Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate

Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 20; no. 12; pp. 8608 - 8614
Main Authors Fedotova, Anna, Younesi, Mohammadreza, Sautter, Jürgen, Vaskin, Aleksandr, Löchner, Franz J.F, Steinert, Michael, Geiss, Reinhard, Pertsch, Thomas, Staude, Isabelle, Setzpfandt, Frank
Format Journal Article
LanguageEnglish
Published American Chemical Society 09.12.2020
Subjects
Online AccessGet full text
ISSN1530-6984
1530-6992
1530-6992
DOI10.1021/acs.nanolett.0c03290

Cover

Abstract Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.
AbstractList Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.
Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.
Author Pertsch, Thomas
Fedotova, Anna
Sautter, Jürgen
Geiss, Reinhard
Vaskin, Aleksandr
Younesi, Mohammadreza
Löchner, Franz J.F
Steinert, Michael
Setzpfandt, Frank
Staude, Isabelle
AuthorAffiliation Institute of Applied Physics, Abbe Center of Photonics
Fraunhofer Institute of Applied Optics and Precision Engineering
AuthorAffiliation_xml – name: Institute of Applied Physics, Abbe Center of Photonics
– name: Fraunhofer Institute of Applied Optics and Precision Engineering
Author_xml – sequence: 1
  givenname: Anna
  orcidid: 0000-0002-4118-8789
  surname: Fedotova
  fullname: Fedotova, Anna
  email: anna.fedotova@uni-jena.de
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 2
  givenname: Mohammadreza
  surname: Younesi
  fullname: Younesi, Mohammadreza
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 3
  givenname: Jürgen
  surname: Sautter
  fullname: Sautter, Jürgen
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 4
  givenname: Aleksandr
  orcidid: 0000-0002-3014-1002
  surname: Vaskin
  fullname: Vaskin, Aleksandr
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 5
  givenname: Franz J.F
  orcidid: 0000-0002-8003-7916
  surname: Löchner
  fullname: Löchner, Franz J.F
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 6
  givenname: Michael
  surname: Steinert
  fullname: Steinert, Michael
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 7
  givenname: Reinhard
  surname: Geiss
  fullname: Geiss, Reinhard
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 8
  givenname: Thomas
  surname: Pertsch
  fullname: Pertsch, Thomas
  organization: Fraunhofer Institute of Applied Optics and Precision Engineering
– sequence: 9
  givenname: Isabelle
  orcidid: 0000-0001-8021-572X
  surname: Staude
  fullname: Staude, Isabelle
  organization: Institute of Applied Physics, Abbe Center of Photonics
– sequence: 10
  givenname: Frank
  surname: Setzpfandt
  fullname: Setzpfandt, Frank
  organization: Institute of Applied Physics, Abbe Center of Photonics
BookMark eNqFkD1PwzAQQC0EEm3hHzB4ZElx7HyZDSpokUqR-Fqji3MRrhK72M7AvyelhYEBpjvp3rvhjcmhsQYJOYvZNGY8vgDlpwaMbTGEKVNMcMkOyChOBYsyKfnhz14kx2Ts_ZoxJkXKRuT1CZU1dbQA11mjFZ2jQQdBW0O1oY_o7fA50JU1rTYIjt5jAN-7BhR6eg0eazqwSx3edN_RlbYVBDwhRw20Hk_3c0Jebm-eZ4to-TC_m10tIxA8DVHGijQv0kwpkadSiVoWPCkKWbEizqGuBAqRocibGgcwwSpvJGINVS14lfNKTMj57u_G2fcefSg77RW2LRi0vS95krE8S2SWDGiyQ5Wz3jtsyo3THbiPMmblNmM5ZCy_M5b7jIN2-UtTOnz1CQ50-5_MdvL2ura9M0OMv5VP-CuQ7w
CitedBy_id crossref_primary_10_1364_OL_474784
crossref_primary_10_3390_nano13101639
crossref_primary_10_1039_D3NR02278A
crossref_primary_10_1016_j_photonics_2022_101053
crossref_primary_10_1080_23746149_2021_2022992
crossref_primary_10_3389_fphy_2022_883703
crossref_primary_10_1364_OL_515576
crossref_primary_10_29026_oes_2023_220022
crossref_primary_10_1364_OME_544935
crossref_primary_10_1364_PRJ_474387
crossref_primary_10_1002_adpr_202400167
crossref_primary_10_1088_1361_6463_ac9399
crossref_primary_10_1364_AOP_510826
crossref_primary_10_1002_andp_202100255
crossref_primary_10_1063_5_0165120
crossref_primary_10_1002_lpor_202200059
crossref_primary_10_1002_lpor_202300503
crossref_primary_10_1021_acs_nanolett_2c03811
crossref_primary_10_1002_adom_202100789
crossref_primary_10_1364_OE_520773
crossref_primary_10_37188_lam_2024_005
crossref_primary_10_3390_photonics10030263
crossref_primary_10_1002_lpor_202100207
crossref_primary_10_1007_s11433_021_1668_y
crossref_primary_10_1021_acs_nanolett_4c05114
crossref_primary_10_1021_acsphotonics_3c01163
crossref_primary_10_1088_1361_6463_ad8ed4
crossref_primary_10_3390_ijms231810592
crossref_primary_10_1016_j_optcom_2024_130453
crossref_primary_10_1021_acsphotonics_2c01926
crossref_primary_10_1021_acsphotonics_2c00835
crossref_primary_10_1021_acs_nanolett_4c06570
crossref_primary_10_1088_1361_6528_abfe23
crossref_primary_10_1021_acs_chemrev_2c00078
crossref_primary_10_1063_5_0077592
crossref_primary_10_1002_adom_202400815
crossref_primary_10_1515_nanoph_2024_0132
crossref_primary_10_1021_acs_nanolett_1c03790
crossref_primary_10_3390_ma15175944
crossref_primary_10_1002_adom_202401070
crossref_primary_10_1021_acsphotonics_4c02342
crossref_primary_10_3390_photonics10020141
crossref_primary_10_1002_adma_202313589
crossref_primary_10_1021_acs_nanolett_1c01125
crossref_primary_10_1364_PRJ_475616
crossref_primary_10_1002_adma_202402777
crossref_primary_10_1002_adom_202402686
crossref_primary_10_1002_adpr_202200157
crossref_primary_10_1364_OME_500196
crossref_primary_10_1364_JOSAB_481591
crossref_primary_10_1063_5_0242454
crossref_primary_10_3390_photonics10070818
crossref_primary_10_1038_s41467_021_25717_x
crossref_primary_10_1016_j_optlastec_2024_110776
crossref_primary_10_1364_OE_538446
crossref_primary_10_1117_1_AP_4_3_034001
crossref_primary_10_1038_s41377_024_01548_5
crossref_primary_10_1364_OE_529219
crossref_primary_10_1515_nanoph_2021_0367
crossref_primary_10_1364_OE_435633
crossref_primary_10_1103_PhysRevApplied_22_064064
crossref_primary_10_1364_OL_533402
crossref_primary_10_1515_nanoph_2023_0865
crossref_primary_10_1002_adfm_202308484
crossref_primary_10_1021_acsphotonics_1c01356
crossref_primary_10_1021_acsphotonics_1c00026
crossref_primary_10_1515_nanoph_2024_0630
crossref_primary_10_1103_PhysRevLett_127_153901
crossref_primary_10_1063_5_0192018
crossref_primary_10_1016_j_physrep_2023_01_001
crossref_primary_10_1021_acs_nanolett_4c03369
crossref_primary_10_1021_acsphotonics_1c00935
crossref_primary_10_1002_lpor_202000521
crossref_primary_10_1021_acs_nanolett_3c02055
crossref_primary_10_1126_sciadv_abq4240
crossref_primary_10_1103_PhysRevA_110_063528
crossref_primary_10_1515_nanoph_2024_0182
crossref_primary_10_1002_lpor_202200031
crossref_primary_10_1364_OL_510932
crossref_primary_10_1364_OL_548072
crossref_primary_10_1021_acs_nanolett_1c02290
crossref_primary_10_1002_admt_202400318
crossref_primary_10_1002_adpr_202100286
crossref_primary_10_1038_s41566_024_01444_9
crossref_primary_10_1038_s41566_022_01126_4
crossref_primary_10_1364_OL_504379
crossref_primary_10_1515_nanoph_2021_0501
crossref_primary_10_1002_lpor_202400290
crossref_primary_10_1002_adom_202201375
crossref_primary_10_1021_acsphotonics_2c01341
crossref_primary_10_1070_QEL18037
crossref_primary_10_1515_nanoph_2023_0886
crossref_primary_10_1515_nanoph_2023_0526
crossref_primary_10_1063_5_0193124
crossref_primary_10_1007_s11433_023_2223_5
crossref_primary_10_1063_5_0142816
crossref_primary_10_1364_OL_537664
crossref_primary_10_1021_acs_nanolett_4c00039
crossref_primary_10_1364_AO_514979
crossref_primary_10_1021_acs_nanolett_1c02372
crossref_primary_10_1039_D3NR02430J
crossref_primary_10_1016_j_ceramint_2021_10_154
crossref_primary_10_1080_23746149_2024_2322739
crossref_primary_10_1364_OPTICA_471177
crossref_primary_10_1080_23746149_2021_1889402
crossref_primary_10_1109_JSTQE_2022_3187083
crossref_primary_10_1007_s11433_022_1937_8
crossref_primary_10_1007_s11433_023_2299_9
crossref_primary_10_1364_OE_551155
crossref_primary_10_3788_CJL231256
crossref_primary_10_1063_5_0137254
crossref_primary_10_1016_j_optcom_2025_131585
crossref_primary_10_1039_D1NR05379E
crossref_primary_10_1364_OL_413764
crossref_primary_10_1109_TAP_2024_3468458
crossref_primary_10_1002_aenm_202102877
crossref_primary_10_1364_OE_417066
crossref_primary_10_1038_s44310_024_00050_5
crossref_primary_10_1021_acsphotonics_4c02259
crossref_primary_10_1016_j_photonics_2023_101194
crossref_primary_10_1039_D4TC04118F
crossref_primary_10_1515_nanoph_2021_0326
Cites_doi 10.1038/srep08072
10.1109/OMN.2017.8051462
10.1021/acs.nanolett.7b00676
10.1016/j.mattod.2017.06.007
10.1038/natrevmats.2017.10
10.1021/acs.nanolett.9b01112
10.1088/0034-4885/79/7/076401
10.1002/lpor.201400402
10.1021/acsphotonics.7b01533
10.1103/PhysRevLett.121.033903
10.1364/OL.40.002715
10.1021/acs.nanolett.8b04311
10.1364/OPTICA.4.001536
10.1364/OE.26.001547
10.1364/JOSAB.36.000E55
10.1364/OE.27.025920
10.1063/1.4928591
10.1364/OPTICA.6.001455
10.1364/OPTICA.6.000380
10.1364/OME.9.003146
10.1364/OE.23.026544
10.1038/s41586-018-0551-y
10.1364/OE.27.033391
10.1103/PhysRevLett.124.163603
10.1364/OPTICA.3.000531
10.1038/nmat3839
10.1088/1361-6463/ab25ff
10.1364/JOSAB.14.002268
10.1364/OE.25.006963
10.1364/OL.42.000559
10.1103/PhysRevB.84.235429
10.1007/BF00614817
10.1021/acs.nanolett.6b01816
10.1021/acsphotonics.8b00810
10.1021/acs.nanolett.8b02346
10.1364/OE.24.015965
10.1088/1361-6528/aa5645
10.1021/acsphotonics.6b00050
10.1126/science.1232009
10.1364/OE.395545
10.1021/acsphotonics.8b01594
10.1021/acsphotonics.9b00110
10.1002/pssa.201431328
10.1038/s41566-019-0529-9
10.1021/acs.nanolett.6b03525
10.1063/1.5143266
10.1002/lpor.201800312
10.1038/s41467-017-00019-3
10.3390/nano9010069
10.1021/acsphotonics.8b01287
10.1364/OE.26.000897
10.1021/acsphotonics.7b01478
10.1109/JPHOT.2020.2988502
10.1038/s41467-019-08969-6
10.1126/science.aag2472
ContentType Journal Article
Copyright 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
DBID AAYXX
CITATION
7X8
DOI 10.1021/acs.nanolett.0c03290
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 8614
ExternalDocumentID 10_1021_acs_nanolett_0c03290
a549434122
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a325t-60857856cc3759c3d9824889b0817adb3e336e37fde8574eb7f9eedabd32b72b3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 05:40:32 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 04:09:48 EDT 2025
Fri Dec 11 03:19:32 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Nonlinear metasurfaces
Mie-type resonances
Lithium niobate
Second-harmonic generation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a325t-60857856cc3759c3d9824889b0817adb3e336e37fde8574eb7f9eedabd32b72b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3014-1002
0000-0002-8003-7916
0000-0002-4118-8789
0000-0001-8021-572X
PQID 2460764964
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2460764964
crossref_primary_10_1021_acs_nanolett_0c03290
crossref_citationtrail_10_1021_acs_nanolett_0c03290
acs_journals_10_1021_acs_nanolett_0c03290
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201209
2020-12-09
PublicationDateYYYYMMDD 2020-12-09
PublicationDate_xml – month: 12
  year: 2020
  text: 20201209
  day: 09
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
Ma J. (ref55/cit55) 2020
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Huang Z. (ref56/cit56)
Boyd R. W. (ref1/cit1) 2008
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1038/srep08072
– ident: ref41/cit41
  doi: 10.1109/OMN.2017.8051462
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.7b00676
– ident: ref25/cit25
  doi: 10.1016/j.mattod.2017.06.007
– ident: ref27/cit27
  doi: 10.1038/natrevmats.2017.10
– ident: ref48/cit48
  doi: 10.1021/acs.nanolett.9b01112
– ident: ref23/cit23
  doi: 10.1088/0034-4885/79/7/076401
– ident: ref26/cit26
  doi: 10.1002/lpor.201400402
– ident: ref33/cit33
  doi: 10.1021/acsphotonics.7b01533
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.121.033903
– ident: ref5/cit5
  doi: 10.1364/OL.40.002715
– ident: ref36/cit36
  doi: 10.1021/acs.nanolett.8b04311
– ident: ref8/cit8
  doi: 10.1364/OPTICA.4.001536
– ident: ref11/cit11
  doi: 10.1364/OE.26.001547
– volume-title: arXiv (Physics, Optics)
  year: 2020
  ident: ref55/cit55
– ident: ref40/cit40
  doi: 10.1364/JOSAB.36.000E55
– ident: ref20/cit20
  doi: 10.1364/OE.27.025920
– ident: ref3/cit3
  doi: 10.1063/1.4928591
– ident: ref15/cit15
  doi: 10.1364/OPTICA.6.001455
– ident: ref7/cit7
  doi: 10.1364/OPTICA.6.000380
– ident: ref19/cit19
  doi: 10.1364/OME.9.003146
– ident: ref37/cit37
  doi: 10.1364/OE.23.026544
– ident: ref12/cit12
  doi: 10.1038/s41586-018-0551-y
– ident: ref51/cit51
  doi: 10.1364/OE.27.033391
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.124.163603
– ident: ref18/cit18
  doi: 10.1364/OPTICA.3.000531
– ident: ref22/cit22
  doi: 10.1038/nmat3839
– ident: ref28/cit28
  doi: 10.1088/1361-6463/ab25ff
– ident: ref57/cit57
  doi: 10.1364/JOSAB.14.002268
– ident: ref13/cit13
  doi: 10.1364/OE.25.006963
– ident: ref43/cit43
  doi: 10.1364/OL.42.000559
– ident: ref30/cit30
  doi: 10.1103/PhysRevB.84.235429
– ident: ref2/cit2
  doi: 10.1007/BF00614817
– ident: ref32/cit32
  doi: 10.1021/acs.nanolett.6b01816
– ident: ref44/cit44
  doi: 10.1021/acsphotonics.8b00810
– ident: ref34/cit34
  doi: 10.1021/acs.nanolett.8b02346
– ident: ref38/cit38
  doi: 10.1364/OE.24.015965
– ident: ref42/cit42
  doi: 10.1088/1361-6528/aa5645
– ident: ref46/cit46
  doi: 10.1021/acsphotonics.6b00050
– ident: ref24/cit24
  doi: 10.1126/science.1232009
– ident: ref16/cit16
  doi: 10.1364/OE.395545
– ident: ref54/cit54
  doi: 10.1021/acsphotonics.8b01594
– ident: ref47/cit47
  doi: 10.1021/acsphotonics.9b00110
– ident: ref4/cit4
  doi: 10.1002/pssa.201431328
– ident: ref10/cit10
  doi: 10.1038/s41566-019-0529-9
– ident: ref39/cit39
  doi: 10.1021/acs.nanolett.6b03525
– ident: ref21/cit21
  doi: 10.1063/1.5143266
– ident: ref53/cit53
  doi: 10.1002/lpor.201800312
– volume-title: Nonlinear Optics
  year: 2008
  ident: ref1/cit1
– ident: ref31/cit31
  doi: 10.1038/s41467-017-00019-3
– ident: ref52/cit52
  doi: 10.3390/nano9010069
– ident: ref50/cit50
  doi: 10.1021/acsphotonics.8b01287
– ident: ref6/cit6
  doi: 10.1364/OE.26.000897
– ident: ref45/cit45
  doi: 10.1021/acsphotonics.7b01478
– ident: ref49/cit49
  doi: 10.1109/JPHOT.2020.2988502
– volume-title: arXiv (Physics, Optics)
  ident: ref56/cit56
– ident: ref14/cit14
  doi: 10.1038/s41467-019-08969-6
– ident: ref29/cit29
  doi: 10.1126/science.aag2472
SSID ssj0009350
Score 2.6495984
Snippet Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8608
Title Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate
URI http://dx.doi.org/10.1021/acs.nanolett.0c03290
https://www.proquest.com/docview/2460764964
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXjMTC4JLYrhOPgEAVgjLwEFvkV0QFpKhNF349d03CUwhYo7Pl-Hy-p78jZA-TbWnqYxaUN0waKVnKY8tSkychWKOjHOOQFz3VvZFnd527d0fxawafxwfGjdqFKQbwG2U7cpHgGlz0Ga5A1aApdHz1DrIrJh1ZQYjBJdKpbJ7K_TALKiQ3-qyQPt_HEyVzukAum6c6VW3JQ3tc2rZ7-Y7c-Mf1L5L52t6kh9UBWSJToVgmcx9QCFfI7RU6xZ51zfAJgXJpBUWNHKP9gmKAH6tlaK9C1TBDehFKjCzmWM5Fj0APegq05_3yvj9-or0-3BFlWCU3pyfXx11Wt1tgRvBOyRSC3acd5ZxIOtoJr1MO4q0tWA2J8VYEIVQQSe4DEMpgk1yDhjXWC24TbsUamS4GRVgnFLjsI21jbsBCMDlw3IrE5hqMAxeFNLTIPmxLVovLKJtkwnmc4cdmr7J6r1pENPzJXI1bju0zHn8Zxd5GPVe4Hb_Q7zasz0DAMGtiijAYjzIuVZQoqZXc-MeqN8ksR88cC1_0Fpkuh-OwDeZLaXcmZ_YVEeHutQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcqeBg8bGyABgNmpL3swSWxHSd-LGiojLYvfIi3yI4dUW2kqElf-Ou5S5OWTppQXy3bsn13vjvf-XeE_MBgW5K4kHnlDJNGSpbw0LLE5LH31uggx3fI4Uj17-Tvh-ihQ6L2LwwsooSZyjqIv0QXCM-wrTDFBHZTdYMsEFyDp74ZKamwYkPv4maJtSvqwqwgy-AZ6US2P-b-Mwvqpaxc1Uur13Ktay4_kfvFKusUkz_dWWW72cs_AI5rb2OHfGysT9qbs8tn0vHFF7L9BpNwl9zfoIvsWN9MnxA2l86BqZF-dFxQfO7H3Bk6mmNsmCkd-grfGXNM7qLnoBUdhb6DcfU4nj3R0RhujMrvkbvLX7cXfdYUX2BG8KhiCqHvk0hlmYgjnQmnEw7Cri3YELFxVnghlBdx7jx0lN7GuQZ9a6wT3Mbcin2yUUwK_5VQoLkLtA25AXvB5EB_K2KbazAVssAn_oD8hGNJG-Ep0zouzsMUG9uzSpuzOiCiJVOaNSjmWEzj7zuj2GLU8xzF453-py0HpCBuGEMxhZ_MypQDu8VKaiUP11j1d_KhfzscpIOr0fU3ssXRZ8eUGH1ENqrpzB-DYVPZk5qNXwHpfvcX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSAgOvBHjGSQuHDLaJGub4xhM4zUh8RDiUiVNKiagQ2t34ddjdx0vCSG4RkmUxHZsx85nQvYw2BZF1mcusJpJLSWLuG9YpNPQOaOVl-I75EU36NzI07vG3adSX7CIHGbKyyA-SvWLTSuEAf8A2zOd9WFHRd1LPMEVeOtTYJP4WLWh2br6wNsVZXFWkGfwjlQkx7_mfpgFdVOSf9VNX6_mUt-058n9-0rLNJPH-rAw9eT1G4jjv7ayQOYqK5Q2R2yzSCZctkRmP2ETLpPbK3SVLevowTPC59IRQDXSkfYyis_-mENDuyOsDT2gF67A98YUk7zoIWhHS6Hvea946A2fabcHN0fhVshN-_i61WFVEQamBW8ULEAI_KgRJIkIGyoRVkUchF4ZsCVCbY1wQgROhKl10FE6E6YK9K42VnATciNWyWTWz9waoUB76ynjcw12g06BD4wITarAZEg8F7ka2YdjiSshyuMyPs79GBvHZxVXZ1UjYkyqOKnQzLGoxtMvo9j7qJcRmscv_XfHXBCD2GEsRWeuP8xjLgMvDKQK5PofVr1Dpi-P2vH5Sfdsg8xwdN0xM0ZtksliMHRbYN8UZrvk5De6q_mR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Harmonic+Generation+in+Resonant+Nonlinear+Metasurfaces+Based+on+Lithium+Niobate&rft.jtitle=Nano+letters&rft.au=Fedotova%2C+Anna&rft.au=Younesi%2C+Mohammadreza&rft.au=Sautter%2C+J%C3%BCrgen&rft.au=Vaskin%2C+Aleksandr&rft.date=2020-12-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=12&rft.spage=8608&rft.epage=8614&rft_id=info:doi/10.1021%2Facs.nanolett.0c03290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_0c03290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon