Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area and high biocompatibility. However, studies to date of MSNs are confined to >10 nm particle sizes which may result in unfavorable biodistrib...
Saved in:
Published in | Chemistry of materials Vol. 25; no. 5; pp. 677 - 691 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
12.03.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0897-4756 1520-5002 |
DOI | 10.1021/cm303242h |
Cover
Abstract | Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area and high biocompatibility. However, studies to date of MSNs are confined to >10 nm particle sizes which may result in unfavorable biodistribution characteristics for in vivo experiments and hence limit their clinical applications. Here we provide a full account of a synthesis approach to ultrasmall sub-10 nm mesoporous silica nanoparticles with narrow size distributions and homogeneous porous particle morphology. Key features enabling this structure control are (i) fast hydrolysis, (ii) slow condensation, and (iii) capping of particle growth by addition of a PEG-silane at different time-points of the synthesis. Variation of synthesis conditions including monomer/catalyst concentrations, temperature, and time-point of PEG-silane addition leads to synthesis condition-particle structure correlations as mapped out by a combination of results from data analysis of dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. Results establish precise control over average particle diameter from 6 to 15 nm with increments below 1 nm. Solid state nuclear magnetic resonance (NMR) measurements, zeta-potential measurements, and thermogravimetric analysis (TGA) were conducted to reveal details of the particle surface structure. Long-term particle stability tests in deionized (DI) water and phosphate buffered saline (PBS) 1X buffer solution were performed using DLS demonstrating that the PEGylated particles are stable in physiological environments for months. Fluorescent single pore silica nanoparticles (mC dots) encapsulating blue (DEAC) and green (TMR) dyes were synthesized and characterized by a combination of DLS, TEM, static optical spectroscopy, and fluorescence correlation spectroscopy (FCS) establishing probes for multicolor fluorescence imaging applications. The ultraprecise particle size control demonstrated here in particular for sizes around and below 10 nm may render these particles an interesting subject for further fundamental studies of porous silica particle formation mechanisms as well as for sensing, drug delivery, and theranostic applications. |
---|---|
AbstractList | Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area and high biocompatibility. However, studies to date of MSNs are confined to >10 nm particle sizes which may result in unfavorable biodistribution characteristics for in vivo experiments and hence limit their clinical applications. Here we provide a full account of a synthesis approach to ultrasmall sub-10 nm mesoporous silica nanoparticles with narrow size distributions and homogeneous porous particle morphology. Key features enabling this structure control are (i) fast hydrolysis, (ii) slow condensation, and (iii) capping of particle growth by addition of a PEG-silane at different time-points of the synthesis. Variation of synthesis conditions including monomer/catalyst concentrations, temperature, and time-point of PEG-silane addition leads to synthesis condition-particle structure correlations as mapped out by a combination of results from data analysis of dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. Results establish precise control over average particle diameter from 6 to 15 nm with increments below 1 nm. Solid state nuclear magnetic resonance (NMR) measurements, zeta-potential measurements, and thermogravimetric analysis (TGA) were conducted to reveal details of the particle surface structure. Long-term particle stability tests in deionized (DI) water and phosphate buffered saline (PBS) 1X buffer solution were performed using DLS demonstrating that the PEGylated particles are stable in physiological environments for months. Fluorescent single pore silica nanoparticles (mC dots) encapsulating blue (DEAC) and green (TMR) dyes were synthesized and characterized by a combination of DLS, TEM, static optical spectroscopy, and fluorescence correlation spectroscopy (FCS) establishing probes for multicolor fluorescence imaging applications. The ultraprecise particle size control demonstrated here in particular for sizes around and below 10 nm may render these particles an interesting subject for further fundamental studies of porous silica particle formation mechanisms as well as for sensing, drug delivery, and theranostic applications. |
Author | Zwanziger, Josef Ma, Kai Werner-Zwanziger, Ulrike Wiesner, Ulrich |
AuthorAffiliation | Dalhousie University Cornell University |
AuthorAffiliation_xml | – name: Cornell University – name: Dalhousie University |
Author_xml | – sequence: 1 givenname: Kai surname: Ma fullname: Ma, Kai – sequence: 2 givenname: Ulrike surname: Werner-Zwanziger fullname: Werner-Zwanziger, Ulrike – sequence: 3 givenname: Josef surname: Zwanziger fullname: Zwanziger, Josef – sequence: 4 givenname: Ulrich surname: Wiesner fullname: Wiesner, Ulrich email: ubw1@cornell.edu |
BookMark | eNptkMFOAjEYhBuDiYAefINePHhYbbt0S4-GCJqgHhCvm39LKyXdlrTdGN_eJRgPhtMc5ptJZkZo4IPXCF1TckcJo_eqLUnJJmx7hoaUM1JwQtgADclUimIieHWBRintCKE9Ph2ij1nwOQbnrP_Eixi-8hYHg9cuR0gtOIdXXVNQgn2L564LUSelfcYvOoV9iKFLeGWdVYBfwYc9xGyV0-kSnRtwSV_96hit54_vs6di-bZ4nj0sCygZz4WQ1GiQivNKNJLqRpSmUptSVkY2TJdiM5kaRjk0lahAGgmK9m7PNcZUQpZjdH_sVTGkFLWplc2Q7WEUWFdTUh9uqf9u6RO3_xL7aFuI3yfZmyMLKtW70EXfbznB_QBiMnIP |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_9b01493 crossref_primary_10_1021_acsomega_7b00120 crossref_primary_10_1002_marc_202100892 crossref_primary_10_1002_cplu_201402383 crossref_primary_10_1016_j_nanoso_2024_101395 crossref_primary_10_1098_rsos_220013 crossref_primary_10_1016_j_jcis_2014_02_012 crossref_primary_10_1021_acs_chemmater_5b01222 crossref_primary_10_1002_ppsc_201600339 crossref_primary_10_1016_j_clay_2021_106132 crossref_primary_10_1021_acs_iecr_6b01839 crossref_primary_10_1021_cm402592t crossref_primary_10_1039_C4CP02995J crossref_primary_10_1039_C4RA05310A crossref_primary_10_1021_acsnano_8b07876 crossref_primary_10_1016_j_ijbiomac_2021_10_061 crossref_primary_10_1021_cm504764v crossref_primary_10_1007_s10971_016_3991_6 crossref_primary_10_1088_2050_6120_aa8f57 crossref_primary_10_1016_j_ijpx_2022_100116 crossref_primary_10_1039_C3CS60433K crossref_primary_10_1021_jacs_8b08802 crossref_primary_10_1016_j_snb_2015_05_111 crossref_primary_10_1016_j_apt_2023_104191 crossref_primary_10_1016_j_snb_2013_10_042 crossref_primary_10_1017_S1431927615009915 crossref_primary_10_1039_c3nr00334e crossref_primary_10_1021_acs_chemmater_6b00877 crossref_primary_10_1039_C5NR04465K crossref_primary_10_1016_j_micromeso_2021_111354 crossref_primary_10_1016_j_cej_2015_05_085 crossref_primary_10_1080_25740881_2020_1719147 crossref_primary_10_1021_acs_langmuir_1c02338 crossref_primary_10_1002_cnma_202100453 crossref_primary_10_1039_C7TC03767H crossref_primary_10_1007_s10971_013_3259_3 crossref_primary_10_1016_j_molliq_2021_115851 crossref_primary_10_1016_j_jconrel_2017_07_047 crossref_primary_10_1007_s10971_015_3653_0 crossref_primary_10_1039_C5RA12648G crossref_primary_10_1038_s41578_019_0144_x crossref_primary_10_1039_C6RA02917E crossref_primary_10_1016_j_jscs_2018_02_002 crossref_primary_10_1021_acs_langmuir_7b01498 crossref_primary_10_1039_D3MH00717K crossref_primary_10_1016_j_semcancer_2019_08_022 crossref_primary_10_1021_acs_jpcc_9b00860 crossref_primary_10_1039_C6CC01917J crossref_primary_10_1002_smll_201903747 crossref_primary_10_1016_j_colsurfa_2020_125647 crossref_primary_10_1039_C3NR05599J crossref_primary_10_1039_c3cp51546j crossref_primary_10_1016_j_cej_2022_141125 crossref_primary_10_1021_sc500393t crossref_primary_10_1021_acs_langmuir_5b01637 crossref_primary_10_3389_fnano_2025_1564188 crossref_primary_10_1016_j_jcis_2022_11_087 crossref_primary_10_1007_s11051_018_4227_1 crossref_primary_10_1021_acs_chemmater_7b03033 crossref_primary_10_1016_j_micromeso_2015_08_026 crossref_primary_10_1016_j_addr_2022_114638 crossref_primary_10_1016_j_eurpolymj_2023_112717 crossref_primary_10_1039_C5RA23622C crossref_primary_10_3390_pharmaceutics10030118 crossref_primary_10_1039_C6TB01528J crossref_primary_10_1016_j_micromeso_2015_12_024 crossref_primary_10_1038_s41467_020_18495_5 crossref_primary_10_1039_C7NR05762H crossref_primary_10_1360_TB_2023_0759 crossref_primary_10_1021_acs_chemmater_9b01236 crossref_primary_10_1039_C3TB21666G crossref_primary_10_1021_acsami_8b18434 crossref_primary_10_1016_j_cej_2017_04_022 crossref_primary_10_26599_NBE_2023_9290044 crossref_primary_10_1021_acsami_7b14362 crossref_primary_10_1140_epjs_s11734_021_00385_6 crossref_primary_10_1021_acsbiomaterials_9b01359 crossref_primary_10_1016_j_dyepig_2020_108637 |
Cites_doi | 10.1039/C0CC02923H 10.1146/annurev.pc.41.100190.002401 10.1016/j.micromeso.2010.01.009 10.1002/adfm.200800731 10.1038/nmat2992 10.1002/smll.200900005 10.1021/ja01167a001 10.1021/ja00053a020 10.1039/b908625k 10.1021/ja904982j 10.1039/b902286d 10.1021/cm203196w 10.1021/ja065071y 10.1039/B600562B 10.1002/pola.10286 10.1021/ja910846q 10.1200/JCO.1999.17.2.478 10.1021/ma9908999 10.1126/science.278.5344.1795 10.1021/nl0482478 10.1021/ja208567v 10.1038/483S2a 10.1002/adfm.200600578 10.1073/pnas.0504926102 10.1021/am200104m 10.1073/pnas.0408039101 10.1021/cm3001688 10.1038/nnano.2007.387 10.1038/nrd1632 10.1038/nnano.2007.108 10.1021/la701570z 10.1002/smll.200901789 10.1016/S0168-3659(01)00341-8 10.1201/9780585139401 10.1038/1781168a0 10.1038/bjc.1996.587 10.1007/s10895-009-0523-6 10.1021/nl203526f 10.1016/0021-9797(87)90458-9 10.1021/ja3049783 10.1038/nrc1958 10.1002/smll.200800003 10.1002/smll.200900626 10.1021/ja046275m 10.1021/nl803405h 10.1021/cm7026866 10.1146/annurev.matsci.30.1.545 10.1016/0001-8686(87)80009-X 10.1002/smll.201002022 10.1038/nrc3180 10.1016/0021-9797(68)90272-5 10.1021/ar2000259 10.1021/nl901589y 10.1002/jps.2600710717 10.1021/ja00072a025 10.1172/JCI45600 10.1038/78523 10.1021/nn800448r 10.1063/1.1748251 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/cm303242h |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5002 |
EndPage | 691 |
ExternalDocumentID | 10_1021_cm303242h f88578223 |
GroupedDBID | 29B 4.4 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P ROL TN5 TWZ UI2 UPT VF5 VG9 W1F X YZZ -~X .K2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a325t-791fea9c5567b91eb73f6cd396f9b2e37d48f215ab676a9f9ac1d39eb7bff6793 |
IEDL.DBID | ACS |
ISSN | 0897-4756 |
IngestDate | Tue Jul 01 02:43:17 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Thu Aug 27 13:42:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | theranostic nanocarrier silica nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-791fea9c5567b91eb73f6cd396f9b2e37d48f215ab676a9f9ac1d39eb7bff6793 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1021_cm303242h crossref_primary_10_1021_cm303242h acs_journals_10_1021_cm303242h |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-12 |
PublicationDateYYYYMMDD | 2013-03-12 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-12 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Chemistry of materials |
PublicationTitleAlternate | Chem. Mater |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Schroeder A. (ref4/cit4) 2012; 12 Nakanishi T. (ref8/cit8) 2001; 74 Radu D. R. (ref13/cit13) 2004; 126 Burns A. (ref30/cit30) 2009; 9 Altinoglu E. I. (ref66/cit66) 2008; 2 Bharali D. J. (ref17/cit17) 2005; 102 Stöber W. (ref59/cit59) 1968; 26 Kwon S. G. (ref42/cit42) 2011; 7 Tolcher A. W. (ref7/cit7) 1999; 17 Urata C. (ref35/cit35) 2009 Blackeley D. (ref47/cit47) 1968 Torney F. (ref21/cit21) 2007; 2 Lin Y. (ref52/cit52) 2010; 132 Sugimoto T. (ref37/cit37) 1987; 28 Schipper M. L. (ref53/cit53) 2009; 5 ref48/cit48 Yokoi T. (ref51/cit51) 1996; 128 Ashley C. E. (ref23/cit23) 2011; 10 McKee T. (ref50/cit50) 2003 (ref2/cit2) 2010 Torchilin V. P. Nat. (ref9/cit9) 2005; 4 Dunn B. (ref1/cit1) 2012; 483 Herz E. (ref63/cit63) 2010; 20 Torchilin V. P. (ref11/cit11) 2007; 24 Schaer P. B. (ref31/cit31) 2011; 121 Roy I. (ref19/cit19) 2005; 102 Cohen B. (ref64/cit64) 2012; 24 Hauck T. S. (ref54/cit54) 2010; 6 Gao J. (ref61/cit61) 2012; 12 Peer D. (ref3/cit3) 2007; 2 Couvreur P. (ref5/cit5) 1982; 71 LaMer V. K. (ref36/cit36) 1950; 72 Choi H. S. (ref32/cit32) 2007; 25 Murray C. B. (ref41/cit41) 1993; 115 Rosenholm J. M. (ref15/cit15) 2009; 9 Vivero-Escoto J. L. (ref14/cit14) 2010; 6 Yamada H. (ref26/cit26) 2012; 24 Herz E. (ref62/cit62) 2009; 19 Ow H. (ref27/cit27) 2005; 5 Szwarc M. (ref43/cit43) 1956; 178 Smid J. (ref44/cit44) 2002; 40 Bawendi M. G. (ref40/cit40) 1990; 41 Luo D. (ref12/cit12) 2000; 18 Murray C. B. (ref39/cit39) 2000; 30 Larson D. R. (ref29/cit29) 2008; 20 Burns A. (ref28/cit28) 2006; 35 Tan C. G. (ref60/cit60) 1987; 188 Beck J. S. (ref58/cit58) 1992; 114 Brinker C. J. (ref49/cit49) 1990 Hu S. (ref18/cit18) 2008; 24 Lu F. (ref34/cit34) 2009; 5 Ma K. (ref33/cit33) 2012; 134 Reiss H. (ref38/cit38) 1951; 19 Piao Y. (ref22/cit22) 2008; 18 Batrakova E. V. (ref6/cit6) 1996; 74 He Q. (ref25/cit25) 2010; 131 Lin Y. (ref55/cit55) 2011; 133 Templin M. (ref65/cit65) 1997; 278 Du L. (ref16/cit16) 2009; 131 Jeong B. (ref56/cit56) 1999; 32 Möller K. (ref57/cit57) 2007; 17 Quirk R. (ref46/cit46) 2003 Lee J. E. (ref20/cit20) 2011; 44 Duncan R. (ref10/cit10) 2006; 6 Lin Y. (ref24/cit24) 2011; 47 Hsieh H. (ref45/cit45) 1996 |
References_xml | – volume: 47 start-page: 532 year: 2011 ident: ref24/cit24 publication-title: Chem. Commun. doi: 10.1039/C0CC02923H – volume: 41 start-page: 477 year: 1990 ident: ref40/cit40 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.41.100190.002401 – volume: 131 start-page: 314 year: 2010 ident: ref25/cit25 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2010.01.009 – volume: 18 start-page: 3745 year: 2008 ident: ref22/cit22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800731 – volume: 10 start-page: 389 year: 2011 ident: ref23/cit23 publication-title: Nat. Mater. doi: 10.1038/nmat2992 – volume: 5 start-page: 1408 year: 2009 ident: ref34/cit34 publication-title: Small doi: 10.1002/smll.200900005 – volume: 72 start-page: 4847 year: 1950 ident: ref36/cit36 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01167a001 – volume: 114 start-page: 10834 year: 1992 ident: ref58/cit58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00053a020 – start-page: 5094 year: 2009 ident: ref35/cit35 publication-title: Chem. Commun. doi: 10.1039/b908625k – volume: 131 start-page: 15136 year: 2009 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904982j – volume: 25 start-page: 1165 year: 2007 ident: ref32/cit32 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 6341 year: 2009 ident: ref62/cit62 publication-title: J. Mater. Chem. doi: 10.1039/b902286d – volume: 24 start-page: 361 year: 2012 ident: ref64/cit64 publication-title: Chem. Mater. doi: 10.1021/cm203196w – volume: 128 start-page: 13664 year: 1996 ident: ref51/cit51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065071y – volume-title: Addition Polymers: Formation and Characterization year: 1968 ident: ref47/cit47 – volume: 35 start-page: 1028 year: 2006 ident: ref28/cit28 publication-title: Chem. Soc. Rev. doi: 10.1039/B600562B – volume: 40 start-page: 2101 year: 2002 ident: ref44/cit44 publication-title: J. Polym. Sci., Part A doi: 10.1002/pola.10286 – volume: 132 start-page: 4834 year: 2010 ident: ref52/cit52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910846q – volume: 17 start-page: 478 year: 1999 ident: ref7/cit7 publication-title: J. Clin. Oncology doi: 10.1200/JCO.1999.17.2.478 – volume: 32 start-page: 7064 year: 1999 ident: ref56/cit56 publication-title: Macromolecules doi: 10.1021/ma9908999 – volume: 278 start-page: 1795 year: 1997 ident: ref65/cit65 publication-title: Science doi: 10.1126/science.278.5344.1795 – volume: 5 start-page: 113 year: 2005 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl0482478 – volume: 133 start-page: 20444 year: 2011 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208567v – volume: 483 start-page: S2 year: 2012 ident: ref1/cit1 publication-title: Nature doi: 10.1038/483S2a – volume-title: Encyclopedia of Polymer Science and Technology year: 2003 ident: ref46/cit46 – volume: 17 start-page: 605 year: 2007 ident: ref57/cit57 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600578 – volume: 102 start-page: 11539 year: 2005 ident: ref17/cit17 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0504926102 – volume: 24 start-page: 1 year: 2007 ident: ref11/cit11 publication-title: Pharm. Perspect. Pharm. Res. – ident: ref48/cit48 doi: 10.1021/am200104m – volume: 102 start-page: 279 year: 2005 ident: ref19/cit19 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0408039101 – volume: 24 start-page: 1462 year: 2012 ident: ref26/cit26 publication-title: Chem. Mater. doi: 10.1021/cm3001688 – volume: 2 start-page: 751 year: 2007 ident: ref3/cit3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 4 start-page: 145 year: 2005 ident: ref9/cit9 publication-title: Rev. Drug Discovery doi: 10.1038/nrd1632 – volume: 2 start-page: 295 year: 2007 ident: ref21/cit21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.108 – volume: 24 start-page: 239 year: 2008 ident: ref18/cit18 publication-title: Langmuir doi: 10.1021/la701570z – volume: 6 start-page: 1952 year: 2010 ident: ref14/cit14 publication-title: Small doi: 10.1002/smll.200901789 – volume: 74 start-page: 295 year: 2001 ident: ref8/cit8 publication-title: J. Controlled Release doi: 10.1016/S0168-3659(01)00341-8 – volume-title: Anionic Polymerization: Principles and practical applications year: 1996 ident: ref45/cit45 doi: 10.1201/9780585139401 – volume: 178 start-page: 1168 year: 1956 ident: ref43/cit43 publication-title: Nature doi: 10.1038/1781168a0 – volume: 74 start-page: 1545 year: 1996 ident: ref6/cit6 publication-title: J. Cancer doi: 10.1038/bjc.1996.587 – volume: 20 start-page: 67 year: 2010 ident: ref63/cit63 publication-title: J. Fluoresc. doi: 10.1007/s10895-009-0523-6 – volume: 12 start-page: 281 year: 2012 ident: ref61/cit61 publication-title: Nano Lett. doi: 10.1021/nl203526f – volume-title: Biochemistry year: 2003 ident: ref50/cit50 – volume: 188 start-page: 290 year: 1987 ident: ref60/cit60 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(87)90458-9 – volume: 134 start-page: 13180 year: 2012 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3049783 – volume: 6 start-page: 688 year: 2006 ident: ref10/cit10 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1958 – volume: 5 start-page: 126 issue: 1 year: 2009 ident: ref53/cit53 publication-title: Small doi: 10.1002/smll.200800003 – volume: 6 start-page: 138 issue: 1 year: 2010 ident: ref54/cit54 publication-title: Small doi: 10.1002/smll.200900626 – volume: 126 start-page: 13216 year: 2004 ident: ref13/cit13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046275m – volume: 9 start-page: 442 year: 2009 ident: ref30/cit30 publication-title: Nano Lett. doi: 10.1021/nl803405h – volume: 20 start-page: 2677 year: 2008 ident: ref29/cit29 publication-title: Chem. Mater. doi: 10.1021/cm7026866 – volume: 30 start-page: 545 year: 2000 ident: ref39/cit39 publication-title: G. Annu. Rev. Mater. Sci. doi: 10.1146/annurev.matsci.30.1.545 – volume: 28 start-page: 65 year: 1987 ident: ref37/cit37 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/0001-8686(87)80009-X – volume: 7 start-page: 2685 year: 2011 ident: ref42/cit42 publication-title: Small doi: 10.1002/smll.201002022 – volume-title: Globocan 2008 year: 2010 ident: ref2/cit2 – volume: 12 start-page: 39 year: 2012 ident: ref4/cit4 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3180 – volume-title: Sol-Gel Science year: 1990 ident: ref49/cit49 – volume: 26 start-page: 62 year: 1968 ident: ref59/cit59 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 44 start-page: 893 year: 2011 ident: ref20/cit20 publication-title: Acc. Chem. Res. doi: 10.1021/ar2000259 – volume: 9 start-page: 3308 year: 2009 ident: ref15/cit15 publication-title: Nano Lett. doi: 10.1021/nl901589y – volume: 71 start-page: 790 year: 1982 ident: ref5/cit5 publication-title: J. Pharm. Sci. doi: 10.1002/jps.2600710717 – volume: 115 start-page: 8706 year: 1993 ident: ref41/cit41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00072a025 – volume: 121 start-page: 2768 year: 2011 ident: ref31/cit31 publication-title: J. Clin. Invest. doi: 10.1172/JCI45600 – volume: 18 start-page: 893 year: 2000 ident: ref12/cit12 publication-title: Nat. Biotechnol. doi: 10.1038/78523 – volume: 2 start-page: 2075 year: 2008 ident: ref66/cit66 publication-title: ACS Nano doi: 10.1021/nn800448r – volume: 19 start-page: 482 year: 1951 ident: ref38/cit38 publication-title: J. Chem. Phys. doi: 10.1063/1.1748251 |
SSID | ssj0011028 |
Score | 2.3909 |
Snippet | Mesoporous silica nanoparticles (MSNs) have recently attracted a lot of interest for future nanotheranostic applications because of their large surface-area... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 677 |
Title | Controlling Growth of Ultrasmall Sub-10 nm Fluorescent Mesoporous Silica Nanoparticles |
URI | http://dx.doi.org/10.1021/cm303242h |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011028 issn: 0897-4756 databaseCode: ACS dateStart: 19890101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT8IwFH9BPKgHP1AjfpBGPXgZZl3brUeCIjHBC2K4kba0wTiYYePiX2-7DUKCH-e9ZUu7vt_v7b33ewC3ElPFla89To32iLThjtBh4DkxsYASSUzex917Yd0BeR7SYQVufsngY_9eTa2XtUAy2YJtzCLfRVitdn-VKnAImVNFHnokpGwpH7R-q4Mela5BzxqGdA7gYdmJU5SOfDQXmWyqr01hxr9e7xD2Sw6JWsWmH0FFz2qw016ObqvB3prK4DG8tYtydNd4jp5s2J1NUGLQIM7mIp2KOEbWe1hHiWZT1IkXybxQeEI9nSaWnSeLFPXf3b89ZF2xjbHLUroTGHQeX9tdrxyn4IkA08wJUxotuKKUhZL7WoaBYWoccGa4xDoIxyQylgEIyUImuOFC-faqtZPGMHuOT6E6S2b6DNCYaiwIkZoIQ5iJuGCuxTUYR5HS1Gd1aNj1HpXHIR3lmW7sj1aLVYe75VaMVClG7mZixD-ZXq9MPwsFjk2j8_8eeAG7OB9kEXg-voRqNl_oK0snMtnIP6dv2uTEJQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHIADb8RzRIgDl4LaJmlzRBNjwLYLDHGrkiwRiG5Fa3fh1-Ok3agACc51WytN7M-1_RmhMxlQxZWvPU6N9oiEcEfoKPQsmVhIiSTG9XH3-qwzIHfP9LmiybG9MKBEDk_KXRL_i13Av1QjMLbgT14W0ZJjQLEwqPUwzxhYR-kQI488ElE2YxGq32o9kMprHqjmStrr5Uwip4SrIHm7mBbyQn1842f8n5YbaK1ClPiq3AKbaEGPt9ByazbIbQut1jgHt9FTqyxOt23o-AaC8OIFZwYP0mIi8pFIUwy2BMwmHo9wO51mk5LvCfd0ngFWz6Y5fni1f_owGGaIuKvCuh00aF8_tjpeNVzBE2FAC0tTabTgilIWSe5rGYWGqWHImeEy0GE0JLEBPCAki5jghgvlw1WQk8YwONW7qDHOxnoP4SHVgSBEaiIMYSbmgtmG13AYx0pTn-2jJqxVUh2OPHF578BP5ou1j85nXyRRFTW5nZCR_iZ6Ohd9L_k4fgod_PXCE7Tceex1k-5t__4QrQRuxEXo-cERahSTqT4GoFHIptthn2XqzJA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZ4SDwOvBHjGSEOXApqm6TLEQ3GeCPBELcqSRMN0a1o7S78epyumyZAgnPdNkpj-3NtfwY4UgHTQvvGE8wajyoMd6SJQs-RiYWMKmrLPu67e95q0-tX9loFiq4XBheR45PyMonvtPojsRXDgH-qu2hw0ad0pmGWOeo3B4UaT-OsgXOWJWoUkUcjxkdMQpO3Oi-k8wkvNOFOmsvwMF5IWUXyfjIo1In-_MbR-P-VrsBShSzJ2fAorMKU6a3BfGM00G0NFie4B9fhpTEsUnft6OQSg_GiQzJL2mnRl3lXpilBm4Lmk_S6pJkOsv6Q94ncmTxDzJ4NcvL05v74ETTQGHlXBXYb0G5ePDdaXjVkwZNhwApHV2mNFJoxHinhGxWFluskFNwKFZgwSmjdIi6QikdcCiuk9vEqyilrOWr3Jsz0sp7ZApIwE0hKlaHSUm7rQnLX-Bom9bo2zOc12Mf9iislyeMy_x348XizanA8-iqxrijK3aSM9DfRw7Hox5CX46fQ9l8vPIC5x_NmfHt1f7MDC0E56SL0_GAXZor-wOwh3ijUfnnIvgAf4M8K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+Growth+of+Ultrasmall+Sub-10+nm+Fluorescent+Mesoporous+Silica+Nanoparticles&rft.jtitle=Chemistry+of+materials&rft.au=Ma%2C+Kai&rft.au=Werner-Zwanziger%2C+Ulrike&rft.au=Zwanziger%2C+Josef&rft.au=Wiesner%2C+Ulrich&rft.date=2013-03-12&rft.pub=American+Chemical+Society&rft.issn=0897-4756&rft.eissn=1520-5002&rft.volume=25&rft.issue=5&rft.spage=677&rft.epage=691&rft_id=info:doi/10.1021%2Fcm303242h&rft.externalDocID=f88578223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-4756&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-4756&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-4756&client=summon |