Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon

A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 27; no. 3; pp. 333 - 346
Main Authors Paiva, Rodrigo C. D., Collischonn, Walter, Buarque, Diogo Costa
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 30.01.2013
Subjects
Online AccessGet full text
ISSN0885-6087
1099-1085
DOI10.1002/hyp.8425

Cover

Abstract A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.
Author Collischonn, Walter
Buarque, Diogo Costa
Paiva, Rodrigo C. D.
Author_xml – sequence: 1
  givenname: Rodrigo C. D.
  surname: Paiva
  fullname: Paiva, Rodrigo C. D.
  email: Rodrigo C. D. Paiva, Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500 - Porto Alegre, 90050-260, RS - Brasil., rodrigocdpaiva@gmail.com
  organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil
– sequence: 2
  givenname: Walter
  surname: Collischonn
  fullname: Collischonn, Walter
  organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil
– sequence: 3
  givenname: Diogo Costa
  surname: Buarque
  fullname: Buarque, Diogo Costa
  organization: Instituto de Pesquisas Hidráulicas - IPH, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves, 9500, RS, 90050-260, Porto Alegre, Brasil
BookMark eNp1kEFPwjAYhhuDiYAm_oQevQzbdVu7IyECJgQ9KEYvTem-QrWspJvR-esdoiYaPb2X533zfU8PdUpfAkKnlAwoIfH5utkORBKnB6hLSZ5HlIi0g7pEiDTKiOBHqFdVj4SQhAjSRQ8L5WyhautL7A1W2Dw7h9dNEXzRlGpjNd74Ahw2PmCnwgqiSisHe8T51RfgbLnCtsT1GvBwo958eYwOjXIVnHxmH92OL25G02h2NbkcDWeRYnHWHgUEKAPOiiyBhBWxSIFzxTIwic44VUuquWlTpUYvM25yoguVFmwJDHbZR2f7XR18VQUwchvsRoVGUiJ3TmTrRO6ctOjgF6pt_fF8HZR1fxWifeHFOmj-HZbT--ufvK1qeP3mVXiSGWc8lXfziRRkHC-yfCbn7B3-voV4
CitedBy_id crossref_primary_10_3390_rs12244087
crossref_primary_10_1002_wrcr_20412
crossref_primary_10_1029_2020WR028648
crossref_primary_10_3390_w14193117
crossref_primary_10_1029_2020WR028647
crossref_primary_10_1029_2019WR026081
crossref_primary_10_1002_wrcr_20212
crossref_primary_10_1002_2014WR016618
crossref_primary_10_1016_j_jhydrol_2022_128481
crossref_primary_10_1016_j_scitotenv_2017_04_092
crossref_primary_10_3390_ijerph19137638
crossref_primary_10_1016_j_rsase_2024_101352
crossref_primary_10_5194_hess_22_2135_2018
crossref_primary_10_1175_JHM_D_14_0068_1
crossref_primary_10_1007_s10712_013_9269_4
crossref_primary_10_5194_hess_21_4629_2017
crossref_primary_10_5194_hess_21_117_2017
crossref_primary_10_1002_2016GL070260
crossref_primary_10_1061__ASCE_HE_1943_5584_0001202
crossref_primary_10_5194_hess_16_3127_2012
crossref_primary_10_5194_bg_17_4297_2020
crossref_primary_10_1016_j_jag_2017_12_004
crossref_primary_10_5194_hess_26_5473_2022
crossref_primary_10_1002_wrcr_20521
crossref_primary_10_1016_j_jhydrol_2022_127842
crossref_primary_10_5194_gmd_10_3913_2017
crossref_primary_10_1002_2017GL075502
crossref_primary_10_1007_s10872_014_0254_4
crossref_primary_10_1080_01431161_2024_2433752
crossref_primary_10_1002_esp_5306
crossref_primary_10_1016_j_envsoft_2013_08_010
crossref_primary_10_1029_2021MS002463
crossref_primary_10_1590_2318_0331_241920180031
crossref_primary_10_5194_gmd_10_1233_2017
crossref_primary_10_5194_hess_21_5143_2017
crossref_primary_10_1016_j_jhydrol_2014_06_048
crossref_primary_10_1590_2318_0331_011616009
crossref_primary_10_5194_hess_27_3505_2023
crossref_primary_10_1029_2019EF001198
crossref_primary_10_1088_1748_9326_aa7250
crossref_primary_10_1007_s11069_024_06407_5
crossref_primary_10_1016_j_jhydrol_2015_02_049
crossref_primary_10_1016_j_jhydrol_2020_125430
crossref_primary_10_1002_2014WR015662
crossref_primary_10_1061__ASCE_HE_1943_5584_0001152
crossref_primary_10_1029_2021WR031819
crossref_primary_10_1590_0102_77863540076
crossref_primary_10_1016_j_jhydrol_2015_07_026
crossref_primary_10_1002_2017WR020519
crossref_primary_10_5194_hess_23_1281_2019
crossref_primary_10_1002_2016WR019396
crossref_primary_10_1080_15715124_2014_880707
crossref_primary_10_2166_wcc_2024_262
crossref_primary_10_5194_hess_20_3799_2016
crossref_primary_10_5194_hess_27_647_2023
crossref_primary_10_1002_hyp_11138
crossref_primary_10_1016_j_ejrh_2021_100934
crossref_primary_10_1016_j_envsoft_2013_09_013
crossref_primary_10_1111_jfr3_12147
crossref_primary_10_1016_j_envsoft_2014_11_012
crossref_primary_10_3390_rs71215822
crossref_primary_10_1029_2023WR034739
crossref_primary_10_1002_wrcr_20067
crossref_primary_10_3390_ijgi10020094
crossref_primary_10_5194_hess_17_2929_2013
crossref_primary_10_5194_hess_23_1263_2019
crossref_primary_10_1016_j_envsoft_2022_105332
crossref_primary_10_1111_jfr3_12177
crossref_primary_10_4236_jwarp_2016_812087
crossref_primary_10_1007_s40899_020_00419_2
crossref_primary_10_3389_fenvs_2021_817684
Cites_doi 10.1002/hyp.7747
10.1029/1999JD900200
10.1061/(ASCE)0733-9429(2008)134:4(475)
10.1002/hyp.7889
10.1016/j.rse.2003.04.001
10.1029/2010WR009726
10.1029/2007GL029447
10.1016/j.jhydrol.2007.02.008
10.1080/014311698214181
10.1016/j.jhydrol.2008.07.032
10.1016/j.jhydrol.2009.07.046
10.1016/j.jhydrol.2009.09.054
10.1623/hysj.52.5.878
10.1029/2003JD003497
10.1016/S0022-1694(97)00107-8
10.1016/j.jhydrol.2004.08.028
10.1016/j.jhydrol.2009.06.004
10.1002/hyp.7252
10.1007/s00382‐011‐1054‐9)
10.1016/j.jhydrol.2011.06.007
10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2
10.1016/S0022-1694(01)00490-5
10.1029/2010JD014474
10.1002/hyp.6850
10.1016/S0022-1694(02)00121-X
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.5194/hess-11-1645-2007
10.1029/2006JD007847
10.1029/2005RG000183
10.1016/0022-1694(70)90255-6
10.1002/hyp.7387
10.1109/JPROC.2010.2043031
10.1029/2007JD009376
10.1029/WR019i003p00701
10.1016/j.jhydrol.2007.10.055
10.1016/j.jhydrol.2007.08.004
10.1061/(ASCE)0733-9429(2009)135:2(96)
10.1061/(ASCE)0733-9429(1999)125:6(610)
10.1029/GB003i003p00241
10.1029/2006RG000197
10.1016/j.rse.2005.10.027
10.1007/BF01704664
10.1061/(ASCE)HE.1943-5584.0000162
10.1016/j.rse.2010.05.020
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/hyp.8425
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 346
ExternalDocumentID 10_1002_hyp_8425
HYP8425
ark_67375_WNG_80F2V69L_N
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWD
AAYXX
CITATION
ID FETCH-LOGICAL-a3265-6e0e13e73d64e43d285e77a36ef4c671ab1c7f71aa5fcb67f90cda5d3be3ea5d3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Wed Oct 01 02:29:45 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:33:50 EST 2025
Sun Sep 21 06:20:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3265-6e0e13e73d64e43d285e77a36ef4c671ab1c7f71aa5fcb67f90cda5d3be3ea5d3
Notes ark:/67375/WNG-80F2V69L-N
ArticleID:HYP8425
istex:973E3733259403FA9295605E6C32170C9117B941
PageCount 14
ParticipantIDs crossref_primary_10_1002_hyp_8425
crossref_citationtrail_10_1002_hyp_8425
wiley_primary_10_1002_hyp_8425_HYP8425
istex_primary_ark_67375_WNG_80F2V69L_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-30
30 January 2013
PublicationDateYYYYMMDD 2013-01-30
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-30
  day: 30
PublicationDecade 2010
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Alsdorf DE, Rodrıguez E, Lettenmaier DP. 2007b. Measuring surface water from space. Reviews of Geophysics 45: RG2002. DOI: 10.1029/2006RG000197.
Alsdorf D, Han S-C, Bates P, Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment 114: 2448-2456.
Meade RH, Rayol JM, Da Conceição SC, Natividade JRG. 1991. Backwater effects in the Amazon River basin of Brazil. Environmental Geology and Water Sciences 18(2): 105-114.
Horritt MS, Bates PD. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268: 87-99.
Castellarin A, Di Baldassarre G, Bates PD, Brath A. 2009. Optimal Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models. Journal of Hydraulic Engineering 135(2): 96-105.
Durand M, Fu LL, Lettenmaier D, Alsdorf DE, Rodríguez E, Fernandez DE. 2010. The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE. 98(5): 766-779.
Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM. 2010. Large-Scale Hydrodynamic Modeling of a Complex River Network and Floodplains. Journal of Hydrologic Engineering 15(2): 152-165.
Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: W04501. DOI: 10.1029/2010WR009726
Biancamaria S, Bates PD, Boone A, Mognard NM. 2009. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of Hydrology 379: 136-150.
Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models, part I - a discussion of principles. Journal of Hydrology 10: 282-290.
Nijssen B, Lettenmaier D. 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research 109: D02103. DOI: 10.1029/2003JD003497
Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR. 2010. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes 25: 1228-1242.
Collischonn W, Tucci CEM, Haas R, Andreolli I. 2005. Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology 305: 87-98, 2005.
Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C. 2011. Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, On line. DOI: 10.1007/s00382-011-1054-9
Tang X-N, Knight DW, Samuels PG. 1999. Volume conservation in variable parameter Muskingum-Cunge method. Journal of Hydraulic Engineering 125(6): 610-620.
Collischonn B, Collischonn W, Tucci C. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology 207.
Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D. 2007. The shuttle radartopography mission. Reviews of Geophysics 45(2).
Wong THF, Laurenson EM. 1983. Wave Speed-Discharge Relations in Natural Channels. Water Resources Research 19(3): 701-706.
Lian Y, Chan I-C, Singh J, Demissie M, Knapp V, Xie H. 2007. Coupling of hydrologic and hydraulic models for the Illinois River Basin. Journal of Hydrology 344: 210-222.
Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: D12107. DOI: 10.1029/2006JD007847
Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23(8): 1221-1235.
Alsdorf D, Bates P, Melack J, Wilson M, Dunne T. 2007a. The spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters 34: L08402.
Coe MT, Costa MH, Howard EA. 2008. Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations. Hydrological Processes 22(14): 2542-2553.
Vorosmarty CJ, Moore B, Grace AL, et al. 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3(3): 241-265.
Dadson SJ, Ashpole I, Harris P, Davies HN, Clark DB, Blyth E, Taylor CM. 2010. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research 115: D23114. DOI: 10.1029/2010JD014474
Kalnay E, et al. 1996. The NCEP/NCAR 40-year Reanalysis Project. Bulletin of the American Meteorological Society 77: 437-471.
Bonnet MP, Barroux G, Martinez JM, Seyler F, Turcq PM, Cochonneau G, Melack JM, Boaventura G, Bourgoin LM, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler F. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18-30 pp.
Remo JWF, Pinter N. 2007. Retro-modeling the Middle Mississippi River. Journal of Hydrology 337: 421-435.
Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology 204: 83-97.
Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M. 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404-428.
Horritt MS, Bates PD. 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology 253: 239-249.
Kosuth P, Callède J, Laraque A, Filizola N, Guyot JL, Seyler P, Fritsch JM, Guimarães V. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrological Processes 23(22): 3141-3150.
Todini E. 2007. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences 11: 1645-1659.
Decharme B, Douville H, Prigent C, Papa F, Aires F. 2008. A new river flooding scheme for global climate applications: Off-line evaluation over South America. Journal of Geophysical Research 113: D11110. DOI: 10.1029/2007JD009376
Trigg MA, Wilson MD, Bates PD, Horritt MS, Alsdorf DE, Forsberg BR, Vega MC. 2009. Amazon flood wave hydraulics. Journal of Hydrology 374: 92-105.
Mauser W, Bach H. 2009. PROMET - Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. Journal of Hydrology 376(3-4): 362-377.
Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology 406(3-4): 170-181.
Liston GE, Sud YC, Wood EF. 1994. Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin. Journal of Applied Meteorology 33: 394-405.
Sippel SJ, Hamilton SK, Melack JM, Novo EMM. 1998. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. International Journal of Remote Sensing 19(16): 3055-3074.
Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment 100: 252-264.
Collischonn W, Allasia DG, Silva BC, Tucci CEM. 2007. The MGB-IPH model for large-scale rainfall-runoff modeling. Hydrological Sciences Journal 52: 878-895.
Perumal M, Sahoo B. 2008. Volume conservation controversy of the variable parameter Muskingum- Cunge method. Journal of Hydraulic Engineering 134(4): 475-485.
Singh VP, Frevert DK (eds). 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications: Highlands Ranch, CO.
Chow VT. 1959. Open Channel Hydraulics. McGraw-Hill: 680.
Ponce VM. 1989. Engineering Hydrology. Prentice Hall.
Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences, (2d ed). International Geophysics Series 91: Academic Press, pp. 627.
Arora VK, Chiew FHS, Grayson RB. 1999. A river flow routing scheme for general circulation models. Journal of Geophysical Research 104: 14,347-14,357, 1999.
Cunge JA, Holly FM, Verney A. 1980. Practical Aspects of Computational River Hydraulics. Pitman Advanced Publishing Program.
Eva HD, De Miranda EE, Di Bella CM, Gond V. 2002. A Vegetation map of South America. EUR 20159 EN, European Commission: Luxembourg.
Getirana ACV, Bonnet M-P, Rotunno Filho OC, Collischonn W, Guyot J-L, Seyler F, Mansur WJ. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological Processes 24(22): 3219-3236.
2010; 98
1991; 18
2007; 344
2010; 15
1983; 19
2008; 349
1999; 125
1978
1996; 77
2001; 253
2011; 406
1998; 19
2010; 25
2010; 24
2007; 337
2010; 114
2010; 115
2002; 268
2007a; 34
2005; 305
1994; 33
2008; 22
1982
1980
2008; 113
1998; 204
2003; 87
1989
2009; 23
1989; 3
2006; 91
2011
2009
2009; 374
2008
1997
2009; 376
1970; 10
2006
2009; 135
2005
2007; 52
2002
2004; 109
1999; 104
2007; 11
1959
2009; 379
2007b; 45
2007; 112
2011; 47
2008; 134
2007; 45
2006; 100
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
Eva HD (e_1_2_7_23_1) 2002
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
Chow VT (e_1_2_7_12_1) 1959
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Cunge JA (e_1_2_7_17_1) 1980
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
Wilks DS (e_1_2_7_56_1) 2006
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
Singh VP (e_1_2_7_48_1) 2002
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
Ponce VM (e_1_2_7_44_1) 1989
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models, part I - a discussion of principles. Journal of Hydrology 10: 282-290.
– reference: Mauser W, Bach H. 2009. PROMET - Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. Journal of Hydrology 376(3-4): 362-377.
– reference: Vorosmarty CJ, Moore B, Grace AL, et al. 1989. Continental scale models of water balance and fluvial transport: an application to South America. Global Biogeochemical Cycles 3(3): 241-265.
– reference: Alsdorf D, Bates P, Melack J, Wilson M, Dunne T. 2007a. The spatial and temporal complexity of the Amazon flood measured from space. Geophysical Research Letters 34: L08402.
– reference: Prigent C, Papa F, Aires F, Rossow WB, Matthews E. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112: D12107. DOI: 10.1029/2006JD007847
– reference: Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences, (2d ed). International Geophysics Series 91: Academic Press, pp. 627.
– reference: Nijssen B, Lettenmaier D. 2004. Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research 109: D02103. DOI: 10.1029/2003JD003497
– reference: Wong THF, Laurenson EM. 1983. Wave Speed-Discharge Relations in Natural Channels. Water Resources Research 19(3): 701-706.
– reference: Todini E. 2007. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrology and Earth System Sciences 11: 1645-1659.
– reference: Horritt MS, Bates PD. 2002. Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology 268: 87-99.
– reference: Bonnet MP, Barroux G, Martinez JM, Seyler F, Turcq PM, Cochonneau G, Melack JM, Boaventura G, Bourgoin LM, León JG, Roux E, Calmant S, Kosuth P, Guyot JL, Seyler F. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349: 18-30 pp.
– reference: Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, Nobre CA, Prado MCR. 2010. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes 25: 1228-1242.
– reference: Arora VK, Chiew FHS, Grayson RB. 1999. A river flow routing scheme for general circulation models. Journal of Geophysical Research 104: 14,347-14,357, 1999.
– reference: Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A. 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment 100: 252-264.
– reference: Castellarin A, Di Baldassarre G, Bates PD, Brath A. 2009. Optimal Cross-Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models. Journal of Hydraulic Engineering 135(2): 96-105.
– reference: Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M. 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404-428.
– reference: Remo JWF, Pinter N. 2007. Retro-modeling the Middle Mississippi River. Journal of Hydrology 337: 421-435.
– reference: Durand M, Fu LL, Lettenmaier D, Alsdorf DE, Rodríguez E, Fernandez DE. 2010. The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE. 98(5): 766-779.
– reference: Chow VT. 1959. Open Channel Hydraulics. McGraw-Hill: 680.
– reference: Sippel SJ, Hamilton SK, Melack JM, Novo EMM. 1998. Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain. International Journal of Remote Sensing 19(16): 3055-3074.
– reference: Kalnay E, et al. 1996. The NCEP/NCAR 40-year Reanalysis Project. Bulletin of the American Meteorological Society 77: 437-471.
– reference: Horritt MS, Bates PD. 2001. Effects of spatial resolution on a raster based model of flood flow. Journal of Hydrology 253: 239-249.
– reference: Cunge JA, Holly FM, Verney A. 1980. Practical Aspects of Computational River Hydraulics. Pitman Advanced Publishing Program.
– reference: Kosuth P, Callède J, Laraque A, Filizola N, Guyot JL, Seyler P, Fritsch JM, Guimarães V. 2009. Sea-tide effects on flows in the lower reaches of the Amazon River. Hydrological Processes 23(22): 3141-3150.
– reference: Dadson SJ, Ashpole I, Harris P, Davies HN, Clark DB, Blyth E, Taylor CM. 2010. Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research 115: D23114. DOI: 10.1029/2010JD014474
– reference: Yamazaki D, Kanae S, Kim H, Oki T. 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47: W04501. DOI: 10.1029/2010WR009726
– reference: Decharme B, Alkama R, Papa F, Faroux S, Douville H, Prigent C. 2011. Global off-line evaluation of the ISBA-TRIP flood model. Climate Dynamics, On line. DOI: 10.1007/s00382-011-1054-9)
– reference: Singh VP, Frevert DK (eds). 2002. Mathematical Models of Large Watershed Hydrology. Water Resources Publications: Highlands Ranch, CO.
– reference: Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D. 2007. The shuttle radartopography mission. Reviews of Geophysics 45(2).
– reference: Liston GE, Sud YC, Wood EF. 1994. Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin. Journal of Applied Meteorology 33: 394-405.
– reference: Alsdorf D, Han S-C, Bates P, Melack J. 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sensing of Environment 114: 2448-2456.
– reference: Alsdorf DE, Rodrıguez E, Lettenmaier DP. 2007b. Measuring surface water from space. Reviews of Geophysics 45: RG2002. DOI: 10.1029/2006RG000197.
– reference: Decharme B, Douville H, Prigent C, Papa F, Aires F. 2008. A new river flooding scheme for global climate applications: Off-line evaluation over South America. Journal of Geophysical Research 113: D11110. DOI: 10.1029/2007JD009376
– reference: Getirana ACV, Bonnet M-P, Rotunno Filho OC, Collischonn W, Guyot J-L, Seyler F, Mansur WJ. 2010. Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data. Hydrological Processes 24(22): 3219-3236.
– reference: Tang X-N, Knight DW, Samuels PG. 1999. Volume conservation in variable parameter Muskingum-Cunge method. Journal of Hydraulic Engineering 125(6): 610-620.
– reference: Yapo PO, Gupta HV, Sorooshian S. 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology 204: 83-97.
– reference: Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL. 2009. Simulating hydrologic and hydraulic processes throughout the Amazon River Basin. Hydrological Processes 23(8): 1221-1235.
– reference: Meade RH, Rayol JM, Da Conceição SC, Natividade JRG. 1991. Backwater effects in the Amazon River basin of Brazil. Environmental Geology and Water Sciences 18(2): 105-114.
– reference: Paiva RCD, Collischonn W, Tucci CEM. 2011. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology 406(3-4): 170-181.
– reference: Collischonn B, Collischonn W, Tucci C. 2008. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology 207.
– reference: Collischonn W, Tucci CEM, Haas R, Andreolli I. 2005. Forecasting river Uruguay flow using rainfall forecasts from a regional weather-prediction model. Journal of Hydrology 305: 87-98, 2005.
– reference: Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM. 2010. Large-Scale Hydrodynamic Modeling of a Complex River Network and Floodplains. Journal of Hydrologic Engineering 15(2): 152-165.
– reference: Trigg MA, Wilson MD, Bates PD, Horritt MS, Alsdorf DE, Forsberg BR, Vega MC. 2009. Amazon flood wave hydraulics. Journal of Hydrology 374: 92-105.
– reference: Coe MT, Costa MH, Howard EA. 2008. Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations. Hydrological Processes 22(14): 2542-2553.
– reference: Lian Y, Chan I-C, Singh J, Demissie M, Knapp V, Xie H. 2007. Coupling of hydrologic and hydraulic models for the Illinois River Basin. Journal of Hydrology 344: 210-222.
– reference: Ponce VM. 1989. Engineering Hydrology. Prentice Hall.
– reference: Biancamaria S, Bates PD, Boone A, Mognard NM. 2009. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. Journal of Hydrology 379: 136-150.
– reference: Collischonn W, Allasia DG, Silva BC, Tucci CEM. 2007. The MGB-IPH model for large-scale rainfall-runoff modeling. Hydrological Sciences Journal 52: 878-895.
– reference: Eva HD, De Miranda EE, Di Bella CM, Gond V. 2002. A Vegetation map of South America. EUR 20159 EN, European Commission: Luxembourg.
– reference: Perumal M, Sahoo B. 2008. Volume conservation controversy of the variable parameter Muskingum- Cunge method. Journal of Hydraulic Engineering 134(4): 475-485.
– volume: 23
  start-page: 1221
  issue: 8
  year: 2009
  end-page: 1235
  article-title: Simulating hydrologic and hydraulic processes throughout the Amazon River Basin
  publication-title: Hydrological Processes
– year: 2009
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  article-title: The NCEP/NCAR 40‐year Reanalysis Project
  publication-title: Bulletin of the American Meteorological Society
– volume: 15
  start-page: 152
  issue: 2
  year: 2010
  end-page: 165
  article-title: Large‐Scale Hydrodynamic Modeling of a Complex River Network and Floodplains
  publication-title: Journal of Hydrologic Engineering
– volume: 114
  start-page: 2448
  year: 2010
  end-page: 2456
  article-title: Seasonal water storage on the Amazon floodplain measured from satellites
  publication-title: Remote Sensing of Environment
– year: 2005
– volume: 135
  start-page: 96
  issue: 2
  year: 2009
  end-page: 105
  article-title: Optimal Cross‐Sectional Spacing in Preissmann Scheme 1D Hydrodynamic Models
  publication-title: Journal of Hydraulic Engineering
– year: 1989
– volume: 33
  start-page: 394
  year: 1994
  end-page: 405
  article-title: Evaluating GCM Land Surface Hydrology Parameterizations by Computing River Discharges Using a Runoff Routing Model: Application to the Mississippi Basin
  publication-title: Journal of Applied Meteorology
– volume: 11
  start-page: 1645
  year: 2007
  end-page: 1659
  article-title: A mass conservative and water storage consistent variable parameter Muskingum‐Cunge approach
  publication-title: Hydrology and Earth System Sciences
– volume: 52
  start-page: 878
  year: 2007
  end-page: 895
  article-title: The MGB‐IPH model for large‐scale rainfall‐runoff modeling
  publication-title: Hydrological Sciences Journal
– volume: 45
  issue: 2
  year: 2007
  article-title: The shuttle radartopography mission
  publication-title: Reviews of Geophysics
– volume: 134
  start-page: 475
  issue: 4
  year: 2008
  end-page: 485
  article-title: Volume conservation controversy of the variable parameter Muskingum‐ Cunge method
  publication-title: Journal of Hydraulic Engineering
– volume: 45
  start-page: RG2002
  year: 2007b
  article-title: Measuring surface water from space
  publication-title: Reviews of Geophysics
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models, part I – a discussion of principles
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 701
  issue: 3
  year: 1983
  end-page: 706
  article-title: Wave Speed‐Discharge Relations in Natural Channels
  publication-title: Water Resources Research
– volume: 374
  start-page: 92
  year: 2009
  end-page: 105
  article-title: Amazon flood wave hydraulics
  publication-title: Journal of Hydrology
– volume: 47
  start-page: W04501
  year: 2011
  article-title: A physically based description of floodplain inundation dynamics in a global river routing model
  publication-title: Water Resources Research
– year: 1982
– volume: 253
  start-page: 239
  year: 2001
  end-page: 249
  article-title: Effects of spatial resolution on a raster based model of flood flow
  publication-title: Journal of Hydrology
– volume: 406
  start-page: 170
  issue: 3–4
  year: 2011
  end-page: 181
  article-title: Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach
  publication-title: Journal of Hydrology
– volume: 112
  start-page: D12107
  year: 2007
  article-title: Global inundation dynamics inferred from multiple satellite observations, 1993–2000
  publication-title: Journal of Geophysical Research
– year: 1997
– volume: 113
  start-page: D11110
  year: 2008
  article-title: A new river flooding scheme for global climate applications: Off‐line evaluation over South America
  publication-title: Journal of Geophysical Research
– volume: 34
  start-page: L08402
  year: 2007a
  article-title: The spatial and temporal complexity of the Amazon flood measured from space
  publication-title: Geophysical Research Letters
– volume: 104
  start-page: 14,347
  year: 1999
  end-page: 14,357
  article-title: A river flow routing scheme for general circulation models
  publication-title: Journal of Geophysical Research
– volume: 24
  start-page: 3219
  issue: 22
  year: 2010
  end-page: 3236
  article-title: Hydrological modelling and water balance of the Negro River basin: evaluation based on in situ and spatial altimetry data
  publication-title: Hydrological Processes
– volume: 23
  start-page: 3141
  issue: 22
  year: 2009
  end-page: 3150
  article-title: Sea‐tide effects on flows in the lower reaches of the Amazon River
  publication-title: Hydrological Processes
– volume: 268
  start-page: 87
  year: 2002
  end-page: 99
  article-title: Evaluation of 1D and 2D numerical models for predicting river flood inundation
  publication-title: Journal of Hydrology
– volume: 25
  start-page: 1228
  year: 2010
  end-page: 1242
  article-title: The droughts of 1996–1997 and 2004–2005 in Amazonia: hydrological response in the river main‐stem
  publication-title: Hydrological Processes
– volume: 344
  start-page: 210
  year: 2007
  end-page: 222
  article-title: Coupling of hydrologic and hydraulic models for the Illinois River Basin
  publication-title: Journal of Hydrology
– volume: 100
  start-page: 252
  year: 2006
  end-page: 264
  article-title: Preliminary results of ENVISAT RA‐2‐derived water levels validation over the Amazon basin
  publication-title: Remote Sensing of Environment
– volume: 337
  start-page: 421
  year: 2007
  end-page: 435
  article-title: Retro‐modeling the Middle Mississippi River
  publication-title: Journal of Hydrology
– volume: 125
  start-page: 610
  issue: 6
  year: 1999
  end-page: 620
  article-title: Volume conservation in variable parameter Muskingum‐Cunge method
  publication-title: Journal of Hydraulic Engineering
– start-page: 360
  year: 2006
  end-page: 370
– volume: 115
  start-page: D23114
  year: 2010
  article-title: Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region
  publication-title: Journal of Geophysical Research
– volume: 349
  start-page: 18
  year: 2008
  end-page: 30
  article-title: Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí)
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 105
  issue: 2
  year: 1991
  end-page: 114
  article-title: Backwater effects in the Amazon River basin of Brazil
  publication-title: Environmental Geology and Water Sciences
– volume: 91
  start-page: 627
  year: 2006
– volume: 22
  start-page: 2542
  issue: 14
  year: 2008
  end-page: 2553
  article-title: Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations
  publication-title: Hydrological Processes
– start-page: 207
  year: 2008
  article-title: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates
  publication-title: Journal of Hydrology
– volume: 379
  start-page: 136
  year: 2009
  end-page: 150
  article-title: Large‐scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia
  publication-title: Journal of Hydrology
– volume: 376
  start-page: 362
  issue: 3–4
  year: 2009
  end-page: 377
  article-title: PROMET ‐ Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds
  publication-title: Journal of Hydrology
– volume: 305
  start-page: 87
  year: 2005
  end-page: 98
  article-title: Forecasting river Uruguay flow using rainfall forecasts from a regional weather‐prediction model
  publication-title: Journal of Hydrology
– volume: 98
  start-page: 766
  issue: 5
  year: 2010
  end-page: 779
  article-title: The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies
  publication-title: Proceedings of the IEEE
– volume: 204
  start-page: 83
  year: 1998
  end-page: 97
  article-title: Multi‐objective global optimization for hydrologic models
  publication-title: Journal of Hydrology
– year: 1980
– year: 2011
  article-title: Global off‐line evaluation of the ISBA‐TRIP flood model
  publication-title: Climate Dynamics
– year: 2002
– year: 2006
– volume: 19
  start-page: 3055
  issue: 16
  year: 1998
  end-page: 3074
  article-title: Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain
  publication-title: International Journal of Remote Sensing
– volume: 109
  start-page: D02103
  year: 2004
  article-title: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites
  publication-title: Journal of Geophysical Research
– volume: 3
  start-page: 241
  issue: 3
  year: 1989
  end-page: 265
  article-title: Continental scale models of water balance and fluvial transport: an application to South America
  publication-title: Global Biogeochemical Cycles
– year: 1978
– volume: 87
  start-page: 404
  year: 2003
  end-page: 428
  article-title: Dual‐season mapping of wetland inundation and vegetation for the central Amazon basin
  publication-title: Remote Sensing of Environment
– start-page: 680
  year: 1959
– ident: e_1_2_7_26_1
  doi: 10.1002/hyp.7747
– ident: e_1_2_7_7_1
  doi: 10.1029/1999JD900200
– ident: e_1_2_7_43_1
  doi: 10.1061/(ASCE)0733-9429(2008)134:4(475)
– ident: e_1_2_7_52_1
  doi: 10.1002/hyp.7889
– ident: e_1_2_7_28_1
  doi: 10.1016/j.rse.2003.04.001
– ident: e_1_2_7_58_1
  doi: 10.1029/2010WR009726
– ident: e_1_2_7_3_1
  doi: 10.1029/2007GL029447
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jhydrol.2007.02.008
– ident: e_1_2_7_49_1
  doi: 10.1080/014311698214181
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jhydrol.2008.07.032
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jhydrol.2009.07.046
– ident: e_1_2_7_33_1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jhydrol.2009.09.054
– ident: e_1_2_7_14_1
  doi: 10.1623/hysj.52.5.878
– ident: e_1_2_7_39_1
  doi: 10.1029/2003JD003497
– ident: e_1_2_7_59_1
  doi: 10.1016/S0022-1694(97)00107-8
– ident: e_1_2_7_2_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jhydrol.2004.08.028
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jhydrol.2009.06.004
– ident: e_1_2_7_21_1
– ident: e_1_2_7_8_1
  doi: 10.1002/hyp.7252
– ident: e_1_2_7_27_1
– ident: e_1_2_7_19_1
  doi: 10.1007/s00382‐011‐1054‐9)
– ident: e_1_2_7_46_1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jhydrol.2011.06.007
– ident: e_1_2_7_35_1
  doi: 10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1016/S0022-1694(01)00490-5
– ident: e_1_2_7_54_1
– volume-title: Practical Aspects of Computational River Hydraulics
  year: 1980
  ident: e_1_2_7_17_1
– ident: e_1_2_7_18_1
  doi: 10.1029/2010JD014474
– ident: e_1_2_7_13_1
  doi: 10.1002/hyp.6850
– ident: e_1_2_7_30_1
  doi: 10.1016/S0022-1694(02)00121-X
– ident: e_1_2_7_31_1
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume-title: Mathematical Models of Large Watershed Hydrology
  year: 2002
  ident: e_1_2_7_48_1
– ident: e_1_2_7_51_1
  doi: 10.5194/hess-11-1645-2007
– ident: e_1_2_7_40_1
– ident: e_1_2_7_45_1
  doi: 10.1029/2006JD007847
– ident: e_1_2_7_24_1
  doi: 10.1029/2005RG000183
– ident: e_1_2_7_38_1
  doi: 10.1016/0022-1694(70)90255-6
– ident: e_1_2_7_32_1
  doi: 10.1002/hyp.7387
– ident: e_1_2_7_22_1
  doi: 10.1109/JPROC.2010.2043031
– ident: e_1_2_7_20_1
  doi: 10.1029/2007JD009376
– volume-title: Engineering Hydrology
  year: 1989
  ident: e_1_2_7_44_1
– ident: e_1_2_7_57_1
  doi: 10.1029/WR019i003p00701
– start-page: 680
  volume-title: Open Channel Hydraulics
  year: 1959
  ident: e_1_2_7_12_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jhydrol.2007.10.055
– ident: e_1_2_7_34_1
  doi: 10.1016/j.jhydrol.2007.08.004
– volume-title: A Vegetation map of South America
  year: 2002
  ident: e_1_2_7_23_1
– ident: e_1_2_7_11_1
  doi: 10.1061/(ASCE)0733-9429(2009)135:2(96)
– ident: e_1_2_7_50_1
  doi: 10.1061/(ASCE)0733-9429(1999)125:6(610)
– ident: e_1_2_7_55_1
  doi: 10.1029/GB003i003p00241
– ident: e_1_2_7_5_1
  doi: 10.1029/2006RG000197
– ident: e_1_2_7_25_1
  doi: 10.1016/j.rse.2005.10.027
– ident: e_1_2_7_37_1
  doi: 10.1007/BF01704664
– start-page: 627
  volume-title: Statistical Methods in the Atmospheric Sciences
  year: 2006
  ident: e_1_2_7_56_1
– ident: e_1_2_7_6_1
– ident: e_1_2_7_42_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000162
– ident: e_1_2_7_4_1
  doi: 10.1016/j.rse.2010.05.020
SSID ssj0004080
Score 2.362122
Snippet A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Amazon
flood inundation
flow routing
large-scale hydrodynamic model
Title Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon
URI https://api.istex.fr/ark:/67375/WNG-80F2V69L-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.8425
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0885-6087
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWjfdheuu6jNPsoGoztyaltyZL9GEazMLYwxpp1rGD0ZVLaOSFNYclTf0J_Y39J75XslIwVyp70cizMvdLVsSydQ8hblMTKU6uiXKUi4lbGkS60jRLurGGCKc3xovCXoRgc8k9H2VFzqhLvwgR9iNWGG84MX69xgit9vn8rGjpeTLv4DwnKbwKdIh_6dqscxWNvmgZzKItEnMtWdzZO99sH11aiTQzqn3WG6peY_mPyq325cLLktHsx112z_Eu38f_efptsNcyT9sJQeUIeuPopediYoI8Xz8jxCDh5sFiik4oqilvzdLywUGODbz31vjkUeC49wxPk15dX55BjF0C-igYI3nGnJzUFdkl7v9VyUj8nh_2D7x8GUWO-EClgdBA0F7uEOcms4I4zm-aZk1Ix4SpuhEyUToysoFVZZbSQVREbqzLLtGMO2x2yUU9qt0toXlhVWAbrIHxLaqkAwRMrjbFGK2mqDnnfJqI0jTI5GmSclUFTOS0hWiVGq0PerJDToMbxD8w7n8sVQM1O8fSazMofw49lHvfTkSg-l0MA-gzd2VM5-PkV2xf3Bb4kj1LvloFbeq_Ixnx24V4DZ5nrPT86bwD1YOwA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dTxQxFL1BeMAXRNSAApbE6NMsM9NOOxOeiHFZddkYA4gJSdOvyRJwluCSuDzxE_iN_hJ7250lGE2MT3050zT39uO0054D8AolscrcqqRUOU-YFWmiK22TjDlrKKdKM3wovD_gvUP24bg4noOd9i1M1IeYHbjhyAjzNQ5wPJDevlMNHU4uOvgT6QEsMO63KciIPt9pR7E02Kb5UVQkPC1Fqzyb5tvtl_fWogUM64_7HDUsMt1HcNI2L94tOetcjXXHXP-m3Pif7V-GpSn5JLuxtzyGOdeswOLUB304eQInR56WR5clMqqJIlgZGU6sn2ajdT0J1jnEU11yjpfIf97cfvdpdhEUJtIIwWfu5LQhnmCS3W_qetQ8hcPuu4O3vWTqv5AoT-p81FzqMuoEtZw5Rm1eFk4IRbmrmeEiUzozovalKmqjuair1FhVWKoddVg-g_lm1LhVIGVlVWWpXwr9dlIL5REss8IYa7QSpl6DN20mpJmKk6NHxrmMssq59NGSGK012JohL6Igxx8wr0MyZwB1eYYX2EQhvwz2ZJl28yNe9eXAA0OK_lqT7H39hOXzfwW-hMXewX5f9t8PPr6Ah3kwz8ATvnWYH19euQ1PYcZ6M3TVX7a68CE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAGP3wAtqXWq1SW2tHkPYpa5KZzCT4JNXteluk1BsIw9zCFm12sSu4PvkT_I3-EueyWbFUEJ_m5SQM3zeXk8k35wCsOkmsPNUiykVKI6JZHMlC6ighRitMsZDEXRTeb9PWIdk5yU7GYL2-CxP0IUYHbm5m-PXaTXDT0-Xao2poZ9BruJ9I4zBJsiJ39XybPx-1o0jsbdPsLMoiGuesVp6N07X6ySd70aQL6_VTjuo3meYMnNXdC7Ul542rvmyom3-UG1_Z_3fwdkg-0UYYLbMwZqo5mB76oHcG7-HsyNLy4LKEuiUSyJ3Oo85A22U2WNcjb52DLNVFF66I_P727q9Nswkgv5AGiLvmjn5XyBJMtPFH3HSreThsbv363oqG_guRsKTORs3EJsGGYU2JIVineWYYE5iakijKEiETxUrbiqxUkrKyiJUWmcbSYOPaBZioupX5ACgvtCg0tluh_ZyUTFgESTRTSispmCoX4VudCa6G4uTOI-OCB1nllNtocRetRVgZIXtBkOM_mK8-mSOAuDx3BWws48ftHzyPm-kRLfZ42wJ9ip59E2-dHrj240uBX2DqYLPJ97bbu5_gTeq9M9wB3xJM9C-vzGfLYPpy2Y_UB3WC76U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+full+hydrodynamic+model+for+large%E2%80%90scale+hydrologic+modelling+in+the+Amazon&rft.jtitle=Hydrological+processes&rft.au=Paiva%2C+Rodrigo+C.+D.&rft.au=Collischonn%2C+Walter&rft.au=Buarque%2C+Diogo+Costa&rft.date=2013-01-30&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=27&rft.issue=3&rft.spage=333&rft.epage=346&rft_id=info:doi/10.1002%2Fhyp.8425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hyp_8425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon