日本麺用コムギにおけるGlu-A1およびGlu-D1座サブユニット構成の違いがタンパク質組成に及ぼす影響

本研究は,Glu-A1座およびGlu-D1座の遺伝子に支配される高分子量グルテニンサブユニットの構成が異なる4種類の日本麺用コムギの準同質遺伝子系統を,異なる開花期窒素施肥量で栽培し,得られた小麦粉を用いて小麦粉タンパク質含有率の違いがタンパク質組成に及ぼす影響について解析したものである.サイズ排除高速液体クロマトグラフィーにより分画された可溶性ポリマー(EPP),可溶性モノマー(EMP),不溶性ポリマー(UPP)の全タンパク質に占める割合(EPP(%),EMP(%),UPP(%))は,準同質遺伝子系統間で異なり,Glu-D1座サブユニット2+12を持つ場合,Glu-A1座サブユニットの有無で...

Full description

Saved in:
Bibliographic Details
Published inJapanese journal of crop science Vol. 85; no. 4; pp. 403 - 410
Main Authors 高田, 兼則, 石川, 直幸, 谷中, 美貴子, 高橋, 肇
Format Journal Article
LanguageJapanese
Published Tokyo 日本作物学会 01.10.2016
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0011-1848
1349-0990
DOI10.1626/jcs.85.403

Cover

Abstract 本研究は,Glu-A1座およびGlu-D1座の遺伝子に支配される高分子量グルテニンサブユニットの構成が異なる4種類の日本麺用コムギの準同質遺伝子系統を,異なる開花期窒素施肥量で栽培し,得られた小麦粉を用いて小麦粉タンパク質含有率の違いがタンパク質組成に及ぼす影響について解析したものである.サイズ排除高速液体クロマトグラフィーにより分画された可溶性ポリマー(EPP),可溶性モノマー(EMP),不溶性ポリマー(UPP)の全タンパク質に占める割合(EPP(%),EMP(%),UPP(%))は,準同質遺伝子系統間で異なり,Glu-D1座サブユニット2+12を持つ場合,Glu-A1座サブユニットの有無でUPP(%)に有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP(%),EMP(%)が高く,UPP(%)が低くなった.タンパク質含有率の増加に対し,EPP, EMP, UPPの含有率の増加程度(回帰直線の傾き)は系統間で有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP含有率の増加程度が大きく,UPP含有率の増加程度が小さい傾向にあった.Glu-D1サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,タンパク質含有率の増加に対するSDS沈降量の増加程度は有意に小さくなった.この結果はタンパク質含有率の増加に対するEPPやUPPの増加程度の違いに由来すると考えられた.以上の結果より,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットを導入することで生地物性の向上が期待できると考えられた.
AbstractList 本研究は,Glu-A1座およびGlu-D1座の遺伝子に支配される高分子量グルテニンサブユニットの構成が異なる4種類の日本麺用コムギの準同質遺伝子系統を,異なる開花期窒素施肥量で栽培し,得られた小麦粉を用いて小麦粉タンパク質含有率の違いがタンパク質組成に及ぼす影響について解析したものである。サイズ排除高速液体クロマトグラフィーにより分画された可溶性ポリマー(EPP),可溶性モノマー(EMP),不溶性ポリマー(UPP)の全タンパク質に占める割合(EPP(%),EMP(%),UPP(%))は,準同質遺伝子系統間で異なり,Glu-D1座サブユニット2+12を持つ場合,Glu-A1座サブユニットの有無でUPP(%)に有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP(%),EMP(%)が高く,UPP(%)が低くなった。タンパク質含有率の増加に対し,EPP,EMP,UPPの含有率の増加程度(回帰直線の傾き)は系統間で有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP含有率の増加程度が大きく,UPP含有率の増加程度が小さい傾向にあった。Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,タンパク質含有率の増加に対するSDS沈降量の増加程度は有意に小さくなった。この結果はタンパク質含有率の増加に対するEPPやUPPの増加程度の違いに由来すると考えられた。以上の結果より,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットを導入することで生地物性の向上が期待できると考えられた。
Four kinds of near-isogenic lines (NILs) of Japanese soft wheat with different compositions of high-molecular-weight glutenin subunits, which are controlled by Glu-A1 and Glu-D1 genes were cultivated with different amounts of nitrogen fertilizer applied at flowering time. Using their flour, the proportions of extractable polymeric protein (EPP), extractable monomeric protein (EMP) and unextractable polymeric protein (UPP) to total protein (EPP (%), EMP (%) and UPP (%)) were analyzed by size-exclusion high performance liquid chromatography. In a set of the lines carrying subunits 2+12 at Glu-D1 locus, UPP (%) was not significantly influenced by the presence or absence of the subunit at Glu-A1 locus. On the other hand, in a set of the lines carrying subunits 2.2+12 at Glu-D1 locus, EPP (%) and EMP (%) were increased and UPP (%) was reduced by the absence of the subunit at Glu-A1 locus. The increase in EPP, EMP, and UPP contents against the increase in flour protein content did not vary among the NILs, but in a set of the lines carrying subunits 2.2+12 at Glu-D1 locus, EPP content was greatly increased by the absence of the subunit at Glu-A1 locus, but the UPP content was not increased so much. In a set of the lines carrying subunits 2.2+12 at Glu-D1 locus, the increase in SDS sedimentation volume against the increase in flour protein content was significantly reduced by the absence of the subunit at Glu-A1 locus. This result may be explained by the differences between the increases in EPP and UPP content against the increase in flour protein contents. Thus, in the wheat carrying subunits 2.2+12 at Glu-D1 locus, introduction of a subunit at Glu-A1 locus is expected to improve the dough strength.
本研究は,Glu-A1座およびGlu-D1座の遺伝子に支配される高分子量グルテニンサブユニットの構成が異なる4種類の日本麺用コムギの準同質遺伝子系統を,異なる開花期窒素施肥量で栽培し,得られた小麦粉を用いて小麦粉タンパク質含有率の違いがタンパク質組成に及ぼす影響について解析したものである.サイズ排除高速液体クロマトグラフィーにより分画された可溶性ポリマー(EPP),可溶性モノマー(EMP),不溶性ポリマー(UPP)の全タンパク質に占める割合(EPP(%),EMP(%),UPP(%))は,準同質遺伝子系統間で異なり,Glu-D1座サブユニット2+12を持つ場合,Glu-A1座サブユニットの有無でUPP(%)に有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP(%),EMP(%)が高く,UPP(%)が低くなった.タンパク質含有率の増加に対し,EPP, EMP, UPPの含有率の増加程度(回帰直線の傾き)は系統間で有意な差はなかったが,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,EPP含有率の増加程度が大きく,UPP含有率の増加程度が小さい傾向にあった.Glu-D1サブユニット2.2+12を持つ場合,Glu-A1座サブユニットが欠失すると,タンパク質含有率の増加に対するSDS沈降量の増加程度は有意に小さくなった.この結果はタンパク質含有率の増加に対するEPPやUPPの増加程度の違いに由来すると考えられた.以上の結果より,Glu-D1座サブユニット2.2+12を持つ場合,Glu-A1座サブユニットを導入することで生地物性の向上が期待できると考えられた.
Author 高田, 兼則
石川, 直幸
高橋, 肇
谷中, 美貴子
Author_xml – sequence: 1
  fullname: 高田, 兼則
  organization: 農研機構西日本農業研究センター
– sequence: 1
  fullname: 石川, 直幸
  organization: 農研機構西日本農業研究センター
– sequence: 1
  fullname: 谷中, 美貴子
  organization: 農研機構西日本農業研究センター
– sequence: 1
  fullname: 高橋, 肇
  organization: 山口大学農学部
BackLink https://agriknowledge.affrc.go.jp/RN/2030903440$$DView record in AgriKnowledge
BookMark eNo9kUFrE0EUxwdpoTH20q_geeObnd3N7MFDqdoKBS_teZid3Y27xmzcTRCPs5tDMIIKVikI7aVWrLSU0EtQ-mEeSc23cNKIlze8__zfjzf_uUtWOlknImSDQoN6tvcgVUWDuw0H2B1So8zxLfB9WCE1AEotyh2-RtaLIgkAwGceZ36NDGZfTmZff84nk5tP37EcY3WM5TnqM9RvUX_EcrTd7lubdNGWQ9TjRfuITienWF5h9Rmrb1iNsKqwGs5OR7PhB9Tnc32AeoD6HZbXWBmm4Vz8Gf-4uRrcGs6m7w38F-rD6e_L-dH1PbIay3YRrf8762T_yeO9rR1r99n2063NXUsy22FWTKlUygmZ7XIXmq4d2yGjQRwY3TNPZaEbKWhKL4pt6ilgnuKUBaEdONA0EbA6aS65Mo7zpCdkK09edLLX7ShsRSKTiVhcKNHKRNoVQAWACck3gdbJ_eVkN89e9aOiJ9Ksn3fMsoJy5jGX-zYzrodLV1r0pCF28-SlzN8ImfcS1Y6E-SDBXeHcFmD_dfVc5iKV7C_eebQ9
ContentType Journal Article
Copyright 2016 日本作物学会
Copyright Japan Science and Technology Agency 2016
Copyright_xml – notice: 2016 日本作物学会
– notice: Copyright Japan Science and Technology Agency 2016
DBID 7QO
7ST
7T7
8FD
C1K
FR3
P64
SOI
N5S
DOI 10.1626/jcs.85.403
DatabaseName Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AgriKnowledge Free
DatabaseTitle Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Biotechnology Research Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1349-0990
EndPage 410
ExternalDocumentID oai_affrc_go_jp_01_00839940
article_jcs_85_4_85_403_article_char_ja
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 29J
2WC
5GY
ABJNI
ACGFS
ACIWK
ACPRK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
EJD
F5P
JSF
KQ8
OK1
OVT
P2P
RJT
RNS
XSB
7QO
7ST
7T7
8FD
C1K
FR3
P64
SOI
ECGQY
N5S
ID FETCH-LOGICAL-a3243-f11acc4d325850752f2d31bfb11a60993d5ec07a6ef216c036c813bd2b4070113
ISSN 0011-1848
IngestDate Sat Oct 18 14:47:05 EDT 2025
Thu Sep 11 20:48:10 EDT 2025
Wed Sep 03 06:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a3243-f11acc4d325850752f2d31bfb11a60993d5ec07a6ef216c036c813bd2b4070113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
903440
ZZ00014890
OpenAccessLink https://agriknowledge.affrc.go.jp/RN/2030903440
PQID 1836358923
PQPubID 2028998
PageCount 8
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00839940
proquest_journals_1836358923
jstage_primary_article_jcs_85_4_85_403_article_char_ja
PublicationCentury 2000
PublicationDate 20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161001
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Japanese journal of crop science
PublicationTitleAlternate 日作紀
PublicationYear 2016
Publisher 日本作物学会
Japan Science and Technology Agency
Publisher_xml – name: 日本作物学会
– name: Japan Science and Technology Agency
References 高山敏之・長嶺敬・石川直幸・田谷省三 2004. コムギにおける出穂10日後追肥の効果. 日作紀 73: 157-162.
Branlard, G. and Dardevet, M. 1985. Diversity of grain proteins and bread wheat quality. II. Correlation between high-molecular-weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3: 345-354.
Stark, J.C. and Tindall, T.A. 1992. Timing split applications of nitrogen for irrigated hard red spring wheat. J. Prod. Agr. 5: 221-226.
Singh, N.K., Donovan, R. and MacRitchie, F. 1990. Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour proteins. II. Relative quantity of glutenin as a measure of breadmaking quality. Cereal Chem. 67: 161-170.
Gupta, R.B., Khan, K. and MacRitchie, F. 1993. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 18: 23-41.
Shewry, P.R. and Tatham, A.S. 1997. Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25: 207-227.
Morel, M.H. and Bonicel, J. 1996. Determination of the number of cysteine residues in high molecular weight subunits of wheat glutenin. Electrophoresis 17: 493-496.
Moonen, J.H.E., Scheepstra, A. and Graveland, A. 1982. Use of the SDS-sedimentation test and SDS-polyacrylamide gel electrophoresis for screening breeder's samples of wheat for bread-making quality. Euphytica 31: 677-690.
Zebarth, B.J. and Sheard, R.W. 1992. Influence of rate and timing of nitrogen-fertilization on yiled and quality of hard red winter-wheat in Ontario. Can. J. Plant Sci. 72: 13-19.
Payne, P.I. and Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29-35.
Takata, K., Yamauchi, H., Nishio, Z. and Kuwabara, T. 2000. Effect of high molecular weight glutenin subunits on bread-making quality using near-isogenic lines. Breed. Sci. 50: 303-308.
Finney, K.F. and Barmore, M.A. 1948. Loaf volume and protein content of hard red winter and spring wheat. Cereal Chem. 25: 291-312.
Lawrence, G.J., Moss, H.J., Shepherd, K.W. and Wrigley, C.W. 1987. Dough quality of biotypes of eleven Australian wheat cultivars that differ in high-molecular-weight glutenin subunit composition. J. Cereal Sci. 6: 99-101.
岩渕哲也・田中浩平・松江勇次・松中仁・山口末次 2007. 開花期の窒素追肥がパン用コムギ品種「ミナミノカオリ」と「ニシノカオリ」の製粉性, 生地の物性および製パン適性に及ぼす影響. 日作紀 76: 37-44.
江口久夫・平野寿助・吉田博哉 1969. 暖地における小麦の良質化栽培に関する研究 (第 2 報) 3 要素施肥量および窒素の施用時期・施用法と品質の関係. 中国農試研報 A17: 81-111.
Takata, K., Yamauchi, H., Iriki, N. and Kuwabara, T. 1999. Prediction of bread-making quality by prolonged swelling SDS-sedimentation test. Breed. Sci. 49: 221-223.
石川直幸・長嶺敬・谷中美貴子・高山敏之・田谷省三・甲斐由美・谷尾昌彦・佐藤淳一・村上泰臣・住田哲也 2005. 製麺適性の優れる早生・短稈小麦新品種「ふくさやか」の育成. 近中四農研報 4: 25-37.
Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40: 51-65.
Gupta, R.B., Batey, I.L. and MacRitchie, F. 1992. Relationships between protein composition and functional properties of wheat flours. Cereal Chem. 69: 125-131.
農林水産省 2015. 経営所得安定対策等実施要綱 http://www.maff.go.jp/j/kobetu_ninaite/keiei/pdf/1014_yokou.pdf (2016/2/15 閲覧).
Tipples, K.H. and Kilborn, R.H. 1974. Baking strength index and the relation of protein content to loaf volume. Can. J. Plant Sci. 54: 231-234.
Yanaka, M., Takata, K., Ikeda, T.M. and Ishikawa, N. 2007. Effect of the high-molecular-weight glutenin allele, Glu-D1d, on noodle quality of common wheat. Breed. Sci. 57: 243-248.
木村秀也・志村もと子・山内稔 2001. 出穂後施用窒素がコムギの子実タンパク質に及ぼす影響. 土肥誌 72: 403-408.
Nakamura, H., Inazu, A. and Hirano, H. 1999. Allelic variation in high-molecular-weight glutenin subunit loci of Glu-1 in Japanese common wheats. Euphytica 106: 131-138.
Gupta, R.B. and Shepherd, K.W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor. Appl. Genet. 80: 65-74.
谷中美貴子・高田兼則・池田達哉・石川直幸 2011. タンパク質含量がコムギのポリマータンパク質の量と分子量分布に及ぼす影響. 日作紀 80: 77-83.
Takata, K., Yamauchi, H., Nishio, Z., Funatsuki, W. and Kuwabara, T. 2002. Effect of high-molecular-weight glutenin subunits with different protein contents on bread-making quality. Food Sci. Technol. Res. 8: 178-182.
Gupta, R.B., Papineau, Y., Lefebvre, J., Cornec, M., Lawrence, G.J. and MacRitchie, F. 1995. Biochemical basis of flour properties in bread wheats. II. Changes in polymeric protein formation and dough/gluten properties associated with the loss of low Mr or high Mr glutenin subunits. J. Cereal Sci. 21: 103-116.
Altman, D.W., McCuistion, W.L. and Kronstad, W.E. 1983. Grain protein percentage, kernel hardness, and grain yield of winter wheat with foliar applied urea. Agron. J. 75: 87-91.
Payne, P.I., Corfield, K.G. and Blackman, J.A. 1979. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor. Appl. Genet. 55: 153-159.
高田兼則・谷中美貴子・池田達哉・石川直幸 2008. 日本麺用小麦の生地物性に対するGlu-A1とGlu-D1対立遺伝子の相互作用とGlu-A1対立遺伝子のPCRマーカーの開発. 育種学研究 10: 41-48.
Finney, K.F., Meyer, J.W., Smith F.W. and Fryer H.C. 1957. Effect of foliar spraying of Pawnee Wheat with urea solutions on yield, protein content, and protein quality. Agron. J. 7: 341-347.
Sapirstein, H.D. and Fu, B.X. 1998. Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem. 75: 500-507.
References_xml – reference: 農林水産省 2015. 経営所得安定対策等実施要綱 http://www.maff.go.jp/j/kobetu_ninaite/keiei/pdf/1014_yokou.pdf (2016/2/15 閲覧).
– reference: Yanaka, M., Takata, K., Ikeda, T.M. and Ishikawa, N. 2007. Effect of the high-molecular-weight glutenin allele, Glu-D1d, on noodle quality of common wheat. Breed. Sci. 57: 243-248.
– reference: Gupta, R.B. and Shepherd, K.W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor. Appl. Genet. 80: 65-74.
– reference: Moonen, J.H.E., Scheepstra, A. and Graveland, A. 1982. Use of the SDS-sedimentation test and SDS-polyacrylamide gel electrophoresis for screening breeder's samples of wheat for bread-making quality. Euphytica 31: 677-690.
– reference: Takata, K., Yamauchi, H., Nishio, Z., Funatsuki, W. and Kuwabara, T. 2002. Effect of high-molecular-weight glutenin subunits with different protein contents on bread-making quality. Food Sci. Technol. Res. 8: 178-182.
– reference: Singh, N.K., Donovan, R. and MacRitchie, F. 1990. Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour proteins. II. Relative quantity of glutenin as a measure of breadmaking quality. Cereal Chem. 67: 161-170.
– reference: Gupta, R.B., Papineau, Y., Lefebvre, J., Cornec, M., Lawrence, G.J. and MacRitchie, F. 1995. Biochemical basis of flour properties in bread wheats. II. Changes in polymeric protein formation and dough/gluten properties associated with the loss of low Mr or high Mr glutenin subunits. J. Cereal Sci. 21: 103-116.
– reference: Payne, P.I., Corfield, K.G. and Blackman, J.A. 1979. Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor. Appl. Genet. 55: 153-159.
– reference: Zebarth, B.J. and Sheard, R.W. 1992. Influence of rate and timing of nitrogen-fertilization on yiled and quality of hard red winter-wheat in Ontario. Can. J. Plant Sci. 72: 13-19.
– reference: 高山敏之・長嶺敬・石川直幸・田谷省三 2004. コムギにおける出穂10日後追肥の効果. 日作紀 73: 157-162.
– reference: Sapirstein, H.D. and Fu, B.X. 1998. Intercultivar variation in the quantity of monomeric proteins, soluble and insoluble glutenin and residue protein in wheat flour and relationships to breadmaking quality. Cereal Chem. 75: 500-507.
– reference: Takata, K., Yamauchi, H., Iriki, N. and Kuwabara, T. 1999. Prediction of bread-making quality by prolonged swelling SDS-sedimentation test. Breed. Sci. 49: 221-223.
– reference: 谷中美貴子・高田兼則・池田達哉・石川直幸 2011. タンパク質含量がコムギのポリマータンパク質の量と分子量分布に及ぼす影響. 日作紀 80: 77-83.
– reference: Gupta, R.B., Khan, K. and MacRitchie, F. 1993. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 18: 23-41.
– reference: Altman, D.W., McCuistion, W.L. and Kronstad, W.E. 1983. Grain protein percentage, kernel hardness, and grain yield of winter wheat with foliar applied urea. Agron. J. 75: 87-91.
– reference: 石川直幸・長嶺敬・谷中美貴子・高山敏之・田谷省三・甲斐由美・谷尾昌彦・佐藤淳一・村上泰臣・住田哲也 2005. 製麺適性の優れる早生・短稈小麦新品種「ふくさやか」の育成. 近中四農研報 4: 25-37.
– reference: Branlard, G. and Dardevet, M. 1985. Diversity of grain proteins and bread wheat quality. II. Correlation between high-molecular-weight subunits of glutenin and flour quality characteristics. J. Cereal Sci. 3: 345-354.
– reference: 木村秀也・志村もと子・山内稔 2001. 出穂後施用窒素がコムギの子実タンパク質に及ぼす影響. 土肥誌 72: 403-408.
– reference: 江口久夫・平野寿助・吉田博哉 1969. 暖地における小麦の良質化栽培に関する研究 (第 2 報) 3 要素施肥量および窒素の施用時期・施用法と品質の関係. 中国農試研報 A17: 81-111.
– reference: Tipples, K.H. and Kilborn, R.H. 1974. Baking strength index and the relation of protein content to loaf volume. Can. J. Plant Sci. 54: 231-234.
– reference: Takata, K., Yamauchi, H., Nishio, Z. and Kuwabara, T. 2000. Effect of high molecular weight glutenin subunits on bread-making quality using near-isogenic lines. Breed. Sci. 50: 303-308.
– reference: Shewry, P.R. and Tatham, A.S. 1997. Disulphide bonds in wheat gluten proteins. J. Cereal Sci. 25: 207-227.
– reference: Finney, K.F., Meyer, J.W., Smith F.W. and Fryer H.C. 1957. Effect of foliar spraying of Pawnee Wheat with urea solutions on yield, protein content, and protein quality. Agron. J. 7: 341-347.
– reference: Morel, M.H. and Bonicel, J. 1996. Determination of the number of cysteine residues in high molecular weight subunits of wheat glutenin. Electrophoresis 17: 493-496.
– reference: Gupta, R.B., Batey, I.L. and MacRitchie, F. 1992. Relationships between protein composition and functional properties of wheat flours. Cereal Chem. 69: 125-131.
– reference: Payne, P.I. and Lawrence, G.J. 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1 and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29-35.
– reference: Finney, K.F. and Barmore, M.A. 1948. Loaf volume and protein content of hard red winter and spring wheat. Cereal Chem. 25: 291-312.
– reference: Lawrence, G.J., Moss, H.J., Shepherd, K.W. and Wrigley, C.W. 1987. Dough quality of biotypes of eleven Australian wheat cultivars that differ in high-molecular-weight glutenin subunit composition. J. Cereal Sci. 6: 99-101.
– reference: 岩渕哲也・田中浩平・松江勇次・松中仁・山口末次 2007. 開花期の窒素追肥がパン用コムギ品種「ミナミノカオリ」と「ニシノカオリ」の製粉性, 生地の物性および製パン適性に及ぼす影響. 日作紀 76: 37-44.
– reference: Payne, P.I., Nightingale, M.A., Krattiger, A.F. and Holt, L.M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J. Sci. Food Agric. 40: 51-65.
– reference: Stark, J.C. and Tindall, T.A. 1992. Timing split applications of nitrogen for irrigated hard red spring wheat. J. Prod. Agr. 5: 221-226.
– reference: Nakamura, H., Inazu, A. and Hirano, H. 1999. Allelic variation in high-molecular-weight glutenin subunit loci of Glu-1 in Japanese common wheats. Euphytica 106: 131-138.
– reference: 高田兼則・谷中美貴子・池田達哉・石川直幸 2008. 日本麺用小麦の生地物性に対するGlu-A1とGlu-D1対立遺伝子の相互作用とGlu-A1対立遺伝子のPCRマーカーの開発. 育種学研究 10: 41-48.
SSID ssib000936839
ssib008477409
ssib000961594
ssib002227199
ssib023160744
ssib002484351
ssib003171068
ssj0032376
ssib002484352
ssib002223844
ssib005901850
Score 2.1220574
Snippet 本研究は,Glu-A1座およびGlu-D1座の遺伝子に支配される高分子量グルテニンサブユニットの構成が異なる4種類の日本麺用コムギの準同質遺伝子系統を,異なる開花期窒素施肥...
Four kinds of near-isogenic lines (NILs) of Japanese soft wheat with different compositions of high-molecular-weight glutenin subunits, which are controlled by...
SourceID affrit
proquest
jstage
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 403
SubjectTerms Composition effects
Dough
Flour
Flowering
Glutenin
High-performance liquid chromatography
Liquid chromatography
Loci
Protein composition
Proteins
Triticum
Wheat
コムギ
タンパク質含有率
タンパク質組成
ポリマータンパク質
高分子量グルテニンサブユニット
Title 日本麺用コムギにおけるGlu-A1およびGlu-D1座サブユニット構成の違いがタンパク質組成に及ぼす影響
URI https://www.jstage.jst.go.jp/article/jcs/85/4/85_403/_article/-char/ja
https://www.proquest.com/docview/1836358923
https://agriknowledge.affrc.go.jp/RN/2030903440
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本作物学会紀事, 2016/10/05, Vol.85(4), pp.403-410
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1349-0990
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032376
  issn: 0011-1848
  databaseCode: KQ8
  dateStart: 19270101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1XvQgfmK1Sg_GS8ma2Xzs5JhssxatFWELvYV8trsru3W7i-gtmx6KFVTwA0HQi1asVKT0Uiz9Y4Zu7X_hm2SSTVsRFZblZTKZeZmXmfd7ybz3OO6aI2u-57ua4ATwBMvIVgUH1IAAWAFjV_bEIHYKuzOtTs7It2aV2aFj27ldS92OU3Af_9av5H-kCmUgV-ol-w-SzRqFAqBBvvAPEob_v5Ixb6q8VuJ1JSbKvF7mTY03dPozS7wm8zrmTYnHRd6QYkLidZGV6GZMIF43GIF1RmiI1cHGzftdQUcHK0A5ZiWGRCtMQAWFdqqX0u4U1p2mpv2mBDZSImWJtqbSa-kplR5qYsqbSe-IsqSkPMgpUU77qrB2snvM-NfhFKblejwgwBW9_FAXBmUeVwa3b5TTcdDi-5rgDUTZ0CrQ1wE0D0iDZvDMx9-gKdHGGa7IllS7aTfsxEuhUWu0Bq9LGnaH-eQ1_WarXRvM1Plaw35oJwqw9ajbqOUvmqcpsOKpZnuUzL-7QWq2C5DpVcpltojTDyWD7ynjeux7m9dddPMhTuKSFvxEXUky3fCWJFxN9VmSAonNWzmnnOQ4msRRpanGaT7r7mIBKwVW6WBk8um7VmVmasqqmrPV6wsPBJq0jW5uYBlsjnHHi6BUaeaU2_dy6F6TVCzl0TzA5wNvEwAvHnLLRnnrWMYA5tGh41y0OwTwOGctUzdqnPtID8CrJA-i04Elo4pxsocEqEl0Q1gC1JKBZdGLYThuDAYDkKkdBO0atTvrYLDNHUVtMRStnuZOMRtyTE8WhDPcUN0-y53U59osjo5_jlvqv_nYf_d1f2tr7-Vn0tsg0QfSWyfhGgmfkPAF6a0kE5se9pZJuJFM492tVdLbJNFrEn0i0QqJIhIt91dX-svPSbi-H74i4RIJn5LeDomgTWjn28-NL3ubS3GFtd1n0PgPEr7d3f6-_37nPDdTMavlSYElXBFssKskIUDIdmGBlooKjGNJKQZFT0JO4EC5Co-Z5Cm-K5Zs1Q-KSHUB_LoYSY5XdGRADghJF7jhZqvpX-TGsOq5iqIhz3EV2VU8DdFUtb6EXHhSZN8e4cRkWC0bRif7fmDF0e7hhGvNtaz6giUii1qJmiaLI5yaCMBaSALxWGzhtUBaFlYsOf4TpaycOq5adehrNBWYxdaDRQugDNhaGOzbS38-fZk7MZi6o9xwp931r4Ah0nGuxo_7L9aWHWk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%97%A5%E6%9C%AC%E9%BA%BA%E7%94%A8%E3%82%B3%E3%83%A0%E3%82%AE%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8BGlu-A1%E3%81%8A%E3%82%88%E3%81%B3Glu-D1%E5%BA%A7%E3%82%B5%E3%83%96%E3%83%A6%E3%83%8B%E3%83%83%E3%83%88%E6%A7%8B%E6%88%90%E3%81%AE%E9%81%95%E3%81%84%E3%81%8C%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA%E7%B5%84%E6%88%90%E3%81%AB%E5%8F%8A%E3%81%BC%E3%81%99%E5%BD%B1%E9%9F%BF&rft.jtitle=Japanese+journal+of+crop+science&rft.au=Yanaka%2C+Mikiko&rft.au=Takata%2C+Kanenori&rft.au=Ishikawa%2C+Naoyuki&rft.au=Takahashi%2C+Tadashi&rft.date=2016-10-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0011-1848&rft.eissn=1349-0990&rft.volume=85&rft.issue=4&rft.spage=403&rft_id=info:doi/10.1626%2Fjcs.85.403&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0011-1848&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0011-1848&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0011-1848&client=summon