Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for...
Saved in:
| Published in | Hydrological processes Vol. 27; no. 3; pp. 333 - 346 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Blackwell Publishing Ltd
30.01.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6087 1099-1085 |
| DOI | 10.1002/hyp.8425 |
Cover
| Abstract | A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd. |
| Author | Collischonn, Walter Buarque, Diogo Costa Paiva, Rodrigo C. D. |
| Author_xml | – sequence: 1 givenname: Rodrigo C. D. surname: Paiva fullname: Paiva, Rodrigo C. D. email: Rodrigo C. D. Paiva, Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500 - Porto Alegre, 90050-260, RS - Brasil., rodrigocdpaiva@gmail.com organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil – sequence: 2 givenname: Walter surname: Collischonn fullname: Collischonn, Walter organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil – sequence: 3 givenname: Diogo Costa surname: Buarque fullname: Buarque, Diogo Costa organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil |
| BookMark | eNp1kEFPwjAYhhuDiYAm_oQevQzbdVu7IyECJgQ9KEYvTem-QrWspJvR-esdoiYaPb2X533zfU8PdUpfAkKnlAwoIfH5utkORBKnB6hLSZ5HlIi0g7pEiDTKiOBHqFdVj4SQhAjSRQ8L5WyhautL7A1W2Dw7h9dNEXzRlGpjNd74Ahw2PmCnwgqiSisHe8T51RfgbLnCtsT1GvBwo958eYwOjXIVnHxmH92OL25G02h2NbkcDWeRYnHWHgUEKAPOiiyBhBWxSIFzxTIwic44VUuquWlTpUYvM25yoguVFmwJDHbZR2f7XR18VQUwchvsRoVGUiJ3TmTrRO6ctOjgF6pt_fF8HZR1fxWifeHFOmj-HZbT--ufvK1qeP3mVXiSGWc8lXfziRRkHC-yfCbn7B3-voV4 |
| CitedBy_id | crossref_primary_10_3390_rs12244087 crossref_primary_10_1002_wrcr_20412 crossref_primary_10_1029_2020WR028648 crossref_primary_10_3390_w14193117 crossref_primary_10_1029_2020WR028647 crossref_primary_10_1029_2019WR026081 crossref_primary_10_1002_wrcr_20212 crossref_primary_10_1002_2014WR016618 crossref_primary_10_1016_j_jhydrol_2022_128481 crossref_primary_10_1016_j_scitotenv_2017_04_092 crossref_primary_10_3390_ijerph19137638 crossref_primary_10_1016_j_rsase_2024_101352 crossref_primary_10_5194_hess_22_2135_2018 crossref_primary_10_1175_JHM_D_14_0068_1 crossref_primary_10_1007_s10712_013_9269_4 crossref_primary_10_5194_hess_21_4629_2017 crossref_primary_10_5194_hess_21_117_2017 crossref_primary_10_1002_2016GL070260 crossref_primary_10_1061__ASCE_HE_1943_5584_0001202 crossref_primary_10_5194_hess_16_3127_2012 crossref_primary_10_5194_bg_17_4297_2020 crossref_primary_10_1016_j_jag_2017_12_004 crossref_primary_10_5194_hess_26_5473_2022 crossref_primary_10_1002_wrcr_20521 crossref_primary_10_1016_j_jhydrol_2022_127842 crossref_primary_10_5194_gmd_10_3913_2017 crossref_primary_10_1002_2017GL075502 crossref_primary_10_1007_s10872_014_0254_4 crossref_primary_10_1080_01431161_2024_2433752 crossref_primary_10_1002_esp_5306 crossref_primary_10_1016_j_envsoft_2013_08_010 crossref_primary_10_1029_2021MS002463 crossref_primary_10_1590_2318_0331_241920180031 crossref_primary_10_5194_gmd_10_1233_2017 crossref_primary_10_5194_hess_21_5143_2017 crossref_primary_10_1016_j_jhydrol_2014_06_048 crossref_primary_10_1590_2318_0331_011616009 crossref_primary_10_5194_hess_27_3505_2023 crossref_primary_10_1029_2019EF001198 crossref_primary_10_1088_1748_9326_aa7250 crossref_primary_10_1007_s11069_024_06407_5 crossref_primary_10_1016_j_jhydrol_2015_02_049 crossref_primary_10_1016_j_jhydrol_2020_125430 crossref_primary_10_1002_2014WR015662 crossref_primary_10_1061__ASCE_HE_1943_5584_0001152 crossref_primary_10_1029_2021WR031819 crossref_primary_10_1590_0102_77863540076 crossref_primary_10_1016_j_jhydrol_2015_07_026 crossref_primary_10_1002_2017WR020519 crossref_primary_10_5194_hess_23_1281_2019 crossref_primary_10_1002_2016WR019396 crossref_primary_10_1080_15715124_2014_880707 crossref_primary_10_2166_wcc_2024_262 crossref_primary_10_5194_hess_20_3799_2016 crossref_primary_10_5194_hess_27_647_2023 crossref_primary_10_1002_hyp_11138 crossref_primary_10_1016_j_ejrh_2021_100934 crossref_primary_10_1016_j_envsoft_2013_09_013 crossref_primary_10_1111_jfr3_12147 crossref_primary_10_1016_j_envsoft_2014_11_012 crossref_primary_10_3390_rs71215822 crossref_primary_10_1029_2023WR034739 crossref_primary_10_1002_wrcr_20067 crossref_primary_10_3390_ijgi10020094 crossref_primary_10_5194_hess_17_2929_2013 crossref_primary_10_5194_hess_23_1263_2019 crossref_primary_10_1016_j_envsoft_2022_105332 crossref_primary_10_1111_jfr3_12177 crossref_primary_10_4236_jwarp_2016_812087 crossref_primary_10_1007_s40899_020_00419_2 crossref_primary_10_3389_fenvs_2021_817684 |
| Cites_doi | 10.1002/hyp.7747 10.1029/1999JD900200 10.1061/(ASCE)0733-9429(2008)134:4(475) 10.1002/hyp.7889 10.1016/j.rse.2003.04.001 10.1029/2010WR009726 10.1029/2007GL029447 10.1016/j.jhydrol.2007.02.008 10.1080/014311698214181 10.1016/j.jhydrol.2008.07.032 10.1016/j.jhydrol.2009.07.046 10.1016/j.jhydrol.2009.09.054 10.1623/hysj.52.5.878 10.1029/2003JD003497 10.1016/S0022-1694(97)00107-8 10.1016/j.jhydrol.2004.08.028 10.1016/j.jhydrol.2009.06.004 10.1002/hyp.7252 10.1007/s00382‐011‐1054‐9) 10.1016/j.jhydrol.2011.06.007 10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2 10.1016/S0022-1694(01)00490-5 10.1029/2010JD014474 10.1002/hyp.6850 10.1016/S0022-1694(02)00121-X 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.5194/hess-11-1645-2007 10.1029/2006JD007847 10.1029/2005RG000183 10.1016/0022-1694(70)90255-6 10.1002/hyp.7387 10.1109/JPROC.2010.2043031 10.1029/2007JD009376 10.1029/WR019i003p00701 10.1016/j.jhydrol.2007.10.055 10.1016/j.jhydrol.2007.08.004 10.1061/(ASCE)0733-9429(2009)135:2(96) 10.1061/(ASCE)0733-9429(1999)125:6(610) 10.1029/GB003i003p00241 10.1029/2006RG000197 10.1016/j.rse.2005.10.027 10.1007/BF01704664 10.1061/(ASCE)HE.1943-5584.0000162 10.1016/j.rse.2010.05.020 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/hyp.8425 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 346 |
| ExternalDocumentID | 10_1002_hyp_8425 HYP8425 ark_67375_WNG_80F2V69L_N |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWD AAYXX CITATION |
| ID | FETCH-LOGICAL-a3265-6e0e13e73d64e43d285e77a36ef4c671ab1c7f71aa5fcb67f90cda5d3be3ea5d3 |
| IEDL.DBID | DR2 |
| ISSN | 0885-6087 |
| IngestDate | Wed Oct 01 02:29:45 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:33:50 EST 2025 Sun Sep 21 06:20:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3265-6e0e13e73d64e43d285e77a36ef4c671ab1c7f71aa5fcb67f90cda5d3be3ea5d3 |
| Notes | ark:/67375/WNG-80F2V69L-N ArticleID:HYP8425 istex:973E3733259403FA9295605E6C32170C9117B941 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1002_hyp_8425 crossref_citationtrail_10_1002_hyp_8425 wiley_primary_10_1002_hyp_8425_HYP8425 istex_primary_ark_67375_WNG_80F2V69L_N |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-30 30 January 2013 |
| PublicationDateYYYYMMDD | 2013-01-30 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Alsdorf DE, Rodrıguez E, Lettenmaier DP. 2007b. Measuring surface water from space. Reviews of Geophysics 45: RG2002. DOI: 10.1029/2006RG000197. Alsdorf D, Han S-C, Bates P, Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment 114: 2448-2456. Meade RH, Rayol JM, Da Conceição SC, Natividade JRG. 1991. Backwater effects in the Amazon River basin of Brazil. Environmental Geology and Water Sciences 18(2): 105-114. Horritt MS, Bates PD. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268: 87-99. Castellarin A, Di Baldassarre G, Bates PD, Brath A. 2009. Optimal Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models. Journal of Hydraulic Engineering 135(2): 96-105. Durand M, Fu LL, Lettenmaier D, Alsdorf DE, Rodríguez E, Fernandez DE. 2010. The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE. 98(5): 766-779. Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM. 2010. Large-Scale Hydrodynamic Modeling of a Complex River Network and Floodplains. Journal of Hydrologic Engineering 15(2): 152-165. Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: W04501. DOI: 10.1029/2010WR009726 Biancamaria S, Bates PD, Boone A, Mognard NM. 2009. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of Hydrology 379: 136-150. Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models, part I - a discussion of principles. Journal of Hydrology 10: 282-290. Nijssen B, Lettenmaier D. 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research 109: D02103. DOI: 10.1029/2003JD003497 Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR. 2010. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes 25: 1228-1242. Collischonn W, Tucci CEM, Haas R, Andreolli I. 2005. Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology 305: 87-98, 2005. Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C. 2011. Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, On line. DOI: 10.1007/s00382-011-1054-9 Tang X-N, Knight DW, Samuels PG. 1999. Volume conservation in variable parameter Muskingum-Cunge method. Journal of Hydraulic Engineering 125(6): 610-620. Collischonn B, Collischonn W, Tucci C. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology 207. Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D. 2007. The shuttle radartopography mission. Reviews of Geophysics 45(2). Wong THF, Laurenson EM. 1983. Wave Speed-Discharge Relations in Natural Channels. Water Resources Research 19(3): 701-706. Lian Y, Chan I-C, Singh J, Demissie M, Knapp V, Xie H. 2007. Coupling of hydrologic and hydraulic models for the Illinois River Basin. Journal of Hydrology 344: 210-222. Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: D12107. DOI: 10.1029/2006JD007847 Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23(8): 1221-1235. Alsdorf D, Bates P, Melack J, Wilson M, Dunne T. 2007a. The spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters 34: L08402. Coe MT, Costa MH, Howard EA. 2008. Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations. Hydrological Processes 22(14): 2542-2553. Vorosmarty CJ, Moore B, Grace AL, et al. 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3(3): 241-265. Dadson SJ, Ashpole I, Harris P, Davies HN, Clark DB, Blyth E, Taylor CM. 2010. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research 115: D23114. DOI: 10.1029/2010JD014474 Kalnay E, et al. 1996. The NCEP/NCAR 40-year Reanalysis Project. Bulletin of the American Meteorological Society 77: 437-471. Bonnet MP, Barroux G, Martinez JM, Seyler F, Turcq PM, Cochonneau G, Melack JM, Boaventura G, Bourgoin LM, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler F. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18-30 pp. Remo JWF, Pinter N. 2007. Retro-modeling the Middle Mississippi River. Journal of Hydrology 337: 421-435. Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology 204: 83-97. Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M. 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404-428. Horritt MS, Bates PD. 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology 253: 239-249. Kosuth P, Callède J, Laraque A, Filizola N, Guyot JL, Seyler P, Fritsch JM, Guimarães V. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrological Processes 23(22): 3141-3150. Todini E. 2007. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences 11: 1645-1659. Decharme B, Douville H, Prigent C, Papa F, Aires F. 2008. A new river flooding scheme for global climate applications: Off-line evaluation over South America. Journal of Geophysical Research 113: D11110. DOI: 10.1029/2007JD009376 Trigg MA, Wilson MD, Bates PD, Horritt MS, Alsdorf DE, Forsberg BR, Vega MC. 2009. Amazon flood wave hydraulics. Journal of Hydrology 374: 92-105. Mauser W, Bach H. 2009. PROMET - Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. Journal of Hydrology 376(3-4): 362-377. Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology 406(3-4): 170-181. Liston GE, Sud YC, Wood EF. 1994. Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin. Journal of Applied Meteorology 33: 394-405. Sippel SJ, Hamilton SK, Melack JM, Novo EMM. 1998. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. International Journal of Remote Sensing 19(16): 3055-3074. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment 100: 252-264. Collischonn W, Allasia DG, Silva BC, Tucci CEM. 2007. The MGB-IPH model for large-scale rainfall-runoff modeling. Hydrological Sciences Journal 52: 878-895. Perumal M, Sahoo B. 2008. Volume conservation controversy of the variable parameter Muskingum- Cunge method. Journal of Hydraulic Engineering 134(4): 475-485. Singh VP, Frevert DK (eds). 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications: Highlands Ranch, CO. Chow VT. 1959. Open Channel Hydraulics. McGraw-Hill: 680. Ponce VM. 1989. Engineering Hydrology. Prentice Hall. Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences, (2d ed). International Geophysics Series 91: Academic Press, pp. 627. Arora VK, Chiew FHS, Grayson RB. 1999. A river flow routing scheme for general circulation models. Journal of Geophysical Research 104: 14,347-14,357, 1999. Cunge JA, Holly FM, Verney A. 1980. Practical Aspects of Computational River Hydraulics. Pitman Advanced Publishing Program. Eva HD, De Miranda EE, Di Bella CM, Gond V. 2002. A Vegetation map of South America. EUR 20159 EN, European Commission: Luxembourg. Getirana ACV, Bonnet M-P, Rotunno Filho OC, Collischonn W, Guyot J-L, Seyler F, Mansur WJ. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological Processes 24(22): 3219-3236. 2010; 98 1991; 18 2007; 344 2010; 15 1983; 19 2008; 349 1999; 125 1978 1996; 77 2001; 253 2011; 406 1998; 19 2010; 25 2010; 24 2007; 337 2010; 114 2010; 115 2002; 268 2007a; 34 2005; 305 1994; 33 2008; 22 1982 1980 2008; 113 1998; 204 2003; 87 1989 2009; 23 1989; 3 2006; 91 2011 2009 2009; 374 2008 1997 2009; 376 1970; 10 2006 2009; 135 2005 2007; 52 2002 2004; 109 1999; 104 2007; 11 1959 2009; 379 2007b; 45 2007; 112 2011; 47 2008; 134 2007; 45 2006; 100 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Eva HD (e_1_2_7_23_1) 2002 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 Chow VT (e_1_2_7_12_1) 1959 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Cunge JA (e_1_2_7_17_1) 1980 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 Wilks DS (e_1_2_7_56_1) 2006 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 Singh VP (e_1_2_7_48_1) 2002 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 Ponce VM (e_1_2_7_44_1) 1989 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models, part I - a discussion of principles. Journal of Hydrology 10: 282-290. – reference: Mauser W, Bach H. 2009. PROMET - Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. Journal of Hydrology 376(3-4): 362-377. – reference: Vorosmarty CJ, Moore B, Grace AL, et al. 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3(3): 241-265. – reference: Alsdorf D, Bates P, Melack J, Wilson M, Dunne T. 2007a. The spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters 34: L08402. – reference: Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: D12107. DOI: 10.1029/2006JD007847 – reference: Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences, (2d ed). International Geophysics Series 91: Academic Press, pp. 627. – reference: Nijssen B, Lettenmaier D. 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research 109: D02103. DOI: 10.1029/2003JD003497 – reference: Wong THF, Laurenson EM. 1983. Wave Speed-Discharge Relations in Natural Channels. Water Resources Research 19(3): 701-706. – reference: Todini E. 2007. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences 11: 1645-1659. – reference: Horritt MS, Bates PD. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268: 87-99. – reference: Bonnet MP, Barroux G, Martinez JM, Seyler F, Turcq PM, Cochonneau G, Melack JM, Boaventura G, Bourgoin LM, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler F. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18-30 pp. – reference: Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR. 2010. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes 25: 1228-1242. – reference: Arora VK, Chiew FHS, Grayson RB. 1999. A river flow routing scheme for general circulation models. Journal of Geophysical Research 104: 14,347-14,357, 1999. – reference: Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment 100: 252-264. – reference: Castellarin A, Di Baldassarre G, Bates PD, Brath A. 2009. Optimal Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models. Journal of Hydraulic Engineering 135(2): 96-105. – reference: Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M. 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404-428. – reference: Remo JWF, Pinter N. 2007. Retro-modeling the Middle Mississippi River. Journal of Hydrology 337: 421-435. – reference: Durand M, Fu LL, Lettenmaier D, Alsdorf DE, Rodríguez E, Fernandez DE. 2010. The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE. 98(5): 766-779. – reference: Chow VT. 1959. Open Channel Hydraulics. McGraw-Hill: 680. – reference: Sippel SJ, Hamilton SK, Melack JM, Novo EMM. 1998. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. International Journal of Remote Sensing 19(16): 3055-3074. – reference: Kalnay E, et al. 1996. The NCEP/NCAR 40-year Reanalysis Project. Bulletin of the American Meteorological Society 77: 437-471. – reference: Horritt MS, Bates PD. 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology 253: 239-249. – reference: Cunge JA, Holly FM, Verney A. 1980. Practical Aspects of Computational River Hydraulics. Pitman Advanced Publishing Program. – reference: Kosuth P, Callède J, Laraque A, Filizola N, Guyot JL, Seyler P, Fritsch JM, Guimarães V. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrological Processes 23(22): 3141-3150. – reference: Dadson SJ, Ashpole I, Harris P, Davies HN, Clark DB, Blyth E, Taylor CM. 2010. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research 115: D23114. DOI: 10.1029/2010JD014474 – reference: Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: W04501. DOI: 10.1029/2010WR009726 – reference: Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C. 2011. Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, On line. DOI: 10.1007/s00382-011-1054-9) – reference: Singh VP, Frevert DK (eds). 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications: Highlands Ranch, CO. – reference: Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D. 2007. The shuttle radartopography mission. Reviews of Geophysics 45(2). – reference: Liston GE, Sud YC, Wood EF. 1994. Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin. Journal of Applied Meteorology 33: 394-405. – reference: Alsdorf D, Han S-C, Bates P, Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment 114: 2448-2456. – reference: Alsdorf DE, Rodrıguez E, Lettenmaier DP. 2007b. Measuring surface water from space. Reviews of Geophysics 45: RG2002. DOI: 10.1029/2006RG000197. – reference: Decharme B, Douville H, Prigent C, Papa F, Aires F. 2008. A new river flooding scheme for global climate applications: Off-line evaluation over South America. Journal of Geophysical Research 113: D11110. DOI: 10.1029/2007JD009376 – reference: Getirana ACV, Bonnet M-P, Rotunno Filho OC, Collischonn W, Guyot J-L, Seyler F, Mansur WJ. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological Processes 24(22): 3219-3236. – reference: Tang X-N, Knight DW, Samuels PG. 1999. Volume conservation in variable parameter Muskingum-Cunge method. Journal of Hydraulic Engineering 125(6): 610-620. – reference: Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology 204: 83-97. – reference: Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23(8): 1221-1235. – reference: Meade RH, Rayol JM, Da Conceição SC, Natividade JRG. 1991. Backwater effects in the Amazon River basin of Brazil. Environmental Geology and Water Sciences 18(2): 105-114. – reference: Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology 406(3-4): 170-181. – reference: Collischonn B, Collischonn W, Tucci C. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology 207. – reference: Collischonn W, Tucci CEM, Haas R, Andreolli I. 2005. Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology 305: 87-98, 2005. – reference: Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM. 2010. Large-Scale Hydrodynamic Modeling of a Complex River Network and Floodplains. Journal of Hydrologic Engineering 15(2): 152-165. – reference: Trigg MA, Wilson MD, Bates PD, Horritt MS, Alsdorf DE, Forsberg BR, Vega MC. 2009. Amazon flood wave hydraulics. Journal of Hydrology 374: 92-105. – reference: Coe MT, Costa MH, Howard EA. 2008. Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations. Hydrological Processes 22(14): 2542-2553. – reference: Lian Y, Chan I-C, Singh J, Demissie M, Knapp V, Xie H. 2007. Coupling of hydrologic and hydraulic models for the Illinois River Basin. Journal of Hydrology 344: 210-222. – reference: Ponce VM. 1989. Engineering Hydrology. Prentice Hall. – reference: Biancamaria S, Bates PD, Boone A, Mognard NM. 2009. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of Hydrology 379: 136-150. – reference: Collischonn W, Allasia DG, Silva BC, Tucci CEM. 2007. The MGB-IPH model for large-scale rainfall-runoff modeling. Hydrological Sciences Journal 52: 878-895. – reference: Eva HD, De Miranda EE, Di Bella CM, Gond V. 2002. A Vegetation map of South America. EUR 20159 EN, European Commission: Luxembourg. – reference: Perumal M, Sahoo B. 2008. Volume conservation controversy of the variable parameter Muskingum- Cunge method. Journal of Hydraulic Engineering 134(4): 475-485. – volume: 23 start-page: 1221 issue: 8 year: 2009 end-page: 1235 article-title: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin publication-title: Hydrological Processes – year: 2009 – volume: 77 start-page: 437 year: 1996 end-page: 471 article-title: The NCEP/NCAR 40‐year Reanalysis Project publication-title: Bulletin of the American Meteorological Society – volume: 15 start-page: 152 issue: 2 year: 2010 end-page: 165 article-title: Large‐Scale Hydrodynamic Modeling of a Complex River Network and Floodplains publication-title: Journal of Hydrologic Engineering – volume: 114 start-page: 2448 year: 2010 end-page: 2456 article-title: Seasonal water storage on the Amazon floodplain measured from satellites publication-title: Remote Sensing of Environment – year: 2005 – volume: 135 start-page: 96 issue: 2 year: 2009 end-page: 105 article-title: Optimal Cross‐Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models publication-title: Journal of Hydraulic Engineering – year: 1989 – volume: 33 start-page: 394 year: 1994 end-page: 405 article-title: Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin publication-title: Journal of Applied Meteorology – volume: 11 start-page: 1645 year: 2007 end-page: 1659 article-title: A mass conservative and water storage consistent variable parameter Muskingum‐Cunge approach publication-title: Hydrology and Earth System Sciences – volume: 52 start-page: 878 year: 2007 end-page: 895 article-title: The MGB‐IPH model for large‐scale rainfall‐runoff modeling publication-title: Hydrological Sciences Journal – volume: 45 issue: 2 year: 2007 article-title: The shuttle radartopography mission publication-title: Reviews of Geophysics – volume: 134 start-page: 475 issue: 4 year: 2008 end-page: 485 article-title: Volume conservation controversy of the variable parameter Muskingum‐ Cunge method publication-title: Journal of Hydraulic Engineering – volume: 45 start-page: RG2002 year: 2007b article-title: Measuring surface water from space publication-title: Reviews of Geophysics – volume: 10 start-page: 282 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models, part I – a discussion of principles publication-title: Journal of Hydrology – volume: 19 start-page: 701 issue: 3 year: 1983 end-page: 706 article-title: Wave Speed‐Discharge Relations in Natural Channels publication-title: Water Resources Research – volume: 374 start-page: 92 year: 2009 end-page: 105 article-title: Amazon flood wave hydraulics publication-title: Journal of Hydrology – volume: 47 start-page: W04501 year: 2011 article-title: A physically based description of floodplain inundation dynamics in a global river routing model publication-title: Water Resources Research – year: 1982 – volume: 253 start-page: 239 year: 2001 end-page: 249 article-title: Effects of spatial resolution on a raster based model of flood flow publication-title: Journal of Hydrology – volume: 406 start-page: 170 issue: 3–4 year: 2011 end-page: 181 article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach publication-title: Journal of Hydrology – volume: 112 start-page: D12107 year: 2007 article-title: Global inundation dynamics inferred from multiple satellite observations, 1993–2000 publication-title: Journal of Geophysical Research – year: 1997 – volume: 113 start-page: D11110 year: 2008 article-title: A new river flooding scheme for global climate applications: Off‐line evaluation over South America publication-title: Journal of Geophysical Research – volume: 34 start-page: L08402 year: 2007a article-title: The spatial and temporal complexity of the Amazon flood measured from space publication-title: Geophysical Research Letters – volume: 104 start-page: 14,347 year: 1999 end-page: 14,357 article-title: A river flow routing scheme for general circulation models publication-title: Journal of Geophysical Research – volume: 24 start-page: 3219 issue: 22 year: 2010 end-page: 3236 article-title: Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data publication-title: Hydrological Processes – volume: 23 start-page: 3141 issue: 22 year: 2009 end-page: 3150 article-title: Sea‐tide effects on flows in the lower reaches of the Amazon River publication-title: Hydrological Processes – volume: 268 start-page: 87 year: 2002 end-page: 99 article-title: Evaluation of 1D and 2D numerical models for predicting river flood inundation publication-title: Journal of Hydrology – volume: 25 start-page: 1228 year: 2010 end-page: 1242 article-title: The droughts of 1996–1997 and 2004–2005 in Amazonia: hydrological response in the river main‐stem publication-title: Hydrological Processes – volume: 344 start-page: 210 year: 2007 end-page: 222 article-title: Coupling of hydrologic and hydraulic models for the Illinois River Basin publication-title: Journal of Hydrology – volume: 100 start-page: 252 year: 2006 end-page: 264 article-title: Preliminary results of ENVISAT RA‐2‐derived water levels validation over the Amazon basin publication-title: Remote Sensing of Environment – volume: 337 start-page: 421 year: 2007 end-page: 435 article-title: Retro‐modeling the Middle Mississippi River publication-title: Journal of Hydrology – volume: 125 start-page: 610 issue: 6 year: 1999 end-page: 620 article-title: Volume conservation in variable parameter Muskingum‐Cunge method publication-title: Journal of Hydraulic Engineering – start-page: 360 year: 2006 end-page: 370 – volume: 115 start-page: D23114 year: 2010 article-title: Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region publication-title: Journal of Geophysical Research – volume: 349 start-page: 18 year: 2008 end-page: 30 article-title: Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí) publication-title: Journal of Hydrology – volume: 18 start-page: 105 issue: 2 year: 1991 end-page: 114 article-title: Backwater effects in the Amazon River basin of Brazil publication-title: Environmental Geology and Water Sciences – volume: 91 start-page: 627 year: 2006 – volume: 22 start-page: 2542 issue: 14 year: 2008 end-page: 2553 article-title: Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations publication-title: Hydrological Processes – start-page: 207 year: 2008 article-title: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates publication-title: Journal of Hydrology – volume: 379 start-page: 136 year: 2009 end-page: 150 article-title: Large‐scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia publication-title: Journal of Hydrology – volume: 376 start-page: 362 issue: 3–4 year: 2009 end-page: 377 article-title: PROMET ‐ Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds publication-title: Journal of Hydrology – volume: 305 start-page: 87 year: 2005 end-page: 98 article-title: Forecasting river Uruguay flow using rainfall forecasts from a regional weather‐prediction model publication-title: Journal of Hydrology – volume: 98 start-page: 766 issue: 5 year: 2010 end-page: 779 article-title: The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies publication-title: Proceedings of the IEEE – volume: 204 start-page: 83 year: 1998 end-page: 97 article-title: Multi‐objective global optimization for hydrologic models publication-title: Journal of Hydrology – year: 1980 – year: 2011 article-title: Global off‐line evaluation of the ISBA‐TRIP flood model publication-title: Climate Dynamics – year: 2002 – year: 2006 – volume: 19 start-page: 3055 issue: 16 year: 1998 end-page: 3074 article-title: Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain publication-title: International Journal of Remote Sensing – volume: 109 start-page: D02103 year: 2004 article-title: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites publication-title: Journal of Geophysical Research – volume: 3 start-page: 241 issue: 3 year: 1989 end-page: 265 article-title: Continental scale models of water balance and fluvial transport: an application to South America publication-title: Global Biogeochemical Cycles – year: 1978 – volume: 87 start-page: 404 year: 2003 end-page: 428 article-title: Dual‐season mapping of wetland inundation and vegetation for the central Amazon basin publication-title: Remote Sensing of Environment – start-page: 680 year: 1959 – ident: e_1_2_7_26_1 doi: 10.1002/hyp.7747 – ident: e_1_2_7_7_1 doi: 10.1029/1999JD900200 – ident: e_1_2_7_43_1 doi: 10.1061/(ASCE)0733-9429(2008)134:4(475) – ident: e_1_2_7_52_1 doi: 10.1002/hyp.7889 – ident: e_1_2_7_28_1 doi: 10.1016/j.rse.2003.04.001 – ident: e_1_2_7_58_1 doi: 10.1029/2010WR009726 – ident: e_1_2_7_3_1 doi: 10.1029/2007GL029447 – ident: e_1_2_7_47_1 doi: 10.1016/j.jhydrol.2007.02.008 – ident: e_1_2_7_49_1 doi: 10.1080/014311698214181 – ident: e_1_2_7_15_1 doi: 10.1016/j.jhydrol.2008.07.032 – ident: e_1_2_7_36_1 doi: 10.1016/j.jhydrol.2009.07.046 – ident: e_1_2_7_33_1 – ident: e_1_2_7_9_1 doi: 10.1016/j.jhydrol.2009.09.054 – ident: e_1_2_7_14_1 doi: 10.1623/hysj.52.5.878 – ident: e_1_2_7_39_1 doi: 10.1029/2003JD003497 – ident: e_1_2_7_59_1 doi: 10.1016/S0022-1694(97)00107-8 – ident: e_1_2_7_2_1 – ident: e_1_2_7_16_1 doi: 10.1016/j.jhydrol.2004.08.028 – ident: e_1_2_7_53_1 doi: 10.1016/j.jhydrol.2009.06.004 – ident: e_1_2_7_21_1 – ident: e_1_2_7_8_1 doi: 10.1002/hyp.7252 – ident: e_1_2_7_27_1 – ident: e_1_2_7_19_1 doi: 10.1007/s00382‐011‐1054‐9) – ident: e_1_2_7_46_1 – ident: e_1_2_7_41_1 doi: 10.1016/j.jhydrol.2011.06.007 – ident: e_1_2_7_35_1 doi: 10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2 – ident: e_1_2_7_29_1 doi: 10.1016/S0022-1694(01)00490-5 – ident: e_1_2_7_54_1 – volume-title: Practical Aspects of Computational River Hydraulics year: 1980 ident: e_1_2_7_17_1 – ident: e_1_2_7_18_1 doi: 10.1029/2010JD014474 – ident: e_1_2_7_13_1 doi: 10.1002/hyp.6850 – ident: e_1_2_7_30_1 doi: 10.1016/S0022-1694(02)00121-X – ident: e_1_2_7_31_1 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume-title: Mathematical Models of Large Watershed Hydrology year: 2002 ident: e_1_2_7_48_1 – ident: e_1_2_7_51_1 doi: 10.5194/hess-11-1645-2007 – ident: e_1_2_7_40_1 – ident: e_1_2_7_45_1 doi: 10.1029/2006JD007847 – ident: e_1_2_7_24_1 doi: 10.1029/2005RG000183 – ident: e_1_2_7_38_1 doi: 10.1016/0022-1694(70)90255-6 – ident: e_1_2_7_32_1 doi: 10.1002/hyp.7387 – ident: e_1_2_7_22_1 doi: 10.1109/JPROC.2010.2043031 – ident: e_1_2_7_20_1 doi: 10.1029/2007JD009376 – volume-title: Engineering Hydrology year: 1989 ident: e_1_2_7_44_1 – ident: e_1_2_7_57_1 doi: 10.1029/WR019i003p00701 – start-page: 680 volume-title: Open Channel Hydraulics year: 1959 ident: e_1_2_7_12_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.jhydrol.2007.10.055 – ident: e_1_2_7_34_1 doi: 10.1016/j.jhydrol.2007.08.004 – volume-title: A Vegetation map of South America year: 2002 ident: e_1_2_7_23_1 – ident: e_1_2_7_11_1 doi: 10.1061/(ASCE)0733-9429(2009)135:2(96) – ident: e_1_2_7_50_1 doi: 10.1061/(ASCE)0733-9429(1999)125:6(610) – ident: e_1_2_7_55_1 doi: 10.1029/GB003i003p00241 – ident: e_1_2_7_5_1 doi: 10.1029/2006RG000197 – ident: e_1_2_7_25_1 doi: 10.1016/j.rse.2005.10.027 – ident: e_1_2_7_37_1 doi: 10.1007/BF01704664 – start-page: 627 volume-title: Statistical Methods in the Atmospheric Sciences year: 2006 ident: e_1_2_7_56_1 – ident: e_1_2_7_6_1 – ident: e_1_2_7_42_1 doi: 10.1061/(ASCE)HE.1943-5584.0000162 – ident: e_1_2_7_4_1 doi: 10.1016/j.rse.2010.05.020 |
| SSID | ssj0004080 |
| Score | 2.362122 |
| Snippet | A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 333 |
| SubjectTerms | Amazon flood inundation flow routing large-scale hydrodynamic model |
| Title | Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon |
| URI | https://api.istex.fr/ark:/67375/WNG-80F2V69L-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.8425 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0885-6087 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWjfdheuu6jNPsoGoztyaltyZL9GEazMLYwxpp1rGD0ZVLaOSFNYclTf0J_Y39J75XslIwVyp70cizMvdLVsSydQ8hblMTKU6uiXKUi4lbGkS60jRLurGGCKc3xovCXoRgc8k9H2VFzqhLvwgR9iNWGG84MX69xgit9vn8rGjpeTLv4DwnKbwKdIh_6dqscxWNvmgZzKItEnMtWdzZO99sH11aiTQzqn3WG6peY_mPyq325cLLktHsx112z_Eu38f_efptsNcyT9sJQeUIeuPopediYoI8Xz8jxCDh5sFiik4oqilvzdLywUGODbz31vjkUeC49wxPk15dX55BjF0C-igYI3nGnJzUFdkl7v9VyUj8nh_2D7x8GUWO-EClgdBA0F7uEOcms4I4zm-aZk1Ix4SpuhEyUToysoFVZZbSQVREbqzLLtGMO2x2yUU9qt0toXlhVWAbrIHxLaqkAwRMrjbFGK2mqDnnfJqI0jTI5GmSclUFTOS0hWiVGq0PerJDToMbxD8w7n8sVQM1O8fSazMofw49lHvfTkSg-l0MA-gzd2VM5-PkV2xf3Bb4kj1LvloFbeq_Ixnx24V4DZ5nrPT86bwD1YOwA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dTxQxFL1BeMAXRNSAApbE6NMsM9NOOxOeiHFZddkYA4gJSdOvyRJwluCSuDzxE_iN_hJ7250lGE2MT3050zT39uO0054D8AolscrcqqRUOU-YFWmiK22TjDlrKKdKM3wovD_gvUP24bg4noOd9i1M1IeYHbjhyAjzNQ5wPJDevlMNHU4uOvgT6QEsMO63KciIPt9pR7E02Kb5UVQkPC1Fqzyb5tvtl_fWogUM64_7HDUsMt1HcNI2L94tOetcjXXHXP-m3Pif7V-GpSn5JLuxtzyGOdeswOLUB304eQInR56WR5clMqqJIlgZGU6sn2ajdT0J1jnEU11yjpfIf97cfvdpdhEUJtIIwWfu5LQhnmCS3W_qetQ8hcPuu4O3vWTqv5AoT-p81FzqMuoEtZw5Rm1eFk4IRbmrmeEiUzozovalKmqjuair1FhVWKoddVg-g_lm1LhVIGVlVWWpXwr9dlIL5REss8IYa7QSpl6DN20mpJmKk6NHxrmMssq59NGSGK012JohL6Igxx8wr0MyZwB1eYYX2EQhvwz2ZJl28yNe9eXAA0OK_lqT7H39hOXzfwW-hMXewX5f9t8PPr6Ah3kwz8ATvnWYH19euQ1PYcZ6M3TVX7a68CE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAGP3wAtqXWq1SW2tHkPYpa5KZzCT4JNXteluk1BsIw9zCFm12sSu4PvkT_I3-EueyWbFUEJ_m5SQM3zeXk8k35wCsOkmsPNUiykVKI6JZHMlC6ighRitMsZDEXRTeb9PWIdk5yU7GYL2-CxP0IUYHbm5m-PXaTXDT0-Xao2poZ9BruJ9I4zBJsiJ39XybPx-1o0jsbdPsLMoiGuesVp6N07X6ySd70aQL6_VTjuo3meYMnNXdC7Ul542rvmyom3-UG1_Z_3fwdkg-0UYYLbMwZqo5mB76oHcG7-HsyNLy4LKEuiUSyJ3Oo85A22U2WNcjb52DLNVFF66I_P727q9Nswkgv5AGiLvmjn5XyBJMtPFH3HSreThsbv363oqG_guRsKTORs3EJsGGYU2JIVineWYYE5iakijKEiETxUrbiqxUkrKyiJUWmcbSYOPaBZioupX5ACgvtCg0tluh_ZyUTFgESTRTSispmCoX4VudCa6G4uTOI-OCB1nllNtocRetRVgZIXtBkOM_mK8-mSOAuDx3BWws48ftHzyPm-kRLfZ42wJ9ip59E2-dHrj240uBX2DqYLPJ97bbu5_gTeq9M9wB3xJM9C-vzGfLYPpy2Y_UB3WC76U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+full+hydrodynamic+model+for+large%E2%80%90scale+hydrologic+modelling+in+the+Amazon&rft.jtitle=Hydrological+processes&rft.au=Paiva%2C+Rodrigo+C.+D.&rft.au=Collischonn%2C+Walter&rft.au=Buarque%2C+Diogo+Costa&rft.date=2013-01-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=3&rft.spage=333&rft.epage=346&rft_id=info:doi/10.1002%2Fhyp.8425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_8425 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |