Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning

Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-bas...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 17; no. 13; pp. 20361 - 20373
Main Authors Choi, Mun Jeong, Kim, SeongYeon, Shin, Jongho, Kim, Geon Hwee
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.04.2025
Subjects
Online AccessGet full text
ISSN1944-8244
1944-8252
1944-8252
DOI10.1021/acsami.4c17414

Cover

Abstract Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.
AbstractList Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.
Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve complex manufacturing, resulting in high costs and limited scalability. This study presents a low-cost, mass-producible structural color-based anticounterfeiting pattern and a simple algorithm for discrimination. Nanopatterns aligned with the direction of incident light were fabricated by electrospinning, while CuO and ZnO were grown independently through a solution process. CuO acts as a reflective layer, imparting an angle-dependent color dependence, while ZnO allows the structural color to be tuned by controlling the hydrothermal synthesis time. The inherent randomness of electrospinning enables the creation of unclonable patterns, providing a robust anticounterfeiting solution. The fabricated CuO/ZnO nanopatterns exhibit strong angular color dependence and are capable of encoding high-density information. It uses deep learning algorithms to achieve an average discrimination accuracy of 94%, with a streamlined computational structure based on shape and color features to achieve a processing speed of 80 ms per sample. The training images are acquired with standard high-resolution cameras, ensuring accessibility and practicality. This approach offers an efficient and scalable next-generation solution for anticounterfeiting applications, including documents, currency, and brand labels.
Author Kim, Geon Hwee
Kim, SeongYeon
Choi, Mun Jeong
Shin, Jongho
AuthorAffiliation Department of Mechanical Engineering
AuthorAffiliation_xml – name: Department of Mechanical Engineering
Author_xml – sequence: 1
  givenname: Mun Jeong
  surname: Choi
  fullname: Choi, Mun Jeong
– sequence: 2
  givenname: SeongYeon
  surname: Kim
  fullname: Kim, SeongYeon
– sequence: 3
  givenname: Jongho
  surname: Shin
  fullname: Shin, Jongho
  email: jshin@chungbuk.ac.kr
– sequence: 4
  givenname: Geon Hwee
  orcidid: 0009-0005-5872-6765
  surname: Kim
  fullname: Kim, Geon Hwee
  email: geonhwee.kim@chungbuk.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40072024$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtP6zAQha0r0OW5vcurLBFSiu3YTcyulKdUtQtgwyZy7Ak33NQOfoD4AfxvDC3sEKsZjb4zMzpnB20YawChPwSPCKbkSCovl92IKVIywn6hbSIYyyvK6cZXz9gW2vH-AeNxQTH_jbYYxiXFlG2j14l-kkaBziYmdMpGE8C10IXO3B-n2X0P-SkMYDSYkF0HF1WITvbZ1PbW5SfSJ-k0Lo7uzCKbS2MHGdIG47PnLvzLTgGGbA4fijmEZ-v-Z9dxAPfUvQtnIJ1Jl_bQZit7D_vruotuz89uppf5bHFxNZ3McpkeD3lFKtXyksmSF0IJKAUBpSumKsZJQziwgvMGiyJZ0WqhVdsUYkwF140QQvNiFx2s9g7OPkbwoV52XkHfSwM2-jpdwbSkBWM_o6QcF6ysKE7o3zUamyXoenDdUrqX-tPlBIxWgHLWewftF0Jw_R5jvYqxXseYBIcrQZrXDzY6k1z5Dn4Dhd2fKA
Cites_doi 10.1016/j.rinp.2017.10.022
10.1002/smll.201907626
10.1021/acsanm.2c01622
10.1186/s11671-018-2614-2
10.1007/s40843-022-2256-8
10.1063/5.0091213
10.1364/OE.17.016183
10.1016/j.isci.2022.104157
10.1149/1.1393597
10.1021/acsami.1c02561
10.1002/adma.201200521
10.1039/D3TC00794D
10.1021/acsami.1c13701
10.1155/2019/6519018
10.1039/D0NR01223H
10.1039/C5RA21035F
10.1149/1.1391580
10.1021/nl070648a
10.1364/OE.16.015677
10.1088/1361-6528/ac3b0d
10.1021/acsapm.2c00803
10.1038/srep20182
10.1186/1556-276X-7-262
10.1109/SECURWARE.2008.12
10.1038/srep04379
10.1021/acs.iecr.2c03232
10.1145/3092816
10.1016/j.pmatsci.2013.03.003
10.1007/s11671-008-9233-2
10.1088/2053-1591/ab1662
10.1039/D0CS00706D
10.1103/PhysRevB.15.1644
10.1002/wnan.1396
10.2174/2210681211202020090
10.1002/adfm.201503989
10.1103/PhysRev.118.1509
10.1021/acs.chemmater.7b01783
10.1149/1.2096989
10.1088/2043-6262/1/4/043002
10.1039/c3dt50610j
10.1002/admt.202100410
10.1038/ncomms7368
10.1002/adfm.202417673
10.1039/C9CE01556F
10.1021/acsanm.3c06170
10.1021/acsami.6b15892
10.1016/j.ceramint.2019.07.119
10.1016/j.biotechadv.2010.01.004
10.1039/C8NR04058C
10.1002/bbpc.19890930709
10.1002/lpor.202300751
10.1088/0034-4885/71/7/076401
10.1021/acsami.2c12387
10.1098/rsif.2008.0354.focus
10.1007/s10462-011-9225-y
10.1021/acsami.2c02995
10.1016/0925-3467(95)00028-3
10.1039/C6NR09083D
10.1149/1.2115559
10.1364/AOP.10.000757
10.1002/ange.200900210
10.1109/JPROC.2014.2320516
10.1016/j.mtcomm.2020.101706
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.4c17414
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 20373
ExternalDocumentID 40072024
10_1021_acsami_4c17414
d068668008
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a320t-818cf574a7539c9e791ecd84c8451b15e4355b093414fd9dcfb396295db999d53
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Wed Jul 02 03:22:37 EDT 2025
Thu Jul 10 17:50:28 EDT 2025
Fri Apr 04 01:34:10 EDT 2025
Wed Oct 01 06:38:46 EDT 2025
Thu Apr 03 03:22:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords zinc oxide (ZnO)
electroless plating
anticounterfeiting
hydrothermal synthesis
deep neural network supervised learning
copper oxide (CuO)
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a320t-818cf574a7539c9e791ecd84c8451b15e4355b093414fd9dcfb396295db999d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0005-5872-6765
PMID 40072024
PQID 3176347820
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_3200272344
proquest_miscellaneous_3176347820
pubmed_primary_40072024
crossref_primary_10_1021_acsami_4c17414
acs_journals_10_1021_acsami_4c17414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-02
PublicationDateYYYYMMDD 2025-04-02
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Kiyoshi M. (ref42/cit42) 2002; 17
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
Al-lami S. (ref45/cit45) 2014; 6
ref70/cit70
ref7/cit7
References_xml – ident: ref66/cit66
  doi: 10.1016/j.rinp.2017.10.022
– ident: ref70/cit70
  doi: 10.1002/smll.201907626
– ident: ref11/cit11
  doi: 10.1021/acsanm.2c01622
– ident: ref44/cit44
  doi: 10.1186/s11671-018-2614-2
– ident: ref26/cit26
  doi: 10.1007/s40843-022-2256-8
– ident: ref53/cit53
  doi: 10.1063/5.0091213
– ident: ref21/cit21
  doi: 10.1364/OE.17.016183
– ident: ref34/cit34
  doi: 10.1016/j.isci.2022.104157
– ident: ref55/cit55
  doi: 10.1149/1.1393597
– ident: ref2/cit2
  doi: 10.1021/acsami.1c02561
– ident: ref19/cit19
  doi: 10.1002/adma.201200521
– ident: ref13/cit13
  doi: 10.1039/D3TC00794D
– ident: ref14/cit14
  doi: 10.1021/acsami.1c13701
– ident: ref4/cit4
  doi: 10.1155/2019/6519018
– ident: ref9/cit9
  doi: 10.1039/D0NR01223H
– ident: ref49/cit49
  doi: 10.1039/C5RA21035F
– ident: ref58/cit58
  doi: 10.1149/1.1391580
– ident: ref48/cit48
  doi: 10.1021/nl070648a
– ident: ref30/cit30
  doi: 10.1364/OE.16.015677
– ident: ref28/cit28
  doi: 10.1088/1361-6528/ac3b0d
– ident: ref12/cit12
  doi: 10.1021/acsapm.2c00803
– ident: ref50/cit50
  doi: 10.1038/srep20182
– ident: ref3/cit3
  doi: 10.1186/1556-276X-7-262
– ident: ref8/cit8
  doi: 10.1109/SECURWARE.2008.12
– ident: ref64/cit64
  doi: 10.1038/srep04379
– ident: ref36/cit36
  doi: 10.1021/acs.iecr.2c03232
– ident: ref10/cit10
  doi: 10.1145/3092816
– ident: ref22/cit22
  doi: 10.1016/j.pmatsci.2013.03.003
– volume: 17
  start-page: 155
  issue: 2
  year: 2002
  ident: ref42/cit42
  publication-title: Forma
– ident: ref46/cit46
  doi: 10.1007/s11671-008-9233-2
– ident: ref67/cit67
  doi: 10.1088/2053-1591/ab1662
– ident: ref23/cit23
  doi: 10.1039/D0CS00706D
– ident: ref68/cit68
  doi: 10.1103/PhysRevB.15.1644
– ident: ref16/cit16
  doi: 10.1002/wnan.1396
– ident: ref63/cit63
  doi: 10.2174/2210681211202020090
– ident: ref15/cit15
  doi: 10.1002/adfm.201503989
– ident: ref47/cit47
  doi: 10.1103/PhysRev.118.1509
– ident: ref27/cit27
  doi: 10.1021/acs.chemmater.7b01783
– ident: ref57/cit57
  doi: 10.1149/1.2096989
– ident: ref32/cit32
  doi: 10.1088/2043-6262/1/4/043002
– ident: ref65/cit65
  doi: 10.1039/c3dt50610j
– ident: ref33/cit33
  doi: 10.1002/admt.202100410
– ident: ref20/cit20
  doi: 10.1038/ncomms7368
– ident: ref69/cit69
  doi: 10.1002/adfm.202417673
– ident: ref62/cit62
  doi: 10.1039/C9CE01556F
– ident: ref61/cit61
  doi: 10.1021/acsanm.3c06170
– ident: ref38/cit38
  doi: 10.1021/acsami.6b15892
– ident: ref51/cit51
  doi: 10.1016/j.ceramint.2019.07.119
– ident: ref29/cit29
  doi: 10.1016/j.biotechadv.2010.01.004
– ident: ref25/cit25
  doi: 10.1039/C8NR04058C
– ident: ref60/cit60
  doi: 10.1002/bbpc.19890930709
– ident: ref1/cit1
  doi: 10.1002/lpor.202300751
– ident: ref17/cit17
  doi: 10.1088/0034-4885/71/7/076401
– ident: ref31/cit31
  doi: 10.1088/2043-6262/1/4/043002
– ident: ref6/cit6
  doi: 10.1021/acsami.2c12387
– ident: ref40/cit40
  doi: 10.1098/rsif.2008.0354.focus
– ident: ref52/cit52
  doi: 10.1007/s10462-011-9225-y
– ident: ref54/cit54
  doi: 10.1021/acsami.2c02995
– ident: ref35/cit35
  doi: 10.1016/0925-3467(95)00028-3
– ident: ref5/cit5
  doi: 10.1039/C6NR09083D
– ident: ref56/cit56
  doi: 10.1149/1.2115559
– ident: ref24/cit24
  doi: 10.1364/AOP.10.000757
– ident: ref18/cit18
  doi: 10.1002/ange.200900210
– ident: ref7/cit7
  doi: 10.1109/JPROC.2014.2320516
– volume: 6
  start-page: 2224
  issue: 4
  year: 2014
  ident: ref45/cit45
  publication-title: Chem. Mater. Res.
– ident: ref59/cit59
  doi: 10.1016/j.mtcomm.2020.101706
SSID ssj0063205
Score 2.458423
Snippet Current anticounterfeiting technologies rely on deterministic processes that are easily replicable, require specialized devices for authentication, and involve...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 20361
SubjectTerms algorithms
cameras
color
exhibitions
image analysis
learning
manufacturing
materials
neural networks
sampling
solutions
Surfaces, Interfaces, and Applications
Title Advanced Anticounterfeiting: Angle-Dependent Structural Color-Based CuO/ZnO Nanopatterns with Deep Neural Network Supervised Learning
URI http://dx.doi.org/10.1021/acsami.4c17414
https://www.ncbi.nlm.nih.gov/pubmed/40072024
https://www.proquest.com/docview/3176347820
https://www.proquest.com/docview/3200272344
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QXODA-zFeCgKJU4CmadNwGxvThAQ7DCTEpUrSdEKgblq3C3f-N3bb8dSAa5W0kZ3Yn2P3MyFHXKfat1KxxPcSJqQxTKf2jJkI-ZwcBxSNGd3rm7B9J67ug_uP-47vGXzunWqbYyscYQE7Y8fqOR5KicV79UZ3YnNDnxfFihCRCxaBx5rQM_6Yj07I5l-d0BRkWXiY1lJJd5QXxIRYWPJ0Mh6ZE_vyk7bxz8Uvk8UKZtJ6uS9WyIzLVsnCJ_LBNfJar9L_tJ7BKOwZ4Yape8Q66HN41nt2rFm1yB3RbsEzixwdtAH2csguwP0ltDHunD5kHQpGGqJv_DMoyyne7dKmcwOK1B8w46asNafd8QBNE06seF176-SudXnbaLOqKQPTIOQRAwdv00AKDXGOsspJ5TmbRMJGIvCMFzjAX4E5U-AdRZqoxKbGVyFXQWIAiyaBv0Fms37mtgj1tLSSR6kXKS1SG0Dk6CBKNr6UAJQiVyOHIL-4OlR5XOTLuReXQo0rodbI8USX8aBk6Jg68mCi6hgOEWZGdOb64zwGEBX6AqkDfxmD5SyS-wLes1nuk_fvYXN5Dmhn-18r3iHzHLsIY_0P3yWzoEC3B9BmZPaLXf0G_x3zxA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZWcCgcoC1vSnEFEiez2LHjmNuyFG1bWJAWJMQlih0HIVBYbXYv3PnfzORBHwhUrpHtOGN75pvM-BtCtkWSJYHThqUBT5nU1rIkc3vMRsjn5AWgaIzonvTD3oX8eakuW6Td3IWBSRQwUlEG8X-zC_A2PMOKONIBhMbC1dMqlBy9rU530KjeMBBlziI45pJFYLgalsYX_dEWueJvW_QKwCwNzdE8OXueYplfcrs7Gdtd9_APe-M7vuEjmatBJ-1Uu-QTafn8M5n9g4pwgTx26mQA2smhFVaQ8KPM32BW9D48u77z7LAumDumg5J1Fhk7aBe054gdgDFMaXdy2r7KTymobPDF8Z5QXlD800sPvR9SJAKBHv0q85wOJkNUVNixZnm9XiQXR9_Puz1Wl2hgCch6zMDcu0xpmYDXY5zx2nDv0ki6SCpuufKAxpTdM2ArZZaa1GU2MKEwKrWATFMVLJGp_D73K4TyRDstooxHJpGZU-BHevCZbaA1wKbIr5ItkF9cH7EiLqPngseVUONaqKtkp1nSeFjxdbza8luz4jEcKYyTJLm_nxQxQKowkEgk-EYbTG7RIpAwznK1XZ7fh6XmBWCftf-a8Sb50Ds_OY6Pf_R_rZMZgfWFMTNIfCFTsJh-A0DP2H4tN_oTpNL8Jg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqkKpyKC3l2VJctVJPZoljxzG3ZbcroHSptCAhLlH8QhUorMjuhXv_NzOJF9FWIHqNbMcZezzfZMbfEPKFl6FMrdLMpYljQhnDymB3mMmRz8lzQNEY0f0xzPZPxeGZPIv3uPEuDEyihpHqJoiPWj12ITIMJB14jlVxhAUYjcWr52UGeo54qDeaHb9Zypu8RXDOBcvBeM2YGv_pj_bI1n_ao0dAZmNsBovk5H6aTY7J5fZ0Yrbt7V8Mjv_5HW_I6wg-abfdLW_JC18tkYUHlITvyO9uTAqg3QpaYSUJfxP8L8yO3oVnF1ee9WPh3AkdNeyzyNxBe3CK3rA9MIqO9qbHnfPqmMLRDT453heqaop_fGnf-zFFQhDoMWwz0OloOsYDCztGtteLZXI6-HbS22exVAMrQd4TBmbfBqlECd6PttornXjrcmFzIROTSA-oTJodDTZTBKedDSbVGdfSGUCoTqYrZK66rvwaoUmprOJ5SHJdimAl-JMefGeTKgXwKffr5DPIr4iqVhdNFJ0nRSvUIgp1nXydLWsxbnk7Hm35abbqBagWxkvKyl9P6wKgVZYKJBR8og0muSieChhntd0y9-_DkvMcMNDGs2a8RV7-7A-Ko4Ph9_fkFccyw5ggxD-QOVhLvwnYZ2I-Nnv9DtX1_qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Anticounterfeiting%3A+Angle-Dependent+Structural+Color-Based+CuO%2FZnO+Nanopatterns+with+Deep+Neural+Network+Supervised+Learning&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Choi%2C+Mun+Jeong&rft.au=Kim%2C+SeongYeon&rft.au=Shin%2C+Jongho&rft.au=Kim%2C+Geon+Hwee&rft.date=2025-04-02&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=13&rft.spage=20361&rft.epage=20373&rft_id=info:doi/10.1021%2Facsami.4c17414&rft.externalDocID=d068668008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon