Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning
Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-bas...
Saved in:
| Published in | ACS applied materials & interfaces Vol. 17; no. 13; pp. 20361 - 20373 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
02.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1944-8244 1944-8252 1944-8252 |
| DOI | 10.1021/acsami.4c17414 |
Cover
| Abstract | Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels. |
|---|---|
| AbstractList | Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels. Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels. |
| Author | Kim, Geon Hwee Kim, SeongYeon Choi, Mun Jeong Shin, Jongho |
| AuthorAffiliation | Department of Mechanical Engineering |
| AuthorAffiliation_xml | – name: Department of Mechanical Engineering |
| Author_xml | – sequence: 1 givenname: Mun Jeong surname: Choi fullname: Choi, Mun Jeong – sequence: 2 givenname: SeongYeon surname: Kim fullname: Kim, SeongYeon – sequence: 3 givenname: Jongho surname: Shin fullname: Shin, Jongho email: jshin@chungbuk.ac.kr – sequence: 4 givenname: Geon Hwee orcidid: 0009-0005-5872-6765 surname: Kim fullname: Kim, Geon Hwee email: geonhwee.kim@chungbuk.ac.kr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40072024$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtP6zAQha0r0OW5vcurLBFSiu3YTcyulKdUtQtgwyZy7Ak33NQOfoD4AfxvDC3sEKsZjb4zMzpnB20YawChPwSPCKbkSCovl92IKVIywn6hbSIYyyvK6cZXz9gW2vH-AeNxQTH_jbYYxiXFlG2j14l-kkaBziYmdMpGE8C10IXO3B-n2X0P-SkMYDSYkF0HF1WITvbZ1PbW5SfSJ-k0Lo7uzCKbS2MHGdIG47PnLvzLTgGGbA4fijmEZ-v-Z9dxAPfUvQtnIJ1Jl_bQZit7D_vruotuz89uppf5bHFxNZ3McpkeD3lFKtXyksmSF0IJKAUBpSumKsZJQziwgvMGiyJZ0WqhVdsUYkwF140QQvNiFx2s9g7OPkbwoV52XkHfSwM2-jpdwbSkBWM_o6QcF6ysKE7o3zUamyXoenDdUrqX-tPlBIxWgHLWewftF0Jw_R5jvYqxXseYBIcrQZrXDzY6k1z5Dn4Dhd2fKA |
| Cites_doi | 10.1016/j.rinp.2017.10.022 10.1002/smll.201907626 10.1021/acsanm.2c01622 10.1186/s11671-018-2614-2 10.1007/s40843-022-2256-8 10.1063/5.0091213 10.1364/OE.17.016183 10.1016/j.isci.2022.104157 10.1149/1.1393597 10.1021/acsami.1c02561 10.1002/adma.201200521 10.1039/D3TC00794D 10.1021/acsami.1c13701 10.1155/2019/6519018 10.1039/D0NR01223H 10.1039/C5RA21035F 10.1149/1.1391580 10.1021/nl070648a 10.1364/OE.16.015677 10.1088/1361-6528/ac3b0d 10.1021/acsapm.2c00803 10.1038/srep20182 10.1186/1556-276X-7-262 10.1109/SECURWARE.2008.12 10.1038/srep04379 10.1021/acs.iecr.2c03232 10.1145/3092816 10.1016/j.pmatsci.2013.03.003 10.1007/s11671-008-9233-2 10.1088/2053-1591/ab1662 10.1039/D0CS00706D 10.1103/PhysRevB.15.1644 10.1002/wnan.1396 10.2174/2210681211202020090 10.1002/adfm.201503989 10.1103/PhysRev.118.1509 10.1021/acs.chemmater.7b01783 10.1149/1.2096989 10.1088/2043-6262/1/4/043002 10.1039/c3dt50610j 10.1002/admt.202100410 10.1038/ncomms7368 10.1002/adfm.202417673 10.1039/C9CE01556F 10.1021/acsanm.3c06170 10.1021/acsami.6b15892 10.1016/j.ceramint.2019.07.119 10.1016/j.biotechadv.2010.01.004 10.1039/C8NR04058C 10.1002/bbpc.19890930709 10.1002/lpor.202300751 10.1088/0034-4885/71/7/076401 10.1021/acsami.2c12387 10.1098/rsif.2008.0354.focus 10.1007/s10462-011-9225-y 10.1021/acsami.2c02995 10.1016/0925-3467(95)00028-3 10.1039/C6NR09083D 10.1149/1.2115559 10.1364/AOP.10.000757 10.1002/ange.200900210 10.1109/JPROC.2014.2320516 10.1016/j.mtcomm.2020.101706 |
| ContentType | Journal Article |
| Copyright | 2025 American Chemical Society |
| Copyright_xml | – notice: 2025 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1021/acsami.4c17414 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1944-8252 |
| EndPage | 20373 |
| ExternalDocumentID | 40072024 10_1021_acsami_4c17414 d068668008 |
| Genre | Journal Article |
| GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-a320t-818cf574a7539c9e791ecd84c8451b15e4355b093414fd9dcfb396295db999d53 |
| IEDL.DBID | ACS |
| ISSN | 1944-8244 1944-8252 |
| IngestDate | Wed Jul 02 03:22:37 EDT 2025 Thu Jul 10 17:50:28 EDT 2025 Fri Apr 04 01:34:10 EDT 2025 Wed Oct 01 06:38:46 EDT 2025 Thu Apr 03 03:22:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | zinc oxide (ZnO) electroless plating anticounterfeiting hydrothermal synthesis deep neural network supervised learning copper oxide (CuO) |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a320t-818cf574a7539c9e791ecd84c8451b15e4355b093414fd9dcfb396295db999d53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0005-5872-6765 |
| PMID | 40072024 |
| PQID | 3176347820 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_3200272344 proquest_miscellaneous_3176347820 pubmed_primary_40072024 crossref_primary_10_1021_acsami_4c17414 acs_journals_10_1021_acsami_4c17414 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-02 |
| PublicationDateYYYYMMDD | 2025-04-02 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS applied materials & interfaces |
| PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
| PublicationYear | 2025 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 Kiyoshi M. (ref42/cit42) 2002; 17 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 Al-lami S. (ref45/cit45) 2014; 6 ref70/cit70 ref7/cit7 |
| References_xml | – ident: ref66/cit66 doi: 10.1016/j.rinp.2017.10.022 – ident: ref70/cit70 doi: 10.1002/smll.201907626 – ident: ref11/cit11 doi: 10.1021/acsanm.2c01622 – ident: ref44/cit44 doi: 10.1186/s11671-018-2614-2 – ident: ref26/cit26 doi: 10.1007/s40843-022-2256-8 – ident: ref53/cit53 doi: 10.1063/5.0091213 – ident: ref21/cit21 doi: 10.1364/OE.17.016183 – ident: ref34/cit34 doi: 10.1016/j.isci.2022.104157 – ident: ref55/cit55 doi: 10.1149/1.1393597 – ident: ref2/cit2 doi: 10.1021/acsami.1c02561 – ident: ref19/cit19 doi: 10.1002/adma.201200521 – ident: ref13/cit13 doi: 10.1039/D3TC00794D – ident: ref14/cit14 doi: 10.1021/acsami.1c13701 – ident: ref4/cit4 doi: 10.1155/2019/6519018 – ident: ref9/cit9 doi: 10.1039/D0NR01223H – ident: ref49/cit49 doi: 10.1039/C5RA21035F – ident: ref58/cit58 doi: 10.1149/1.1391580 – ident: ref48/cit48 doi: 10.1021/nl070648a – ident: ref30/cit30 doi: 10.1364/OE.16.015677 – ident: ref28/cit28 doi: 10.1088/1361-6528/ac3b0d – ident: ref12/cit12 doi: 10.1021/acsapm.2c00803 – ident: ref50/cit50 doi: 10.1038/srep20182 – ident: ref3/cit3 doi: 10.1186/1556-276X-7-262 – ident: ref8/cit8 doi: 10.1109/SECURWARE.2008.12 – ident: ref64/cit64 doi: 10.1038/srep04379 – ident: ref36/cit36 doi: 10.1021/acs.iecr.2c03232 – ident: ref10/cit10 doi: 10.1145/3092816 – ident: ref22/cit22 doi: 10.1016/j.pmatsci.2013.03.003 – volume: 17 start-page: 155 issue: 2 year: 2002 ident: ref42/cit42 publication-title: Forma – ident: ref46/cit46 doi: 10.1007/s11671-008-9233-2 – ident: ref67/cit67 doi: 10.1088/2053-1591/ab1662 – ident: ref23/cit23 doi: 10.1039/D0CS00706D – ident: ref68/cit68 doi: 10.1103/PhysRevB.15.1644 – ident: ref16/cit16 doi: 10.1002/wnan.1396 – ident: ref63/cit63 doi: 10.2174/2210681211202020090 – ident: ref15/cit15 doi: 10.1002/adfm.201503989 – ident: ref47/cit47 doi: 10.1103/PhysRev.118.1509 – ident: ref27/cit27 doi: 10.1021/acs.chemmater.7b01783 – ident: ref57/cit57 doi: 10.1149/1.2096989 – ident: ref32/cit32 doi: 10.1088/2043-6262/1/4/043002 – ident: ref65/cit65 doi: 10.1039/c3dt50610j – ident: ref33/cit33 doi: 10.1002/admt.202100410 – ident: ref20/cit20 doi: 10.1038/ncomms7368 – ident: ref69/cit69 doi: 10.1002/adfm.202417673 – ident: ref62/cit62 doi: 10.1039/C9CE01556F – ident: ref61/cit61 doi: 10.1021/acsanm.3c06170 – ident: ref38/cit38 doi: 10.1021/acsami.6b15892 – ident: ref51/cit51 doi: 10.1016/j.ceramint.2019.07.119 – ident: ref29/cit29 doi: 10.1016/j.biotechadv.2010.01.004 – ident: ref25/cit25 doi: 10.1039/C8NR04058C – ident: ref60/cit60 doi: 10.1002/bbpc.19890930709 – ident: ref1/cit1 doi: 10.1002/lpor.202300751 – ident: ref17/cit17 doi: 10.1088/0034-4885/71/7/076401 – ident: ref31/cit31 doi: 10.1088/2043-6262/1/4/043002 – ident: ref6/cit6 doi: 10.1021/acsami.2c12387 – ident: ref40/cit40 doi: 10.1098/rsif.2008.0354.focus – ident: ref52/cit52 doi: 10.1007/s10462-011-9225-y – ident: ref54/cit54 doi: 10.1021/acsami.2c02995 – ident: ref35/cit35 doi: 10.1016/0925-3467(95)00028-3 – ident: ref5/cit5 doi: 10.1039/C6NR09083D – ident: ref56/cit56 doi: 10.1149/1.2115559 – ident: ref24/cit24 doi: 10.1364/AOP.10.000757 – ident: ref18/cit18 doi: 10.1002/ange.200900210 – ident: ref7/cit7 doi: 10.1109/JPROC.2014.2320516 – volume: 6 start-page: 2224 issue: 4 year: 2014 ident: ref45/cit45 publication-title: Chem. Mater. Res. – ident: ref59/cit59 doi: 10.1016/j.mtcomm.2020.101706 |
| SSID | ssj0063205 |
| Score | 2.458423 |
| Snippet | Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 20361 |
| SubjectTerms | algorithms cameras color exhibitions image analysis learning manufacturing materials neural networks sampling solutions Surfaces, Interfaces, and Applications |
| Title | Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning |
| URI | http://dx.doi.org/10.1021/acsami.4c17414 https://www.ncbi.nlm.nih.gov/pubmed/40072024 https://www.proquest.com/docview/3176347820 https://www.proquest.com/docview/3200272344 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1944-8252 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063205 issn: 1944-8244 databaseCode: ACS dateStart: 20090128 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QXODA-zFeCgKJU4CmadNwGxvThAQ7DCTEpUrSdEKgblq3C3f-N3bb8dSAa5W0kZ3Yn2P3MyFHXKfat1KxxPcSJqQxTKf2jJkI-ZwcBxSNGd3rm7B9J67ug_uP-47vGXzunWqbYyscYQE7Y8fqOR5KicV79UZ3YnNDnxfFihCRCxaBx5rQM_6Yj07I5l-d0BRkWXiY1lJJd5QXxIRYWPJ0Mh6ZE_vyk7bxz8Uvk8UKZtJ6uS9WyIzLVsnCJ_LBNfJar9L_tJ7BKOwZ4Yape8Q66HN41nt2rFm1yB3RbsEzixwdtAH2csguwP0ltDHunD5kHQpGGqJv_DMoyyne7dKmcwOK1B8w46asNafd8QBNE06seF176-SudXnbaLOqKQPTIOQRAwdv00AKDXGOsspJ5TmbRMJGIvCMFzjAX4E5U-AdRZqoxKbGVyFXQWIAiyaBv0Fms37mtgj1tLSSR6kXKS1SG0Dk6CBKNr6UAJQiVyOHIL-4OlR5XOTLuReXQo0rodbI8USX8aBk6Jg68mCi6hgOEWZGdOb64zwGEBX6AqkDfxmD5SyS-wLes1nuk_fvYXN5Dmhn-18r3iHzHLsIY_0P3yWzoEC3B9BmZPaLXf0G_x3zxA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZWcCgcoC1vSnEFEiez2LHjmNuyFG1bWJAWJMQlih0HIVBYbXYv3PnfzORBHwhUrpHtOGN75pvM-BtCtkWSJYHThqUBT5nU1rIkc3vMRsjn5AWgaIzonvTD3oX8eakuW6Td3IWBSRQwUlEG8X-zC_A2PMOKONIBhMbC1dMqlBy9rU530KjeMBBlziI45pJFYLgalsYX_dEWueJvW_QKwCwNzdE8OXueYplfcrs7Gdtd9_APe-M7vuEjmatBJ-1Uu-QTafn8M5n9g4pwgTx26mQA2smhFVaQ8KPM32BW9D48u77z7LAumDumg5J1Fhk7aBe054gdgDFMaXdy2r7KTymobPDF8Z5QXlD800sPvR9SJAKBHv0q85wOJkNUVNixZnm9XiQXR9_Puz1Wl2hgCch6zMDcu0xpmYDXY5zx2nDv0ki6SCpuufKAxpTdM2ArZZaa1GU2MKEwKrWATFMVLJGp_D73K4TyRDstooxHJpGZU-BHevCZbaA1wKbIr5ItkF9cH7EiLqPngseVUONaqKtkp1nSeFjxdbza8luz4jEcKYyTJLm_nxQxQKowkEgk-EYbTG7RIpAwznK1XZ7fh6XmBWCftf-a8Sb50Ds_OY6Pf_R_rZMZgfWFMTNIfCFTsJh-A0DP2H4tN_oTpNL8Jg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkKpyKC3l2VJctVJPZoljxzG3ZbcroHSptCAhLlH8QhUorMjuhXv_NzOJF9FWIHqNbMcZezzfZMbfEPKFl6FMrdLMpYljQhnDymB3mMmRz8lzQNEY0f0xzPZPxeGZPIv3uPEuDEyihpHqJoiPWj12ITIMJB14jlVxhAUYjcWr52UGeo54qDeaHb9Zypu8RXDOBcvBeM2YGv_pj_bI1n_ao0dAZmNsBovk5H6aTY7J5fZ0Yrbt7V8Mjv_5HW_I6wg-abfdLW_JC18tkYUHlITvyO9uTAqg3QpaYSUJfxP8L8yO3oVnF1ee9WPh3AkdNeyzyNxBe3CK3rA9MIqO9qbHnfPqmMLRDT453heqaop_fGnf-zFFQhDoMWwz0OloOsYDCztGtteLZXI6-HbS22exVAMrQd4TBmbfBqlECd6PttornXjrcmFzIROTSA-oTJodDTZTBKedDSbVGdfSGUCoTqYrZK66rvwaoUmprOJ5SHJdimAl-JMefGeTKgXwKffr5DPIr4iqVhdNFJ0nRSvUIgp1nXydLWsxbnk7Hm35abbqBagWxkvKyl9P6wKgVZYKJBR8og0muSieChhntd0y9-_DkvMcMNDGs2a8RV7-7A-Ko4Ph9_fkFccyw5ggxD-QOVhLvwnYZ2I-Nnv9DtX1_qk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Anticounterfeiting%3A+Angle-Dependent+Structural+Color-Based+CuO%2FZnO+Nanopatterns+with+Deep+Neural+Network+Supervised+Learning&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Choi%2C+Mun+Jeong&rft.au=Kim%2C+SeongYeon&rft.au=Shin%2C+Jongho&rft.au=Kim%2C+Geon+Hwee&rft.date=2025-04-02&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=13&rft.spage=20361&rft.epage=20373&rft_id=info:doi/10.1021%2Facsami.4c17414&rft.externalDocID=d068668008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |