Correcting an acoustic wavefield for elastic effects
Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, an...
Saved in:
| Published in | Geophysical journal international Vol. 197; no. 2; pp. 1196 - 1214 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford University Press
01.05.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0956-540X 1365-246X 1365-246X |
| DOI | 10.1093/gji/ggu057 |
Cover
| Abstract | Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, and more significantly can be performed with coarser grids, both in space and time. In this paper, we present a procedure for correcting acoustic simulations for some of the effects of elasticity, at a cost considerably less than full elastic simulations. Two models are considered: the full elastic model and an equivalent acoustic model with the same P velocity and density. In this paper, although the basic theory is presented for anisotropic elasticity, the specific examples are for an isotropic model. The simulations are performed using the finite-difference method, but the basic method could be applied to other numerical techniques. A simulation in the acoustic model is performed and treated as an approximate solution of the wave propagation in the elastic model. As the acoustic solution is known, the error to the elastic wave equations can be calculated. If extra sources equal to this error were introduced into the elastic model, then the acoustic solution would be an exact solution of the elastic wave equations. Instead, the negative of these sources is introduced into a second acoustic simulation that is used to correct the first acoustic simulation. The corrected acoustic simulation contains some of the effects of elasticity without the full cost of an elastic simulation. It does not contain any shear waves, but amplitudes of reflected P waves are approximately corrected. We expect the corrected acoustic solution to be useful in regions of space and time around a P-wave source, but to deteriorate in some regions, for example, wider angles, and later in time, or after propagation through many interfaces. In this paper, we outline the theory of the correction method, and present results for simulations in a 2-D model with a plane interface. Reflections from a plane interface are simple enough that an analytic analysis is possible, and for plane waves, we give the correction to the acoustic reflection and transmission coefficients. Finally, finite-difference calculations for plane waves are used to confirm the analytic results. Results for wave propagation in more complicated, realistic models will be presented elsewhere. |
|---|---|
| AbstractList | Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, and more significantly can be performed with coarser grids, both in space and time. In this paper, we present a procedure for correcting acoustic simulations for some of the effects of elasticity, at a cost considerably less than full elastic simulations. Two models are considered: the full elastic model and an equivalent acoustic model with the same P velocity and density. In this paper, although the basic theory is presented for anisotropic elasticity, the specific examples are for an isotropic model. The simulations are performed using the finite-difference method, but the basic method could be applied to other numerical techniques. A simulation in the acoustic model is performed and treated as an approximate solution of the wave propagation in the elastic model. As the acoustic solution is known, the error to the elastic wave equations can be calculated. If extra sources equal to this error were introduced into the elastic model, then the acoustic solution would be an exact solution of the elastic wave equations. Instead, the negative of these sources is introduced into a second acoustic simulation that is used to correct the first acoustic simulation. The corrected acoustic simulation contains some of the effects of elasticity without the full cost of an elastic simulation. It does not contain any shear waves, but amplitudes of reflected P waves are approximately corrected. We expect the corrected acoustic solution to be useful in regions of space and time around a P-wave source, but to deteriorate in some regions, for example, wider angles, and later in time, or after propagation through many interfaces. In this paper, we outline the theory of the correction method, and present results for simulations in a 2-D model with a plane interface. Reflections from a plane interface are simple enough that an analytic analysis is possible, and for plane waves, we give the correction to the acoustic reflection and transmission coefficients. Finally, finite-difference calculations for plane waves are used to confirm the analytic results. Results for wave propagation in more complicated, realistic models will be presented elsewhere. |
| Author | Hobro, J. W. D. Robertsson, J. O. A. Chapman, C. H. |
| Author_xml | – sequence: 1 givenname: C. H. surname: Chapman fullname: Chapman, C. H. email: chchapman@hotmail.com organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com – sequence: 2 givenname: J. W. D. surname: Hobro fullname: Hobro, J. W. D. email: chchapman@hotmail.com organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com – sequence: 3 givenname: J. O. A. surname: Robertsson fullname: Robertsson, J. O. A. email: chchapman@hotmail.com organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com |
| BookMark | eNp9j81Kw0AYRQepYFvd-ATZuFFi5yeTn6UEq0LBjUJ34ZvJN2FKzJSZxNK3NxpXIl1duJx74SzIrHMdEnLN6D2jhVg1O7tqmoHK7IzMmUhlzJN0OyNzWsg0lgndXpBFCDtKWcKSfE6S0nmPurddE0EXgXZD6K2ODvCJxmJbR8b5CFv4adGYkQ2X5NxAG_DqN5fkff34Vj7Hm9enl_JhE4PgtI-1wFwJwTTPUi2hSGqTS6k0SiExxzGLVIOCmqsUM-BaKcOLWnGTc21qLpbkbvoduj0cD9C21d7bD_DHitHqW7gahatJeKRvJ1p7F4JHcxqmf2Bte-it63oPtv1_cjNN3LA_df0FrNh5vg |
| CitedBy_id | crossref_primary_10_1121_10_0007049 crossref_primary_10_1093_gji_ggy166 crossref_primary_10_1088_1361_6420_ab8f81 crossref_primary_10_1190_geo2021_0305_1 crossref_primary_10_1093_gji_ggv226 crossref_primary_10_1190_geo2013_0335_1 crossref_primary_10_1190_geo2021_0084_1 crossref_primary_10_1093_gji_ggv228 crossref_primary_10_1111_1365_2478_13610 crossref_primary_10_1190_tle35121053_1 crossref_primary_10_1190_geo2018_0747_1 crossref_primary_10_1190_geo2016_0572_1 crossref_primary_10_1093_gji_ggaa505 crossref_primary_10_1016_j_jappgeo_2022_104902 crossref_primary_10_1190_geo2019_0116_1 crossref_primary_10_1016_j_jcp_2024_113326 crossref_primary_10_1093_gji_ggab193 crossref_primary_10_1190_geo2019_0108_1 crossref_primary_10_1016_j_jappgeo_2024_105400 crossref_primary_10_1190_geo2018_0887_1 |
| Cites_doi | 10.1007/978-90-481-8702-7_135 10.1190/geo2013-0335.1 10.1111/j.1365-246X.1976.tb04162.x 10.1190/geo2011-0249.1 10.1190/1.3294572 10.1190/1.1442147 10.1017/CBO9780511616877 10.1190/1.1442422 10.1111/j.1365-246X.1974.tb04098.x |
| ContentType | Journal Article |
| Copyright | The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014 |
| Copyright_xml | – notice: The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014 |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1093/gji/ggu057 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1365-246X |
| EndPage | 1214 |
| ExternalDocumentID | 10.1093/gji/ggu057 10_1093_gji_ggu057 |
| GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ ALXQX AMNDL ANAKG CITATION JXSIZ AAMMB ABNGD ACUKT ADTOC AEFGJ AGQPQ AGXDD AHGBF AIDQK AIDYY APJGH UNPAY |
| ID | FETCH-LOGICAL-a320t-c3e8b331c276c5a94df855bce535e8ece596cabad2b6e7a2cbbf29db2f82cfd23 |
| IEDL.DBID | UNPAY |
| ISSN | 0956-540X 1365-246X |
| IngestDate | Sun Oct 26 02:55:05 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Tue Jul 01 04:26:27 EDT 2025 Wed Aug 28 03:22:37 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | computational seismology Numerical approximations and analysis body waves wave propagation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a320t-c3e8b331c276c5a94df855bce535e8ece596cabad2b6e7a2cbbf29db2f82cfd23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/gji/article-pdf/197/2/1196/1719927/ggu057.pdf |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1093_gji_ggu057 crossref_primary_10_1093_gji_ggu057 crossref_citationtrail_10_1093_gji_ggu057 oup_primary_10_1093_gji_ggu057 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-05-01 |
| PublicationDateYYYYMMDD | 2014-05-01 |
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Geophysical journal international |
| PublicationTitleAbbrev | Geophys. J. Int |
| PublicationYear | 2014 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Hobro ( key 20171012161144_bib6) 2014 Fowler ( key 20171012161144_bib5) 2010; 75 Bube ( key 20171012161144_bib2) 2012; 77 Chapman ( key 20171012161144_bib3) 2004 Duveneck ( key 20171012161144_bib4) 2008 Levander ( key 20171012161144_bib7) 1988; 53 Robertsson ( key 20171012161144_bib8) 2011 Backus ( key 20171012161144_bib1) 1976; 46 Virieux ( key 20171012161144_bib10) 1986; 51 Woodhouse ( key 20171012161144_bib9) 1974; 37 |
| References_xml | – start-page: 883 volume-title: Encyclopedia of Solid Earth Geophysics year: 2011 ident: key 20171012161144_bib8 article-title: Numerical methods: finite-difference doi: 10.1007/978-90-481-8702-7_135 – year: 2014 ident: key 20171012161144_bib6 article-title: A method for correcting acoustic finite-difference amplitudes publication-title: Geophysics doi: 10.1190/geo2013-0335.1 – volume: 46 start-page: 341 year: 1976 ident: key 20171012161144_bib1 article-title: Moment tensor and other phenomenological descriptions of seismic sources—I. Continuous displacements publication-title: Geophys. J. R. astr. Soc. doi: 10.1111/j.1365-246X.1976.tb04162.x – volume: 77 start-page: T157 year: 2012 ident: key 20171012161144_bib2 article-title: First-order systems for elastic and acoustic variable-tilt TI media publication-title: Geophysics doi: 10.1190/geo2011-0249.1 – volume: 75 start-page: S11 year: 2010 ident: key 20171012161144_bib5 article-title: Coupled equations for reverse time migration in transversely isotropic media publication-title: Geophsyics doi: 10.1190/1.3294572 – volume: 51 start-page: 889 year: 1986 ident: key 20171012161144_bib10 article-title: P-SV wave propagation in heterogeneous media: velocity-stress, finite difference method publication-title: Geophysics doi: 10.1190/1.1442147 – volume-title: Fundamentals of Seismic Wave Propagation year: 2004 ident: key 20171012161144_bib3 doi: 10.1017/CBO9780511616877 – volume: 53 start-page: 1425 year: 1988 ident: key 20171012161144_bib7 article-title: Fourth-order finite-difference P-SV seismograms publication-title: Geophysics doi: 10.1190/1.1442422 – volume: 37 start-page: 461 year: 1974 ident: key 20171012161144_bib9 article-title: Surface waves in a laterally varying layered structure publication-title: Geopys. J. R. astr. Soc. doi: 10.1111/j.1365-246X.1974.tb04098.x – start-page: 2186 volume-title: Proceedings of 78th Annual International Meeting year: 2008 ident: key 20171012161144_bib4 article-title: Acoustic VTI wave equations and their application for anisotropic reverse-time migration |
| SSID | ssj0014148 |
| Score | 2.274319 |
| Snippet | Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic... |
| SourceID | unpaywall crossref oup |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1196 |
| Title | Correcting an acoustic wavefield for elastic effects |
| URI | https://academic.oup.com/gji/article-pdf/197/2/1196/1719927/ggu057.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 197 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 1365-246X databaseCode: KQ8 dateStart: 19580301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 1365-246X databaseCode: TOX dateStart: 19880101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sRfTiW6yPEtCLhzRmH3kci1hE8QUW4qnMbjZFLbFoa9Ff7-RVVKQIXnLITpbsZJj5IN83A3CIkqoaZUfKfhxtihC0EVViE3gVVJ4FilyVdnnlnXXFeSSjOehUWhgsWeGtStLQf3xwSifawzhx3NB3mONS4Diun3EnfaffHxPqaNFqDeY9SZi8DvPdq5v2fdVoj2BJNBVgCS-q-pSGPN-_2OBbZSrUbovjdIjvExwMvhSdzgr0q9ctuCZPrfFItfTHj06O_z_PKiyXuNRqF8-swZxJ12Eh54fq1w0QJ9kUD51xpC1MLUqj-RQwa4JvJifBWQR-LUNQPLtbkkQ2ods5vTs5s8uBCzZydjyyNTeB4tzVzPe0xFDESSCl0kZyaQKTKbY8jQpjpjzjI9NKJSyMFUsCppOY8S2op8-p2QZL0Kr00CgCKAJlgCHhNOOFmJFqY3QbcFQ5u6fLbuTZUIxBr_grznvkqF7hiQYcTG2HRQ-OX62a5OOZBofTzznDbOdvZruwRNhJFNzHPaiPXsZmn_DJSDWhdnEb0PXuOmqWgfgJROfl1w |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qi-jFt1gfJWAvHtKYfeRxLMVSBIsHC_VUZjebopZYtLXor3fyKipSBK_ZybKZDDMf7PfNADRRUlWj7EjZj6NNEYI2ooptAq-CyrNAkanSbvpebyCuh3JYgW6phcGCFd4qJQ3jxwencKI9jWLHDX2HOS4FjuP6KXfSd8bjOaGOFq2uQc2ThMmrUBv0b9v3ZaM9giXDpQBLeMOyT2nIs_3zDb5VplzttjFPpvi-wMnkS9HpbsO4PG7ONXlqzWeqpT9-dHL8__fswFaBS612_s4uVEyyB-sZP1S_7oPopFM8dMqRtjCxKI1mU8CsBb6ZjARnEfi1DEHx9GlBEjmAQffqrtOzi4ELNnJ2ObM1N4Hi3NXM97TEUERxIKXSRnJpApMqtjyNCiOmPOMj00rFLIwUiwOm44jxQ6gmz4k5AkvQqvTQKAIoAmWAIeE044WYkmojdOtwUTp7pItu5OlQjMkovxXnI3LUKPdEHc6XttO8B8evVg3y8UqD5vJ3rjA7_pvZCWwSdhI59_EUqrOXuTkjfDJTjSL4PgGPx-PG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+an+acoustic+wavefield+for+elastic+effects&rft.jtitle=Geophysical+journal+international&rft.au=Chapman%2C+C.+H.&rft.au=Hobro%2C+J.+W.+D.&rft.au=Robertsson%2C+J.+O.+A.&rft.date=2014-05-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=197&rft.issue=2&rft.spage=1196&rft.epage=1214&rft_id=info:doi/10.1093%2Fgji%2Fggu057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggu057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |