiment 3 -- 13.6.4. Experiment 4 -- 13.7. Conclusion -- References -- Chapter 14: Biomembranes Under Oxidative Stress: Insights from Molecular Dynamics Simulations -- 14.1. Introduction -- 14.2. Theoretical Modeling -- 14.3. Case Studies
  • Chapter 4: Spontaneous Activity Characterization in Spiking Neural Systems With Log-Normal Synaptic Weight Distribution -- 4.1. Introduction -- 4.2. Models of Spontaneous Activity -- 4.3. Model and Methods -- 4.3.1. LIF Neural System Applied Synaptic Input -- 4.3.2. Izhikevich Neural System Used for Synaptic Input -- 4.3.3. Evaluation Indices -- 4.4. Results and Evaluations -- 4.4.1. Effect of Input Spike From Weak Synapse in LIF Neural System -- 4.4.2. Spike Transmission in LIF Neural System -- 4.4.3. Spike Transmission in Izhikevich Neural System -- 4.5. Conclusions -- References -- Chapter 5: Comparison Between OpenMP and Mpich Optimized Parallel Implementations of a Cellular Automaton that Simulates th ... -- 5.1. Introduction -- 5.1.1. The Cellular Automaton Game of Life -- 5.2. MPICH Optimized Approach of the Cellular Automaton -- 5.2.1. MPI Standard -- 5.2.2. Description of the MPICH Approach of the Cellular Automaton -- 5.2.3. MPICH Implementation of the Cellular Automaton -- Code 1. Program code of the MPICH version of Game of Life -- 5.3. OpenMP Optimized Approach of the Cellular Automaton -- 5.3.1. Open Multiprocessing -- 5.3.2. Description of the OpenMP Approach of the Cellular Automaton -- 5.3.3. OpenMP Implementation of the Cellular Automaton -- Code 2. Program code of the OpenMP version of Game of Life -- 5.4. Execution Time Comparison of the Two Parallel Implementations -- 5.5. Conclusions -- References -- Section II: Bioinformatics, Simulation, Data Mining, Pattern Discovery, and Prediction Methods -- Chapter 6: Structure Calculation of α, α/β, β Proteins from Residual Dipolar Coupling Data Using Redcraft -- 6.1. Introduction -- 6.2. Background and Method -- 6.2.1. Residual Dipolar Couplings -- 6.2.2. REDCRAFT Structural Fitness Calculation -- 6.2.3. The Ensemble of Test Proteins -- 6.2.4. Simulated RDC Data -- 6.2.5. Evaluation
  • 14.3.1. Permeability of Biomembranes to ROS -- 14.3.2. Photosensitizer Interaction With Membranes -- 14.4. Outlook -- 14.5. Conclusion and Summary -- References -- Chapter 15: Feature Selection and Classification Of Microarray Data Using Machine Learning Techniques -- 15.1. Introduction -- 15.2. Literature Review -- 15.3. Methodology Used -- 15.3.1. Feature Selection Methodology -- 15.3.1.1. t-Statistic -- 15.3.1.2. F-test/ANOVA/(BSS/WSS) -- 15.3.1.3. Wilcoxon rank sum -- 15.3.1.4. χ2-test -- 15.3.1.5. Signal-to-noise ratio -- 15.3.1.6. Information gain -- 15.3.1.7. Fisher score -- 15.3.1.8. Gini index -- 15.3.2. Classification Methodologies -- 15.3.2.1. Logistic regression classifier -- 15.3.2.2. Naive Bayes classifier -- 15.3.2.3. Artificial neural network -- 15.3.2.4. Radial basis function network -- 15.3.2.5. Probabilistic neural network -- 15.3.2.6. K-nearest neighbor -- 15.3.2.7. Support vector machine -- 15.4. Performance Evaluation Parameters -- 15.5. Empirical Analysis of Existing Techniques -- 15.5.1. Results and Interpretation -- 15.5.1.1. Different data sets used -- 15.5.1.2. Logistic regression -- 15.5.1.3. Naive Bayes -- 15.5.1.4. Artificial neural network -- 15.5.1.5. Radial basis function network -- 15.5.1.6. Probabilistic neural network -- 15.5.1.7. K-nearest neighbor -- 15.5.1.8. Support vector machine -- 15.5.1.9. Comparative analysis -- 15.6. Conclusion -- References -- Chapter 16: New Directions in Deterministic Metabolism Modeling of Sheep -- 16.1. Introduction -- 16.2. Advantages of Whole-Body Metabolism Modeling -- 16.3. Review of Work to Date -- 16.4. Outcomes -- 16.5. Summary -- 16.6. Future Work -- References -- Chapter 17: Differentiating Cancer from Normal Protein-Protein Interactions Through Network Analysis -- 17.1. Introduction -- 17.2. Related Literature -- 17.3. Network Analysis: Proposed Methods -- 17.3.1. Data Set
  • Front Cover -- Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: System ... -- Copyright -- Contents -- List of Contributors -- Preface -- Introduction -- Acknowledgments -- Section I: Computational Biology - Methodologies and Algorithms -- Chapter 1: Using Methylation Patterns for Reconstructing Cell Division Dynamics: Assessing Validation Experiments -- 1.1. Introduction -- 1.1.1. Using Methylation Patterns -- 1.1.2. Bisulfite Treatment -- 1.2. Errors, Biases, and Uncertainty in Bisulfite Sequencing -- 1.3. Model for Degradation and Sampling -- 1.3.1. Modeling -- 1.3.2. Simulation Study: Effects of Degradation -- 1.4. Statistical Inference Method -- 1.5. Simulation Study: Bayesian Inference -- 1.6. Discussion -- 1.6.1. Different Experiments -- 1.6.2. Opportunities -- 1.6.3. Conclusions -- References -- Chapter 2: A Directional Cellular Dynamic Under the Control of a Diffusing Energy for Tissue Morphogenesis: Phenotype and ... -- 2.1. Introduction -- 2.2. Mathematical Morphological Dynamics -- 2.2.1. Gene and Status Expression -- 2.3. Attainable Sets of Phenotypes -- 2.3.1. Implementation -- 2.4. Prediction Tool Based on a Coevolution of a Dynamic Tissue with an Energy Diffusion -- 2.4.1. Prediction of Tissue Growth -- 2.4.2. Energy Diffusion Model -- 2.4.2.1. Mitosis -- 2.4.2.2. Quiescence -- 2.4.2.3. Apoptosis -- 2.4.3. Results -- 2.5. Discussion -- References -- Chapter 3: A Feature Learning Framework for Histology Images Classification -- 3.1. Introduction -- 3.2. Methods -- 3.2.1. Color and Color Spaces -- 3.2.2. Features Extraction and Classification -- 3.3. Proposed System -- 3.4. Image Data Sets -- 3.5. Experimental Results -- 3.6. Conclusion -- References
  • 6.3. Results and Discussion -- 6.3.1. Structure Calculation of an α Protein -- 6.3.2. Structure Calculation of an α/β Protein -- 6.3.3. Structure Calculation of a β Protein -- 6.3.4. Effect of Error in Structure Calculation -- 6.4. Conclusion -- References -- Chapter 7: Architectural Topography of the α-Subunit Cytoplasmic Loop in the Gabaa Receptor -- 7.1. Introduction -- 7.2. Methodological Approach -- 7.3. Results and Discussion -- 7.3.1. Sequence Comparison of α Subunits -- 7.3.2. Subdomains of the ILD -- 7.3.3. Sequence Patterns in the ILD -- 7.3.4. Protein Architecture of the ILD -- 7.3.5. Role of the α1 ILD in GABAAR -- 7.4. Conclusions -- References -- Chapter 8: Finding Long-Term Influence and Sensitivity of Genes Using Probabilistic Genetic Regulatory Networks -- 8.1. Introduction -- 8.2. Influence and Sensitivity Factors of Genes in PBNs -- 8.2.1. Influence Factor of Genes -- 8.2.2. Impact Factor of Genes -- 8.2.3. Boolean Algebra -- 8.3. A Biological Case Study -- 8.3.1. Gliomas Case Study -- 8.3.2. Stable Genes -- 8.3.3. Sensitive Genes -- 8.3.4. Hi-Impact Genes -- 8.4. Conclusion -- References -- Chapter 9: The Application of Grammar Space Entropy in Rna Secondary Structure Modeling -- 9.1. Introduction -- 9.2. A Shannon Entropy for the SCFG Space -- 9.2.1. An Intuitive Example -- 9.2.2. Generalization to All Structurally Unambiguous Grammars -- 9.3. GS Entropy of RNA Folding Models -- 9.4. The Typical Set Criterion -- 9.4.1. Future Work in TSC-Based Model Training Algorithms -- 9.5. Discussion and Conclusions -- Appendix A. Calculating Sum of Probabilities of Derivations in an SCFG -- Appendix B. Computing GS Entropy of an SCFG -- Appendix C. An Example of Calculating the GS Entropy -- Appendix D. GS Entropy of the Basic Grammar -- Appendix D.1. Grammar Description -- Appendix D.2. Calculations
  • 17.3.2. Basic Network Properties