Identification, Tissue Distribution, and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-Epimerase/ManNAc Kinase

UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1–hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4–hGNE8). hGNE1...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 50; no. 41; pp. 8914 - 8925
Main Authors Yardeni, Tal, Choekyi, Tsering, Jacobs, Katherine, Ciccone, Carla, Patzel, Katherine, Anikster, Yair, Gahl, William A, Kurochkina, Natalya, Huizing, Marjan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.10.2011
Subjects
Online AccessGet full text
ISSN0006-2960
1520-4995
1520-4995
DOI10.1021/bi201050u

Cover

Abstract UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1–hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4–hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2–hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5–hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.
AbstractList UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the previously described 3 human GNE isoforms (hGNE1- hGNE3), our database and PCR analysis yielded an additional 5 human isoforms (hGNE4- hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. Based on similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55 residue N-terminal deletion, and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to hGNE1. However, epimerase enzymatic activity of GNE3 and GNE8 is likely absent, since the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to increase cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE, and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.
Author Patzel, Katherine
Yardeni, Tal
Jacobs, Katherine
Choekyi, Tsering
Gahl, William A
Ciccone, Carla
Huizing, Marjan
Anikster, Yair
Kurochkina, Natalya
AuthorAffiliation Tel Aviv University
The School of Theoretical Modeling
National Institutes of Health
AuthorAffiliation_xml – name: The School of Theoretical Modeling
– name: National Institutes of Health
– name: Tel Aviv University
– name: Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
– name: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
– name: The School of Theoretical Modeling, Chevy Chase, MD 20825, United States
Author_xml – sequence: 1
  givenname: Tal
  surname: Yardeni
  fullname: Yardeni, Tal
– sequence: 2
  givenname: Tsering
  surname: Choekyi
  fullname: Choekyi, Tsering
– sequence: 3
  givenname: Katherine
  surname: Jacobs
  fullname: Jacobs, Katherine
– sequence: 4
  givenname: Carla
  surname: Ciccone
  fullname: Ciccone, Carla
– sequence: 5
  givenname: Katherine
  surname: Patzel
  fullname: Patzel, Katherine
– sequence: 6
  givenname: Yair
  surname: Anikster
  fullname: Anikster, Yair
– sequence: 7
  givenname: William A
  surname: Gahl
  fullname: Gahl, William A
– sequence: 8
  givenname: Natalya
  surname: Kurochkina
  fullname: Kurochkina, Natalya
– sequence: 9
  givenname: Marjan
  surname: Huizing
  fullname: Huizing, Marjan
  email: mhuizing@mail.nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21910480$$D View this record in MEDLINE/PubMed
BookMark eNptkd1uEzEQhS1URNPCBS-AfIMQUpfY3r_sTaWoDW3UH5DaXltee7adymsHe7dSeB4eFIe0FaBe2TP-5hx5zh7Zcd4BIe85-8KZ4NMWBeOsZOMrMuGlYFnRNOUOmTDGqkw0FdslezHep7JgdfGG7ArecFbM2IT8WhpwA3ao1YDeHdBrjHEEeoxxCNiO26Zyhl54C3q0KqSbAYvulvqOXvoHsPR07JWjy-g7H_q46Q93QM9gTRfu57oHio5eobKo6VyjoVdrl4CI8YDeHH_PTqy-nGsqssUKewgqwvRCuU3rDF2q3pLXnbIR3j2e--Tm6-L66DQ7_3ayPJqfZyrnzZgJ1pqGd9yYqlSmzpmoFBgoStNBbWbp8y3kinFdCqjrMm-KylRG8FaxqoLK5PvkcKu7GtsejE6bCcrKVcBehbX0CuW_Lw7v5K1_kMlelLlIAp8eBYL_MUIcZI9Rg7XKgR-jnDX1jBeFKBL54W-rZ4-nZBIw3QI6-BgDdFLj8Cej5IxWciY32cvn7NPE5_8mnkRfYj9uWaWjvPdjcGmvL3C_AWpIvEg
CitedBy_id crossref_primary_10_1007_s10545_013_9655_6
crossref_primary_10_1002_humu_22583
crossref_primary_10_1002_mus_28092
crossref_primary_10_3233_JND_200575
crossref_primary_10_3390_biom13030422
crossref_primary_10_1007_s00253_012_4040_1
crossref_primary_10_1038_jhg_2016_134
crossref_primary_10_1016_j_nmd_2014_03_004
crossref_primary_10_1007_s13311_018_0671_y
crossref_primary_10_1002_mgg3_300
crossref_primary_10_1007_s12038_023_00414_7
crossref_primary_10_1016_j_biochi_2022_03_014
crossref_primary_10_1111_febs_12001
crossref_primary_10_1136_jnnp_2013_307051
crossref_primary_10_3389_fonc_2024_1487306
crossref_primary_10_1016_j_isci_2019_01_006
crossref_primary_10_1016_j_bbagen_2015_12_017
crossref_primary_10_1097_MD_0000000000022663
crossref_primary_10_1007_s10719_012_9459_1
crossref_primary_10_1007_s10048_024_00761_z
crossref_primary_10_1007_s10974_022_09618_0
crossref_primary_10_1051_medsci_201531s306
crossref_primary_10_1039_D1SD00023C
crossref_primary_10_1002_bmc_4735
Cites_doi 10.1021/cb900266r
10.1007/s10719-008-9189-6
10.1038/nprot.2008.73
10.1074/jbc.274.40.28771
10.1016/j.polymer.2005.02.040
10.1074/jbc.M401642200
10.1016/j.yexcr.2004.11.010
10.1016/j.bbamem.2010.07.004
10.1038/sj.embor.7401154
10.1016/0022-2836(73)90388-4
10.1021/bi060345f
10.1371/journal.pone.0007165
10.1016/j.febslet.2007.06.026
10.1110/ps.062125306
10.1016/S0022-2836(77)80200-3
10.1016/S0014-5793(99)00837-6
10.1016/j.jmb.2007.03.037
10.1038/labinvest.3700656
10.1086/302411
10.1086/320598
10.1016/j.bbadis.2009.07.001
10.1074/jbc.M313171200
10.1016/0022-2836(78)90297-8
10.1002/prot.10181
10.1038/ng718
10.1042/BJ20040917
10.1110/ps.073161707
10.1073/pnas.52.2.371
10.1074/jbc.M610678200
10.1074/jbc.M604903200
10.1016/S0960-8966(03)00070-1
10.1021/bi001627x
10.1093/nar/gki410
10.1074/jbc.272.39.24313
10.1093/glycob/cwp176
10.1073/pnas.89.16.7290
10.1073/pnas.0400493101
10.1074/jbc.M408126200
10.1016/0022-2836(87)90293-2
10.1002/humu.9100
10.1110/ps.9.6.1045
10.1016/S0014-5793(00)01331-4
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2011 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/bi201050u
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 8925
ExternalDocumentID PMC3192532
21910480
10_1021_bi201050u
a551793602
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Intramural
GrantInformation This study was supported by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health (T.Y., K.J., C.C., K.P., W.A.G., and M.H.) and Research Funds of The School of Theoretical Modeling (T.C. and N.K.).
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA HG200322
– fundername: Intramural NIH HHS
  grantid: ZIA HG000215
GroupedDBID -
.K2
02
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a319u-20bd91f1dd65ad73026aede45dfe7d8040be3a01c52e7753946d6d21ba066e6d3
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:11:32 EDT 2025
Fri Jul 11 04:05:17 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Tue Jul 01 02:05:58 EDT 2025
Thu Aug 27 13:42:07 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License 2011 American Chemical Society
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a319u-20bd91f1dd65ad73026aede45dfe7d8040be3a01c52e7753946d6d21ba066e6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3192532
PMID 21910480
PQID 897814424
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192532
proquest_miscellaneous_897814424
pubmed_primary_21910480
crossref_citationtrail_10_1021_bi201050u
crossref_primary_10_1021_bi201050u
acs_journals_10_1021_bi201050u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-18
PublicationDateYYYYMMDD 2011-10-18
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Reinke S. O. (ref21/cit21) 2007; 581
Noguchi S. (ref9/cit9) 2004; 279
Cheng H. (ref27/cit27) 2005; 46
Ha S. (ref14/cit14) 2000; 9
Zhao B. (ref35/cit35) 2007; 16
Chen X. (ref3/cit3) 2010; 5
Bernstein F. C. (ref23/cit23) 1977; 112
Horstkorte R. (ref41/cit41) 2000; 470
Campbell R. E. (ref15/cit15) 2000; 39
Huizing M. (ref8/cit8) 2009; 1792
Xie K. (ref36/cit36) 2004; 101
Bryson K. (ref29/cit29) 2005; 33
Nishimasu H. (ref17/cit17) 2007; 282
Lucka L. (ref31/cit31) 1999; 454
Wang Z. (ref39/cit39) 2006; 281
Sen T. Z. (ref28/cit28) 2006; 15
Mukai T. (ref19/cit19) 2004; 279
Hinderlich S. (ref1/cit1) 1997; 272
Ishiyama N. (ref34/cit34) 2004; 279
Bork P. (ref18/cit18) 1992; 89
Effertz K. (ref10/cit10) 1999; 274
Watts G. D. (ref20/cit20) 2003; 13
Seppala R. (ref6/cit6) 1999; 64
Kornfeld S. (ref5/cit5) 1964; 52
Kurochkina N. (ref11/cit11) 2010; 20
Krause S. (ref40/cit40) 2005; 304
Tong Y. (ref16/cit16) 2009; 4
Abad-Zapatero C. (ref33/cit33) 1987; 198
Yogev O. (ref38/cit38) 2011; 1808
Reinke S. O. (ref22/cit22) 2009; 26
Kloczkowski A. (ref26/cit26) 2002; 49
Teh A. H. (ref37/cit37) 2006; 45
Schmittgen T. D. (ref24/cit24) 2008; 3
Ghaderi D. (ref42/cit42) 2007; 369
Leroy J. G. (ref7/cit7) 2001; 68
Eisenberg I. (ref30/cit30) 2003; 21
Velloso L. M. (ref12/cit12) 2008; 9
Eisenberg I. (ref2/cit2) 2001; 29
Varki N. M. (ref4/cit4) 2007; 87
Blume A. (ref32/cit32) 2004; 384
Rao S. T. (ref13/cit13) 1973; 76
Garnier J. (ref25/cit25) 1978; 120
References_xml – volume: 5
  start-page: 163
  year: 2010
  ident: ref3/cit3
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb900266r
– volume: 26
  start-page: 415
  year: 2009
  ident: ref22/cit22
  publication-title: Glycoconjugate J.
  doi: 10.1007/s10719-008-9189-6
– volume: 3
  start-page: 1101
  year: 2008
  ident: ref24/cit24
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 274
  start-page: 28771
  year: 1999
  ident: ref10/cit10
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.40.28771
– volume: 46
  start-page: 4314
  year: 2005
  ident: ref27/cit27
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.02.040
– volume: 279
  start-page: 22635
  year: 2004
  ident: ref34/cit34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401642200
– volume: 304
  start-page: 365
  year: 2005
  ident: ref40/cit40
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.11.010
– volume: 1808
  start-page: 1012
  year: 2011
  ident: ref38/cit38
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.07.004
– volume: 9
  start-page: 199
  year: 2008
  ident: ref12/cit12
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401154
– volume: 76
  start-page: 241
  year: 1973
  ident: ref13/cit13
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(73)90388-4
– volume: 45
  start-page: 7825
  year: 2006
  ident: ref37/cit37
  publication-title: Biochemistry
  doi: 10.1021/bi060345f
– volume: 4
  start-page: e7165
  year: 2009
  ident: ref16/cit16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007165
– volume: 581
  start-page: 3327
  year: 2007
  ident: ref21/cit21
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.06.026
– volume: 15
  start-page: 2499
  year: 2006
  ident: ref28/cit28
  publication-title: Protein Sci.
  doi: 10.1110/ps.062125306
– volume: 112
  start-page: 535
  year: 1977
  ident: ref23/cit23
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(77)80200-3
– volume: 454
  start-page: 341
  year: 1999
  ident: ref31/cit31
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00837-6
– volume: 369
  start-page: 746
  year: 2007
  ident: ref42/cit42
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.03.037
– volume: 87
  start-page: 851
  year: 2007
  ident: ref4/cit4
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700656
– volume: 64
  start-page: 1563
  year: 1999
  ident: ref6/cit6
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302411
– volume: 68
  start-page: 1419
  year: 2001
  ident: ref7/cit7
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/320598
– volume: 1792
  start-page: 881
  year: 2009
  ident: ref8/cit8
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2009.07.001
– volume: 279
  start-page: 11402
  year: 2004
  ident: ref9/cit9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313171200
– volume: 120
  start-page: 97
  year: 1978
  ident: ref25/cit25
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(78)90297-8
– volume: 49
  start-page: 154
  year: 2002
  ident: ref26/cit26
  publication-title: Proteins
  doi: 10.1002/prot.10181
– volume: 29
  start-page: 83
  year: 2001
  ident: ref2/cit2
  publication-title: Nat. Genet.
  doi: 10.1038/ng718
– volume: 384
  start-page: 599
  year: 2004
  ident: ref32/cit32
  publication-title: Biochem. J.
  doi: 10.1042/BJ20040917
– volume: 16
  start-page: 2761
  year: 2007
  ident: ref35/cit35
  publication-title: Protein Sci.
  doi: 10.1110/ps.073161707
– volume: 52
  start-page: 371
  year: 1964
  ident: ref5/cit5
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.52.2.371
– volume: 282
  start-page: 9923
  year: 2007
  ident: ref17/cit17
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610678200
– volume: 281
  start-page: 27016
  year: 2006
  ident: ref39/cit39
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604903200
– volume: 13
  start-page: 559
  year: 2003
  ident: ref20/cit20
  publication-title: Neuromuscular Disord.
  doi: 10.1016/S0960-8966(03)00070-1
– volume: 39
  start-page: 14993
  year: 2000
  ident: ref15/cit15
  publication-title: Biochemistry
  doi: 10.1021/bi001627x
– volume: 33
  start-page: W36
  year: 2005
  ident: ref29/cit29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki410
– volume: 272
  start-page: 24313
  year: 1997
  ident: ref1/cit1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.39.24313
– volume: 20
  start-page: 322
  year: 2010
  ident: ref11/cit11
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp176
– volume: 89
  start-page: 7290
  year: 1992
  ident: ref18/cit18
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.16.7290
– volume: 101
  start-page: 8114
  year: 2004
  ident: ref36/cit36
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0400493101
– volume: 279
  start-page: 50591
  year: 2004
  ident: ref19/cit19
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408126200
– volume: 198
  start-page: 445
  year: 1987
  ident: ref33/cit33
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90293-2
– volume: 21
  start-page: 99
  year: 2003
  ident: ref30/cit30
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.9100
– volume: 9
  start-page: 1045
  year: 2000
  ident: ref14/cit14
  publication-title: Protein Sci.
  doi: 10.1110/ps.9.6.1045
– volume: 470
  start-page: 315
  year: 2000
  ident: ref41/cit41
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01331-4
SSID ssj0004074
Score 2.1637182
Snippet UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described...
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the previously described 3 human...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8914
SubjectTerms Amino Acid Sequence
Carbohydrate Epimerases - chemistry
Catalysis
Catalytic Domain
DNA, Complementary - metabolism
Gene Deletion
Humans
Models, Molecular
Molecular Sequence Data
N-Acetylneuraminic Acid - chemistry
Polymerase Chain Reaction
Protein Isoforms
Sequence Homology, Amino Acid
Tissue Distribution
Title Identification, Tissue Distribution, and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-Epimerase/ManNAc Kinase
URI http://dx.doi.org/10.1021/bi201050u
https://www.ncbi.nlm.nih.gov/pubmed/21910480
https://www.proquest.com/docview/897814424
https://pubmed.ncbi.nlm.nih.gov/PMC3192532
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004074
  issn: 0006-2960
  databaseCode: ACS
  dateStart: 19620101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6VcoALlJZHoK1GgBCHuPVu1q-jlaQUqkRIaaTerPXuWlik6wrHSOnv4Ycy60fa0AJH744t2TPj-WbnRcj7UAx0mEWRE2iFDgpNXUcoN3PSVIWcBmhRMlsoPJn6p3P-5cK72CLv_hLBZ_Q4zW3A1nOrB-Qh80NqPax4OLspfnTbVsvoGjPE4137oNu3WtMjy03TcwdP_pkWecvOnDwlo65ap0kv-X5ULdMjeX23eeO_XmGHPGlxJsSNYDwjW9rskr3YoI99uYIPUGd-1kfqu-TRsJv6tkd-NZW7WXuU14fzmjMwsvvtbKw-CKNg0g3WBTtPzVa1Q5HBtPipF1CHBuBzWVhIXNp1xJlwplcwNterSw25gRlKfi4hlrmC2cogQZmXfZiPvjqfFnIaS2DO-Cq3h2alPp4IY5fOcoNXz8n8ZHw-PHXaSQ6OQBWvUBVTFdGMKuV7QuFPhflCK809lelAhcjDVA-ES6XHdIAOVMR95StGU4GISPtq8IJsm8LoVwSEcF2pOAI3yXnm-ZHPNII-rjR6epKrHjlEVietJpZJHWRnNFnzoEc-dlKQyLYPuh3HsbiP9O2a9Kpp_nEfEXSilCCvbLxFGF1UZRLW_cQ44z3yspGs9VPQTlBbzd8jwYbMrQls1-_NHZN_q7t_4wdl3oC9_t97viGPWZuvSMN9sr38UekDBFDL9LBWoN84ZBZx
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQLjxZKeJQRQohD3Nqb9esYpSkpaSKkJFJv1np3LSzSdYVjpPT38EOZXdtpUyrB0fbEsjMznm92dr4h5GPEeyrK4tgJlcQExUtdh0s3c9JURswLMaJkplF4Mg1GC_b1wr9oaHJMLww-RIl3Km0R_4ZdwDtOc1O39d3qIXlkGVAMDBrMbnog3YZxGTNkirC8ZRG6_VMTgUS5HYH-gpV3d0feCjenT-u5RfZB7S6TH0fVKj0S13c4HP_vTZ6RJw3qhH5tJs_JA6X3yH5fY8Z9uYZPYPeB2gX2PbI7aGfA7ZPfdR9v1izsdWFu9QQn5nozKasLXEuYtGN2wUxXMz3uUGQwLX6pJdhCAZyVhQHIpTmPqBPGag1Dfb2-VJBrmKEf5AL6IpcwW2sUKPOyC4uTb86XpZj2BVBneJWbJbRSHU-4NqfGucajF2RxOpwPRk4z18Hh6PAVOmYqYy_zpAx8LvETQwOupGK-zFQoI1Rlqnrc9YRPVYjpVMwCGUjqpRzxkQpk7yXZ0YVWrwhw7rpCMoRxgrHMD-KAKoSATCrM-wSTHXKIKkgavywTW3KnXrLRQYd8bo0hEQ0ruhnOsbxP9MNG9KqmArlPCFqLSlBXpvrCtSqqMoksuxijrEMOagPb3AWjhmd6-zsk3DK9jYDhAN--ovPvlgsc_1Dq9-jrf73ne7I7mk_Ok_Oz6fgNeUybnYxe9JbsrH5W6h1Cq1V6aH3qD8i-Htw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BkYALj5bS8CgjhBCHuPVu1q9jlActIaFSGqk3a727FhbpOqpjpPT38EOZdRzTlEpwtD2x7MyM55udnW8I-RCKjg7TKHICrTBBoYnrCOWmTpKokNMAI0pqG4XHE_9kxr9ceBd1omh7YfAhCrxTURXxrVcvVFozDNDjJLO1W88t75MHnqV-s1CoN_3TB-nWrMuYJTOE5hsmoZs_tVFIFttR6C9oeXuH5I2QM3xKvjUPW-00-XFULpMjeX2Lx_H_3-YZeVKjT-iuzeU5uafNLtnrGsy8L1fwEar9oNVC-y551NvMgtsjv9b9vGm9wNeG80pf0LfX64lZbRBGwXgzbhfslDXb6w55CpP8p55DVTCA0yK3QLmw5xF9wkivYGCuV5caMgNT9IdMQldmCqYrgwJFVrRh1j9zPs_lpCuBOYNFZpfSCn08FsaeGmUGj16Q2XBw3jtx6vkOjkDHL9FBExXRlCrle0Lhp4b5QivNPZXqQIWozkR3hEulx3SAaVXEfeUrRhOBOEn7qrNPdkxu9AEBIVxXKo5wTnKeen7kM41QkCuN-Z_kqkUOUQ1x7Z9FXJXeGY0bHbTIp41BxLJmR7dDOuZ3ib5vRBdrSpC7hGBjVTHqylZhhNF5WcRhxTLGGW-Rl2sja-6C0YPaHv8WCbbMrxGwXODbV0z2veIExz-UeR326l_v-Y48POsP46-nk9Fr8pjVGxpp-IbsLK9K_RYR1jI5rNzqN95XIVY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification%2C+tissue+distribution%2C+and+molecular+modeling+of+novel+human+isoforms+of+the+key+enzyme+in+sialic+acid+synthesis%2C+UDP-GlcNAc+2-epimerase%2FManNAc+kinase&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Yardeni%2C+Tal&rft.au=Choekyi%2C+Tsering&rft.au=Jacobs%2C+Katherine&rft.au=Ciccone%2C+Carla&rft.date=2011-10-18&rft.eissn=1520-4995&rft.volume=50&rft.issue=41&rft.spage=8914&rft_id=info:doi/10.1021%2Fbi201050u&rft_id=info%3Apmid%2F21910480&rft.externalDocID=21910480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon