Correcting an acoustic wavefield for elastic effects

Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, an...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 197; no. 2; pp. 1196 - 1214
Main Authors Chapman, C. H., Hobro, J. W. D., Robertsson, J. O. A.
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.05.2014
Subjects
Online AccessGet full text
ISSN0956-540X
1365-246X
1365-246X
DOI10.1093/gji/ggu057

Cover

Abstract Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, and more significantly can be performed with coarser grids, both in space and time. In this paper, we present a procedure for correcting acoustic simulations for some of the effects of elasticity, at a cost considerably less than full elastic simulations. Two models are considered: the full elastic model and an equivalent acoustic model with the same P velocity and density. In this paper, although the basic theory is presented for anisotropic elasticity, the specific examples are for an isotropic model. The simulations are performed using the finite-difference method, but the basic method could be applied to other numerical techniques. A simulation in the acoustic model is performed and treated as an approximate solution of the wave propagation in the elastic model. As the acoustic solution is known, the error to the elastic wave equations can be calculated. If extra sources equal to this error were introduced into the elastic model, then the acoustic solution would be an exact solution of the elastic wave equations. Instead, the negative of these sources is introduced into a second acoustic simulation that is used to correct the first acoustic simulation. The corrected acoustic simulation contains some of the effects of elasticity without the full cost of an elastic simulation. It does not contain any shear waves, but amplitudes of reflected P waves are approximately corrected. We expect the corrected acoustic solution to be useful in regions of space and time around a P-wave source, but to deteriorate in some regions, for example, wider angles, and later in time, or after propagation through many interfaces. In this paper, we outline the theory of the correction method, and present results for simulations in a 2-D model with a plane interface. Reflections from a plane interface are simple enough that an analytic analysis is possible, and for plane waves, we give the correction to the acoustic reflection and transmission coefficients. Finally, finite-difference calculations for plane waves are used to confirm the analytic results. Results for wave propagation in more complicated, realistic models will be presented elsewhere.
AbstractList Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic waves in three dimensions. Computations for acoustic waves are significantly simpler as they require less memory and operations per grid cell, and more significantly can be performed with coarser grids, both in space and time. In this paper, we present a procedure for correcting acoustic simulations for some of the effects of elasticity, at a cost considerably less than full elastic simulations. Two models are considered: the full elastic model and an equivalent acoustic model with the same P velocity and density. In this paper, although the basic theory is presented for anisotropic elasticity, the specific examples are for an isotropic model. The simulations are performed using the finite-difference method, but the basic method could be applied to other numerical techniques. A simulation in the acoustic model is performed and treated as an approximate solution of the wave propagation in the elastic model. As the acoustic solution is known, the error to the elastic wave equations can be calculated. If extra sources equal to this error were introduced into the elastic model, then the acoustic solution would be an exact solution of the elastic wave equations. Instead, the negative of these sources is introduced into a second acoustic simulation that is used to correct the first acoustic simulation. The corrected acoustic simulation contains some of the effects of elasticity without the full cost of an elastic simulation. It does not contain any shear waves, but amplitudes of reflected P waves are approximately corrected. We expect the corrected acoustic solution to be useful in regions of space and time around a P-wave source, but to deteriorate in some regions, for example, wider angles, and later in time, or after propagation through many interfaces. In this paper, we outline the theory of the correction method, and present results for simulations in a 2-D model with a plane interface. Reflections from a plane interface are simple enough that an analytic analysis is possible, and for plane waves, we give the correction to the acoustic reflection and transmission coefficients. Finally, finite-difference calculations for plane waves are used to confirm the analytic results. Results for wave propagation in more complicated, realistic models will be presented elsewhere.
Author Hobro, J. W. D.
Robertsson, J. O. A.
Chapman, C. H.
Author_xml – sequence: 1
  givenname: C. H.
  surname: Chapman
  fullname: Chapman, C. H.
  email: chchapman@hotmail.com
  organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com
– sequence: 2
  givenname: J. W. D.
  surname: Hobro
  fullname: Hobro, J. W. D.
  email: chchapman@hotmail.com
  organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com
– sequence: 3
  givenname: J. O. A.
  surname: Robertsson
  fullname: Robertsson, J. O. A.
  email: chchapman@hotmail.com
  organization: 1Schlumberger Cambridge Research Ltd, High Cross, Madingley Road, Cambridge, CB3 0EL, England. E-mail: chchapman@hotmail.com
BookMark eNp9j81Kw0AYRQepYFvd-ATZuFFi5yeTn6UEq0LBjUJ34ZvJN2FKzJSZxNK3NxpXIl1duJx74SzIrHMdEnLN6D2jhVg1O7tqmoHK7IzMmUhlzJN0OyNzWsg0lgndXpBFCDtKWcKSfE6S0nmPurddE0EXgXZD6K2ODvCJxmJbR8b5CFv4adGYkQ2X5NxAG_DqN5fkff34Vj7Hm9enl_JhE4PgtI-1wFwJwTTPUi2hSGqTS6k0SiExxzGLVIOCmqsUM-BaKcOLWnGTc21qLpbkbvoduj0cD9C21d7bD_DHitHqW7gahatJeKRvJ1p7F4JHcxqmf2Bte-it63oPtv1_cjNN3LA_df0FrNh5vg
CitedBy_id crossref_primary_10_1121_10_0007049
crossref_primary_10_1093_gji_ggy166
crossref_primary_10_1088_1361_6420_ab8f81
crossref_primary_10_1190_geo2021_0305_1
crossref_primary_10_1093_gji_ggv226
crossref_primary_10_1190_geo2013_0335_1
crossref_primary_10_1190_geo2021_0084_1
crossref_primary_10_1093_gji_ggv228
crossref_primary_10_1111_1365_2478_13610
crossref_primary_10_1190_tle35121053_1
crossref_primary_10_1190_geo2018_0747_1
crossref_primary_10_1190_geo2016_0572_1
crossref_primary_10_1093_gji_ggaa505
crossref_primary_10_1016_j_jappgeo_2022_104902
crossref_primary_10_1190_geo2019_0116_1
crossref_primary_10_1016_j_jcp_2024_113326
crossref_primary_10_1093_gji_ggab193
crossref_primary_10_1190_geo2019_0108_1
crossref_primary_10_1016_j_jappgeo_2024_105400
crossref_primary_10_1190_geo2018_0887_1
Cites_doi 10.1007/978-90-481-8702-7_135
10.1190/geo2013-0335.1
10.1111/j.1365-246X.1976.tb04162.x
10.1190/geo2011-0249.1
10.1190/1.3294572
10.1190/1.1442147
10.1017/CBO9780511616877
10.1190/1.1442422
10.1111/j.1365-246X.1974.tb04098.x
ContentType Journal Article
Copyright The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014
Copyright_xml – notice: The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1093/gji/ggu057
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 1214
ExternalDocumentID 10.1093/gji/ggu057
10_1093_gji_ggu057
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
AAMMB
ABNGD
ACUKT
ADTOC
AEFGJ
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
APJGH
UNPAY
ID FETCH-LOGICAL-a320t-c3e8b331c276c5a94df855bce535e8ece596cabad2b6e7a2cbbf29db2f82cfd23
IEDL.DBID UNPAY
ISSN 0956-540X
1365-246X
IngestDate Sun Oct 26 02:55:05 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 04:26:27 EDT 2025
Wed Aug 28 03:22:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords computational seismology
Numerical approximations and analysis
body waves
wave propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a320t-c3e8b331c276c5a94df855bce535e8ece596cabad2b6e7a2cbbf29db2f82cfd23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/gji/article-pdf/197/2/1196/1719927/ggu057.pdf
PageCount 19
ParticipantIDs unpaywall_primary_10_1093_gji_ggu057
crossref_primary_10_1093_gji_ggu057
crossref_citationtrail_10_1093_gji_ggu057
oup_primary_10_1093_gji_ggu057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Geophysical journal international
PublicationTitleAbbrev Geophys. J. Int
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hobro ( key 20171012161144_bib6) 2014
Fowler ( key 20171012161144_bib5) 2010; 75
Bube ( key 20171012161144_bib2) 2012; 77
Chapman ( key 20171012161144_bib3) 2004
Duveneck ( key 20171012161144_bib4) 2008
Levander ( key 20171012161144_bib7) 1988; 53
Robertsson ( key 20171012161144_bib8) 2011
Backus ( key 20171012161144_bib1) 1976; 46
Virieux ( key 20171012161144_bib10) 1986; 51
Woodhouse ( key 20171012161144_bib9) 1974; 37
References_xml – start-page: 883
  volume-title: Encyclopedia of Solid Earth Geophysics
  year: 2011
  ident: key 20171012161144_bib8
  article-title: Numerical methods: finite-difference
  doi: 10.1007/978-90-481-8702-7_135
– year: 2014
  ident: key 20171012161144_bib6
  article-title: A method for correcting acoustic finite-difference amplitudes
  publication-title: Geophysics
  doi: 10.1190/geo2013-0335.1
– volume: 46
  start-page: 341
  year: 1976
  ident: key 20171012161144_bib1
  article-title: Moment tensor and other phenomenological descriptions of seismic sources—I. Continuous displacements
  publication-title: Geophys. J. R. astr. Soc.
  doi: 10.1111/j.1365-246X.1976.tb04162.x
– volume: 77
  start-page: T157
  year: 2012
  ident: key 20171012161144_bib2
  article-title: First-order systems for elastic and acoustic variable-tilt TI media
  publication-title: Geophysics
  doi: 10.1190/geo2011-0249.1
– volume: 75
  start-page: S11
  year: 2010
  ident: key 20171012161144_bib5
  article-title: Coupled equations for reverse time migration in transversely isotropic media
  publication-title: Geophsyics
  doi: 10.1190/1.3294572
– volume: 51
  start-page: 889
  year: 1986
  ident: key 20171012161144_bib10
  article-title: P-SV wave propagation in heterogeneous media: velocity-stress, finite difference method
  publication-title: Geophysics
  doi: 10.1190/1.1442147
– volume-title: Fundamentals of Seismic Wave Propagation
  year: 2004
  ident: key 20171012161144_bib3
  doi: 10.1017/CBO9780511616877
– volume: 53
  start-page: 1425
  year: 1988
  ident: key 20171012161144_bib7
  article-title: Fourth-order finite-difference P-SV seismograms
  publication-title: Geophysics
  doi: 10.1190/1.1442422
– volume: 37
  start-page: 461
  year: 1974
  ident: key 20171012161144_bib9
  article-title: Surface waves in a laterally varying layered structure
  publication-title: Geopys. J. R. astr. Soc.
  doi: 10.1111/j.1365-246X.1974.tb04098.x
– start-page: 2186
  volume-title: Proceedings of 78th Annual International Meeting
  year: 2008
  ident: key 20171012161144_bib4
  article-title: Acoustic VTI wave equations and their application for anisotropic reverse-time migration
SSID ssj0014148
Score 2.274319
Snippet Finite-difference simulations are an important tool for studying elastic and acoustic wave propagation, but remain computationally challenging for elastic...
SourceID unpaywall
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1196
Title Correcting an acoustic wavefield for elastic effects
URI https://academic.oup.com/gji/article-pdf/197/2/1196/1719927/ggu057.pdf
UnpaywallVersion publishedVersion
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: KQ8
  dateStart: 19580301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 1365-246X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5sRfTiW6yPEtCLhzRmH3kci1hE8QUW4qnMbjZFLbFoa9Ff7-RVVKQIXnLITpbsZJj5IN83A3CIkqoaZUfKfhxtihC0EVViE3gVVJ4FilyVdnnlnXXFeSSjOehUWhgsWeGtStLQf3xwSifawzhx3NB3mONS4Diun3EnfaffHxPqaNFqDeY9SZi8DvPdq5v2fdVoj2BJNBVgCS-q-pSGPN-_2OBbZSrUbovjdIjvExwMvhSdzgr0q9ctuCZPrfFItfTHj06O_z_PKiyXuNRqF8-swZxJ12Eh54fq1w0QJ9kUD51xpC1MLUqj-RQwa4JvJifBWQR-LUNQPLtbkkQ2ods5vTs5s8uBCzZydjyyNTeB4tzVzPe0xFDESSCl0kZyaQKTKbY8jQpjpjzjI9NKJSyMFUsCppOY8S2op8-p2QZL0Kr00CgCKAJlgCHhNOOFmJFqY3QbcFQ5u6fLbuTZUIxBr_grznvkqF7hiQYcTG2HRQ-OX62a5OOZBofTzznDbOdvZruwRNhJFNzHPaiPXsZmn_DJSDWhdnEb0PXuOmqWgfgJROfl1w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qi-jFt1gfJWAvHtKYfeRxLMVSBIsHC_VUZjebopZYtLXor3fyKipSBK_ZybKZDDMf7PfNADRRUlWj7EjZj6NNEYI2ooptAq-CyrNAkanSbvpebyCuh3JYgW6phcGCFd4qJQ3jxwencKI9jWLHDX2HOS4FjuP6KXfSd8bjOaGOFq2uQc2ThMmrUBv0b9v3ZaM9giXDpQBLeMOyT2nIs_3zDb5VplzttjFPpvi-wMnkS9HpbsO4PG7ONXlqzWeqpT9-dHL8__fswFaBS612_s4uVEyyB-sZP1S_7oPopFM8dMqRtjCxKI1mU8CsBb6ZjARnEfi1DEHx9GlBEjmAQffqrtOzi4ELNnJ2ObM1N4Hi3NXM97TEUERxIKXSRnJpApMqtjyNCiOmPOMj00rFLIwUiwOm44jxQ6gmz4k5AkvQqvTQKAIoAmWAIeE044WYkmojdOtwUTp7pItu5OlQjMkovxXnI3LUKPdEHc6XttO8B8evVg3y8UqD5vJ3rjA7_pvZCWwSdhI59_EUqrOXuTkjfDJTjSL4PgGPx-PG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correcting+an+acoustic+wavefield+for+elastic+effects&rft.jtitle=Geophysical+journal+international&rft.au=Chapman%2C+C.+H.&rft.au=Hobro%2C+J.+W.+D.&rft.au=Robertsson%2C+J.+O.+A.&rft.date=2014-05-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=197&rft.issue=2&rft.spage=1196&rft.epage=1214&rft_id=info:doi/10.1093%2Fgji%2Fggu057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggu057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon