Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate
Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on...
Saved in:
Published in | Nano letters Vol. 20; no. 12; pp. 8608 - 8614 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
09.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1530-6984 1530-6992 1530-6992 |
DOI | 10.1021/acs.nanolett.0c03290 |
Cover
Abstract | Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics. |
---|---|
AbstractList | Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics. Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics. |
Author | Pertsch, Thomas Fedotova, Anna Sautter, Jürgen Geiss, Reinhard Vaskin, Aleksandr Younesi, Mohammadreza Löchner, Franz J.F Steinert, Michael Setzpfandt, Frank Staude, Isabelle |
AuthorAffiliation | Institute of Applied Physics, Abbe Center of Photonics Fraunhofer Institute of Applied Optics and Precision Engineering |
AuthorAffiliation_xml | – name: Institute of Applied Physics, Abbe Center of Photonics – name: Fraunhofer Institute of Applied Optics and Precision Engineering |
Author_xml | – sequence: 1 givenname: Anna orcidid: 0000-0002-4118-8789 surname: Fedotova fullname: Fedotova, Anna email: anna.fedotova@uni-jena.de organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 2 givenname: Mohammadreza surname: Younesi fullname: Younesi, Mohammadreza organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 3 givenname: Jürgen surname: Sautter fullname: Sautter, Jürgen organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 4 givenname: Aleksandr orcidid: 0000-0002-3014-1002 surname: Vaskin fullname: Vaskin, Aleksandr organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 5 givenname: Franz J.F orcidid: 0000-0002-8003-7916 surname: Löchner fullname: Löchner, Franz J.F organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 6 givenname: Michael surname: Steinert fullname: Steinert, Michael organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 7 givenname: Reinhard surname: Geiss fullname: Geiss, Reinhard organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 8 givenname: Thomas surname: Pertsch fullname: Pertsch, Thomas organization: Fraunhofer Institute of Applied Optics and Precision Engineering – sequence: 9 givenname: Isabelle orcidid: 0000-0001-8021-572X surname: Staude fullname: Staude, Isabelle organization: Institute of Applied Physics, Abbe Center of Photonics – sequence: 10 givenname: Frank surname: Setzpfandt fullname: Setzpfandt, Frank organization: Institute of Applied Physics, Abbe Center of Photonics |
BookMark | eNqFkD1PwzAQQC0EEm3hHzB4ZElx7HyZDSpokUqR-Fqji3MRrhK72M7AvyelhYEBpjvp3rvhjcmhsQYJOYvZNGY8vgDlpwaMbTGEKVNMcMkOyChOBYsyKfnhz14kx2Ts_ZoxJkXKRuT1CZU1dbQA11mjFZ2jQQdBW0O1oY_o7fA50JU1rTYIjt5jAN-7BhR6eg0eazqwSx3edN_RlbYVBDwhRw20Hk_3c0Jebm-eZ4to-TC_m10tIxA8DVHGijQv0kwpkadSiVoWPCkKWbEizqGuBAqRocibGgcwwSpvJGINVS14lfNKTMj57u_G2fcefSg77RW2LRi0vS95krE8S2SWDGiyQ5Wz3jtsyo3THbiPMmblNmM5ZCy_M5b7jIN2-UtTOnz1CQ50-5_MdvL2ura9M0OMv5VP-CuQ7w |
CitedBy_id | crossref_primary_10_1364_OL_474784 crossref_primary_10_3390_nano13101639 crossref_primary_10_1039_D3NR02278A crossref_primary_10_1016_j_photonics_2022_101053 crossref_primary_10_1080_23746149_2021_2022992 crossref_primary_10_3389_fphy_2022_883703 crossref_primary_10_1364_OL_515576 crossref_primary_10_29026_oes_2023_220022 crossref_primary_10_1364_OME_544935 crossref_primary_10_1364_PRJ_474387 crossref_primary_10_1002_adpr_202400167 crossref_primary_10_1088_1361_6463_ac9399 crossref_primary_10_1364_AOP_510826 crossref_primary_10_1002_andp_202100255 crossref_primary_10_1063_5_0165120 crossref_primary_10_1002_lpor_202200059 crossref_primary_10_1002_lpor_202300503 crossref_primary_10_1021_acs_nanolett_2c03811 crossref_primary_10_1002_adom_202100789 crossref_primary_10_1364_OE_520773 crossref_primary_10_37188_lam_2024_005 crossref_primary_10_3390_photonics10030263 crossref_primary_10_1002_lpor_202100207 crossref_primary_10_1007_s11433_021_1668_y crossref_primary_10_1021_acs_nanolett_4c05114 crossref_primary_10_1021_acsphotonics_3c01163 crossref_primary_10_1088_1361_6463_ad8ed4 crossref_primary_10_3390_ijms231810592 crossref_primary_10_1016_j_optcom_2024_130453 crossref_primary_10_1021_acsphotonics_2c01926 crossref_primary_10_1021_acsphotonics_2c00835 crossref_primary_10_1021_acs_nanolett_4c06570 crossref_primary_10_1088_1361_6528_abfe23 crossref_primary_10_1021_acs_chemrev_2c00078 crossref_primary_10_1063_5_0077592 crossref_primary_10_1002_adom_202400815 crossref_primary_10_1515_nanoph_2024_0132 crossref_primary_10_1021_acs_nanolett_1c03790 crossref_primary_10_3390_ma15175944 crossref_primary_10_1002_adom_202401070 crossref_primary_10_1021_acsphotonics_4c02342 crossref_primary_10_3390_photonics10020141 crossref_primary_10_1002_adma_202313589 crossref_primary_10_1021_acs_nanolett_1c01125 crossref_primary_10_1364_PRJ_475616 crossref_primary_10_1002_adma_202402777 crossref_primary_10_1002_adom_202402686 crossref_primary_10_1002_adpr_202200157 crossref_primary_10_1364_OME_500196 crossref_primary_10_1364_JOSAB_481591 crossref_primary_10_1063_5_0242454 crossref_primary_10_3390_photonics10070818 crossref_primary_10_1038_s41467_021_25717_x crossref_primary_10_1016_j_optlastec_2024_110776 crossref_primary_10_1364_OE_538446 crossref_primary_10_1117_1_AP_4_3_034001 crossref_primary_10_1038_s41377_024_01548_5 crossref_primary_10_1364_OE_529219 crossref_primary_10_1515_nanoph_2021_0367 crossref_primary_10_1364_OE_435633 crossref_primary_10_1103_PhysRevApplied_22_064064 crossref_primary_10_1364_OL_533402 crossref_primary_10_1515_nanoph_2023_0865 crossref_primary_10_1002_adfm_202308484 crossref_primary_10_1021_acsphotonics_1c01356 crossref_primary_10_1021_acsphotonics_1c00026 crossref_primary_10_1515_nanoph_2024_0630 crossref_primary_10_1103_PhysRevLett_127_153901 crossref_primary_10_1063_5_0192018 crossref_primary_10_1016_j_physrep_2023_01_001 crossref_primary_10_1021_acs_nanolett_4c03369 crossref_primary_10_1021_acsphotonics_1c00935 crossref_primary_10_1002_lpor_202000521 crossref_primary_10_1021_acs_nanolett_3c02055 crossref_primary_10_1126_sciadv_abq4240 crossref_primary_10_1103_PhysRevA_110_063528 crossref_primary_10_1515_nanoph_2024_0182 crossref_primary_10_1002_lpor_202200031 crossref_primary_10_1364_OL_510932 crossref_primary_10_1364_OL_548072 crossref_primary_10_1021_acs_nanolett_1c02290 crossref_primary_10_1002_admt_202400318 crossref_primary_10_1002_adpr_202100286 crossref_primary_10_1038_s41566_024_01444_9 crossref_primary_10_1038_s41566_022_01126_4 crossref_primary_10_1364_OL_504379 crossref_primary_10_1515_nanoph_2021_0501 crossref_primary_10_1002_lpor_202400290 crossref_primary_10_1002_adom_202201375 crossref_primary_10_1021_acsphotonics_2c01341 crossref_primary_10_1070_QEL18037 crossref_primary_10_1515_nanoph_2023_0886 crossref_primary_10_1515_nanoph_2023_0526 crossref_primary_10_1063_5_0193124 crossref_primary_10_1007_s11433_023_2223_5 crossref_primary_10_1063_5_0142816 crossref_primary_10_1364_OL_537664 crossref_primary_10_1021_acs_nanolett_4c00039 crossref_primary_10_1364_AO_514979 crossref_primary_10_1021_acs_nanolett_1c02372 crossref_primary_10_1039_D3NR02430J crossref_primary_10_1016_j_ceramint_2021_10_154 crossref_primary_10_1080_23746149_2024_2322739 crossref_primary_10_1364_OPTICA_471177 crossref_primary_10_1080_23746149_2021_1889402 crossref_primary_10_1109_JSTQE_2022_3187083 crossref_primary_10_1007_s11433_022_1937_8 crossref_primary_10_1007_s11433_023_2299_9 crossref_primary_10_1364_OE_551155 crossref_primary_10_3788_CJL231256 crossref_primary_10_1063_5_0137254 crossref_primary_10_1016_j_optcom_2025_131585 crossref_primary_10_1039_D1NR05379E crossref_primary_10_1364_OL_413764 crossref_primary_10_1109_TAP_2024_3468458 crossref_primary_10_1002_aenm_202102877 crossref_primary_10_1364_OE_417066 crossref_primary_10_1038_s44310_024_00050_5 crossref_primary_10_1021_acsphotonics_4c02259 crossref_primary_10_1016_j_photonics_2023_101194 crossref_primary_10_1039_D4TC04118F crossref_primary_10_1515_nanoph_2021_0326 |
Cites_doi | 10.1038/srep08072 10.1109/OMN.2017.8051462 10.1021/acs.nanolett.7b00676 10.1016/j.mattod.2017.06.007 10.1038/natrevmats.2017.10 10.1021/acs.nanolett.9b01112 10.1088/0034-4885/79/7/076401 10.1002/lpor.201400402 10.1021/acsphotonics.7b01533 10.1103/PhysRevLett.121.033903 10.1364/OL.40.002715 10.1021/acs.nanolett.8b04311 10.1364/OPTICA.4.001536 10.1364/OE.26.001547 10.1364/JOSAB.36.000E55 10.1364/OE.27.025920 10.1063/1.4928591 10.1364/OPTICA.6.001455 10.1364/OPTICA.6.000380 10.1364/OME.9.003146 10.1364/OE.23.026544 10.1038/s41586-018-0551-y 10.1364/OE.27.033391 10.1103/PhysRevLett.124.163603 10.1364/OPTICA.3.000531 10.1038/nmat3839 10.1088/1361-6463/ab25ff 10.1364/JOSAB.14.002268 10.1364/OE.25.006963 10.1364/OL.42.000559 10.1103/PhysRevB.84.235429 10.1007/BF00614817 10.1021/acs.nanolett.6b01816 10.1021/acsphotonics.8b00810 10.1021/acs.nanolett.8b02346 10.1364/OE.24.015965 10.1088/1361-6528/aa5645 10.1021/acsphotonics.6b00050 10.1126/science.1232009 10.1364/OE.395545 10.1021/acsphotonics.8b01594 10.1021/acsphotonics.9b00110 10.1002/pssa.201431328 10.1038/s41566-019-0529-9 10.1021/acs.nanolett.6b03525 10.1063/1.5143266 10.1002/lpor.201800312 10.1038/s41467-017-00019-3 10.3390/nano9010069 10.1021/acsphotonics.8b01287 10.1364/OE.26.000897 10.1021/acsphotonics.7b01478 10.1109/JPHOT.2020.2988502 10.1038/s41467-019-08969-6 10.1126/science.aag2472 |
ContentType | Journal Article |
Copyright | 2020 American
Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acs.nanolett.0c03290 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 8614 |
ExternalDocumentID | 10_1021_acs_nanolett_0c03290 a549434122 |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK 7X8 |
ID | FETCH-LOGICAL-a325t-60857856cc3759c3d9824889b0817adb3e336e37fde8574eb7f9eedabd32b72b3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Fri Jul 11 05:40:32 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 04:09:48 EDT 2025 Fri Dec 11 03:19:32 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Nonlinear metasurfaces Mie-type resonances Lithium niobate Second-harmonic generation |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a325t-60857856cc3759c3d9824889b0817adb3e336e37fde8574eb7f9eedabd32b72b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3014-1002 0000-0002-8003-7916 0000-0002-4118-8789 0000-0001-8021-572X |
PQID | 2460764964 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2460764964 crossref_primary_10_1021_acs_nanolett_0c03290 crossref_citationtrail_10_1021_acs_nanolett_0c03290 acs_journals_10_1021_acs_nanolett_0c03290 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201209 2020-12-09 |
PublicationDateYYYYMMDD | 2020-12-09 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201209 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 Ma J. (ref55/cit55) 2020 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Huang Z. (ref56/cit56) Boyd R. W. (ref1/cit1) 2008 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1038/srep08072 – ident: ref41/cit41 doi: 10.1109/OMN.2017.8051462 – ident: ref35/cit35 doi: 10.1021/acs.nanolett.7b00676 – ident: ref25/cit25 doi: 10.1016/j.mattod.2017.06.007 – ident: ref27/cit27 doi: 10.1038/natrevmats.2017.10 – ident: ref48/cit48 doi: 10.1021/acs.nanolett.9b01112 – ident: ref23/cit23 doi: 10.1088/0034-4885/79/7/076401 – ident: ref26/cit26 doi: 10.1002/lpor.201400402 – ident: ref33/cit33 doi: 10.1021/acsphotonics.7b01533 – ident: ref58/cit58 doi: 10.1103/PhysRevLett.121.033903 – ident: ref5/cit5 doi: 10.1364/OL.40.002715 – ident: ref36/cit36 doi: 10.1021/acs.nanolett.8b04311 – ident: ref8/cit8 doi: 10.1364/OPTICA.4.001536 – ident: ref11/cit11 doi: 10.1364/OE.26.001547 – volume-title: arXiv (Physics, Optics) year: 2020 ident: ref55/cit55 – ident: ref40/cit40 doi: 10.1364/JOSAB.36.000E55 – ident: ref20/cit20 doi: 10.1364/OE.27.025920 – ident: ref3/cit3 doi: 10.1063/1.4928591 – ident: ref15/cit15 doi: 10.1364/OPTICA.6.001455 – ident: ref7/cit7 doi: 10.1364/OPTICA.6.000380 – ident: ref19/cit19 doi: 10.1364/OME.9.003146 – ident: ref37/cit37 doi: 10.1364/OE.23.026544 – ident: ref12/cit12 doi: 10.1038/s41586-018-0551-y – ident: ref51/cit51 doi: 10.1364/OE.27.033391 – ident: ref17/cit17 doi: 10.1103/PhysRevLett.124.163603 – ident: ref18/cit18 doi: 10.1364/OPTICA.3.000531 – ident: ref22/cit22 doi: 10.1038/nmat3839 – ident: ref28/cit28 doi: 10.1088/1361-6463/ab25ff – ident: ref57/cit57 doi: 10.1364/JOSAB.14.002268 – ident: ref13/cit13 doi: 10.1364/OE.25.006963 – ident: ref43/cit43 doi: 10.1364/OL.42.000559 – ident: ref30/cit30 doi: 10.1103/PhysRevB.84.235429 – ident: ref2/cit2 doi: 10.1007/BF00614817 – ident: ref32/cit32 doi: 10.1021/acs.nanolett.6b01816 – ident: ref44/cit44 doi: 10.1021/acsphotonics.8b00810 – ident: ref34/cit34 doi: 10.1021/acs.nanolett.8b02346 – ident: ref38/cit38 doi: 10.1364/OE.24.015965 – ident: ref42/cit42 doi: 10.1088/1361-6528/aa5645 – ident: ref46/cit46 doi: 10.1021/acsphotonics.6b00050 – ident: ref24/cit24 doi: 10.1126/science.1232009 – ident: ref16/cit16 doi: 10.1364/OE.395545 – ident: ref54/cit54 doi: 10.1021/acsphotonics.8b01594 – ident: ref47/cit47 doi: 10.1021/acsphotonics.9b00110 – ident: ref4/cit4 doi: 10.1002/pssa.201431328 – ident: ref10/cit10 doi: 10.1038/s41566-019-0529-9 – ident: ref39/cit39 doi: 10.1021/acs.nanolett.6b03525 – ident: ref21/cit21 doi: 10.1063/1.5143266 – ident: ref53/cit53 doi: 10.1002/lpor.201800312 – volume-title: Nonlinear Optics year: 2008 ident: ref1/cit1 – ident: ref31/cit31 doi: 10.1038/s41467-017-00019-3 – ident: ref52/cit52 doi: 10.3390/nano9010069 – ident: ref50/cit50 doi: 10.1021/acsphotonics.8b01287 – ident: ref6/cit6 doi: 10.1364/OE.26.000897 – ident: ref45/cit45 doi: 10.1021/acsphotonics.7b01478 – ident: ref49/cit49 doi: 10.1109/JPHOT.2020.2988502 – volume-title: arXiv (Physics, Optics) ident: ref56/cit56 – ident: ref14/cit14 doi: 10.1038/s41467-019-08969-6 – ident: ref29/cit29 doi: 10.1126/science.aag2472 |
SSID | ssj0009350 |
Score | 2.6495984 |
Snippet | Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8608 |
Title | Second-Harmonic Generation in Resonant Nonlinear Metasurfaces Based on Lithium Niobate |
URI | http://dx.doi.org/10.1021/acs.nanolett.0c03290 https://www.proquest.com/docview/2460764964 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQLDDwRpSXjMTC4JLYrhOPgEAVgjLwEFvkV0QFpKhNF349d03CUwhYo7Pl-Hy-p78jZA-TbWnqYxaUN0waKVnKY8tSkychWKOjHOOQFz3VvZFnd527d0fxawafxwfGjdqFKQbwG2U7cpHgGlz0Ga5A1aApdHz1DrIrJh1ZQYjBJdKpbJ7K_TALKiQ3-qyQPt_HEyVzukAum6c6VW3JQ3tc2rZ7-Y7c-Mf1L5L52t6kh9UBWSJToVgmcx9QCFfI7RU6xZ51zfAJgXJpBUWNHKP9gmKAH6tlaK9C1TBDehFKjCzmWM5Fj0APegq05_3yvj9-or0-3BFlWCU3pyfXx11Wt1tgRvBOyRSC3acd5ZxIOtoJr1MO4q0tWA2J8VYEIVQQSe4DEMpgk1yDhjXWC24TbsUamS4GRVgnFLjsI21jbsBCMDlw3IrE5hqMAxeFNLTIPmxLVovLKJtkwnmc4cdmr7J6r1pENPzJXI1bju0zHn8Zxd5GPVe4Hb_Q7zasz0DAMGtiijAYjzIuVZQoqZXc-MeqN8ksR88cC1_0Fpkuh-OwDeZLaXcmZ_YVEeHutQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELcqeBg8bGyABgNmpL3swSWxHSd-LGiojLYvfIi3yI4dUW2kqElf-Ou5S5OWTppQXy3bsn13vjvf-XeE_MBgW5K4kHnlDJNGSpbw0LLE5LH31uggx3fI4Uj17-Tvh-ihQ6L2LwwsooSZyjqIv0QXCM-wrTDFBHZTdYMsEFyDp74ZKamwYkPv4maJtSvqwqwgy-AZ6US2P-b-Mwvqpaxc1Uur13Ktay4_kfvFKusUkz_dWWW72cs_AI5rb2OHfGysT9qbs8tn0vHFF7L9BpNwl9zfoIvsWN9MnxA2l86BqZF-dFxQfO7H3Bk6mmNsmCkd-grfGXNM7qLnoBUdhb6DcfU4nj3R0RhujMrvkbvLX7cXfdYUX2BG8KhiCqHvk0hlmYgjnQmnEw7Cri3YELFxVnghlBdx7jx0lN7GuQZ9a6wT3Mbcin2yUUwK_5VQoLkLtA25AXvB5EB_K2KbazAVssAn_oD8hGNJG-Ep0zouzsMUG9uzSpuzOiCiJVOaNSjmWEzj7zuj2GLU8xzF453-py0HpCBuGEMxhZ_MypQDu8VKaiUP11j1d_KhfzscpIOr0fU3ssXRZ8eUGH1ENqrpzB-DYVPZk5qNXwHpfvcX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QSAgOvBHjGSQuHDLaJGub4xhM4zUh8RDiUiVNKiagQ2t34ddjdx0vCSG4RkmUxHZsx85nQvYw2BZF1mcusJpJLSWLuG9YpNPQOaOVl-I75EU36NzI07vG3adSX7CIHGbKyyA-SvWLTSuEAf8A2zOd9WFHRd1LPMEVeOtTYJP4WLWh2br6wNsVZXFWkGfwjlQkx7_mfpgFdVOSf9VNX6_mUt-058n9-0rLNJPH-rAw9eT1G4jjv7ayQOYqK5Q2R2yzSCZctkRmP2ETLpPbK3SVLevowTPC59IRQDXSkfYyis_-mENDuyOsDT2gF67A98YUk7zoIWhHS6Hvea946A2fabcHN0fhVshN-_i61WFVEQamBW8ULEAI_KgRJIkIGyoRVkUchF4ZsCVCbY1wQgROhKl10FE6E6YK9K42VnATciNWyWTWz9waoUB76ynjcw12g06BD4wITarAZEg8F7ka2YdjiSshyuMyPs79GBvHZxVXZ1UjYkyqOKnQzLGoxtMvo9j7qJcRmscv_XfHXBCD2GEsRWeuP8xjLgMvDKQK5PofVr1Dpi-P2vH5Sfdsg8xwdN0xM0ZtksliMHRbYN8UZrvk5De6q_mR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Harmonic+Generation+in+Resonant+Nonlinear+Metasurfaces+Based+on+Lithium+Niobate&rft.jtitle=Nano+letters&rft.au=Fedotova%2C+Anna&rft.au=Younesi%2C+Mohammadreza&rft.au=Sautter%2C+J%C3%BCrgen&rft.au=Vaskin%2C+Aleksandr&rft.date=2020-12-09&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=12&rft.spage=8608&rft.epage=8614&rft_id=info:doi/10.1021%2Facs.nanolett.0c03290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_nanolett_0c03290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |