Identification, Tissue Distribution, and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-Epimerase/ManNAc Kinase
UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1–hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4–hGNE8). hGNE1...
Saved in:
Published in | Biochemistry (Easton) Vol. 50; no. 41; pp. 8914 - 8925 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-2960 1520-4995 1520-4995 |
DOI | 10.1021/bi201050u |
Cover
Abstract | UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1–hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4–hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2–hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5–hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy. |
---|---|
AbstractList | UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy. UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy. UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the previously described 3 human GNE isoforms (hGNE1- hGNE3), our database and PCR analysis yielded an additional 5 human isoforms (hGNE4- hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. Based on similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55 residue N-terminal deletion, and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to hGNE1. However, epimerase enzymatic activity of GNE3 and GNE8 is likely absent, since the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to increase cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE, and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy. |
Author | Patzel, Katherine Yardeni, Tal Jacobs, Katherine Choekyi, Tsering Gahl, William A Ciccone, Carla Huizing, Marjan Anikster, Yair Kurochkina, Natalya |
AuthorAffiliation | Tel Aviv University The School of Theoretical Modeling National Institutes of Health |
AuthorAffiliation_xml | – name: The School of Theoretical Modeling – name: National Institutes of Health – name: Tel Aviv University – name: Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States – name: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel – name: The School of Theoretical Modeling, Chevy Chase, MD 20825, United States |
Author_xml | – sequence: 1 givenname: Tal surname: Yardeni fullname: Yardeni, Tal – sequence: 2 givenname: Tsering surname: Choekyi fullname: Choekyi, Tsering – sequence: 3 givenname: Katherine surname: Jacobs fullname: Jacobs, Katherine – sequence: 4 givenname: Carla surname: Ciccone fullname: Ciccone, Carla – sequence: 5 givenname: Katherine surname: Patzel fullname: Patzel, Katherine – sequence: 6 givenname: Yair surname: Anikster fullname: Anikster, Yair – sequence: 7 givenname: William A surname: Gahl fullname: Gahl, William A – sequence: 8 givenname: Natalya surname: Kurochkina fullname: Kurochkina, Natalya – sequence: 9 givenname: Marjan surname: Huizing fullname: Huizing, Marjan email: mhuizing@mail.nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21910480$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd1uEzEQhS1URNPCBS-AfIMQUpfY3r_sTaWoDW3UH5DaXltee7adymsHe7dSeB4eFIe0FaBe2TP-5hx5zh7Zcd4BIe85-8KZ4NMWBeOsZOMrMuGlYFnRNOUOmTDGqkw0FdslezHep7JgdfGG7ArecFbM2IT8WhpwA3ao1YDeHdBrjHEEeoxxCNiO26Zyhl54C3q0KqSbAYvulvqOXvoHsPR07JWjy-g7H_q46Q93QM9gTRfu57oHio5eobKo6VyjoVdrl4CI8YDeHH_PTqy-nGsqssUKewgqwvRCuU3rDF2q3pLXnbIR3j2e--Tm6-L66DQ7_3ayPJqfZyrnzZgJ1pqGd9yYqlSmzpmoFBgoStNBbWbp8y3kinFdCqjrMm-KylRG8FaxqoLK5PvkcKu7GtsejE6bCcrKVcBehbX0CuW_Lw7v5K1_kMlelLlIAp8eBYL_MUIcZI9Rg7XKgR-jnDX1jBeFKBL54W-rZ4-nZBIw3QI6-BgDdFLj8Cej5IxWciY32cvn7NPE5_8mnkRfYj9uWaWjvPdjcGmvL3C_AWpIvEg |
CitedBy_id | crossref_primary_10_1007_s10545_013_9655_6 crossref_primary_10_1002_humu_22583 crossref_primary_10_1002_mus_28092 crossref_primary_10_3233_JND_200575 crossref_primary_10_3390_biom13030422 crossref_primary_10_1007_s00253_012_4040_1 crossref_primary_10_1038_jhg_2016_134 crossref_primary_10_1016_j_nmd_2014_03_004 crossref_primary_10_1007_s13311_018_0671_y crossref_primary_10_1002_mgg3_300 crossref_primary_10_1007_s12038_023_00414_7 crossref_primary_10_1016_j_biochi_2022_03_014 crossref_primary_10_1111_febs_12001 crossref_primary_10_1136_jnnp_2013_307051 crossref_primary_10_3389_fonc_2024_1487306 crossref_primary_10_1016_j_isci_2019_01_006 crossref_primary_10_1016_j_bbagen_2015_12_017 crossref_primary_10_1097_MD_0000000000022663 crossref_primary_10_1007_s10719_012_9459_1 crossref_primary_10_1007_s10048_024_00761_z crossref_primary_10_1007_s10974_022_09618_0 crossref_primary_10_1051_medsci_201531s306 crossref_primary_10_1039_D1SD00023C crossref_primary_10_1002_bmc_4735 |
Cites_doi | 10.1021/cb900266r 10.1007/s10719-008-9189-6 10.1038/nprot.2008.73 10.1074/jbc.274.40.28771 10.1016/j.polymer.2005.02.040 10.1074/jbc.M401642200 10.1016/j.yexcr.2004.11.010 10.1016/j.bbamem.2010.07.004 10.1038/sj.embor.7401154 10.1016/0022-2836(73)90388-4 10.1021/bi060345f 10.1371/journal.pone.0007165 10.1016/j.febslet.2007.06.026 10.1110/ps.062125306 10.1016/S0022-2836(77)80200-3 10.1016/S0014-5793(99)00837-6 10.1016/j.jmb.2007.03.037 10.1038/labinvest.3700656 10.1086/302411 10.1086/320598 10.1016/j.bbadis.2009.07.001 10.1074/jbc.M313171200 10.1016/0022-2836(78)90297-8 10.1002/prot.10181 10.1038/ng718 10.1042/BJ20040917 10.1110/ps.073161707 10.1073/pnas.52.2.371 10.1074/jbc.M610678200 10.1074/jbc.M604903200 10.1016/S0960-8966(03)00070-1 10.1021/bi001627x 10.1093/nar/gki410 10.1074/jbc.272.39.24313 10.1093/glycob/cwp176 10.1073/pnas.89.16.7290 10.1073/pnas.0400493101 10.1074/jbc.M408126200 10.1016/0022-2836(87)90293-2 10.1002/humu.9100 10.1110/ps.9.6.1045 10.1016/S0014-5793(00)01331-4 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American
Chemical Society 2011 American Chemical Society |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2011 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/bi201050u |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1520-4995 |
EndPage | 8925 |
ExternalDocumentID | PMC3192532 21910480 10_1021_bi201050u a551793602 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation | This study was supported by the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health (T.Y., K.J., C.C., K.P., W.A.G., and M.H.) and Research Funds of The School of Theoretical Modeling (T.C. and N.K.). |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA HG200322 – fundername: Intramural NIH HHS grantid: ZIA HG000215 |
GroupedDBID | - .K2 02 23N 3O- 4.4 53G 55 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AJYGW ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 DZ EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 KM L7B LG6 P2P ROL TN5 UI2 VF5 VG9 VQA W1F WH7 X X7M YZZ ZA5 --- -DZ -~X .55 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK XSW ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a319u-20bd91f1dd65ad73026aede45dfe7d8040be3a01c52e7753946d6d21ba066e6d3 |
IEDL.DBID | ACS |
ISSN | 0006-2960 1520-4995 |
IngestDate | Thu Aug 21 18:11:32 EDT 2025 Fri Jul 11 04:05:17 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 Thu Apr 24 22:56:12 EDT 2025 Tue Jul 01 02:05:58 EDT 2025 Thu Aug 27 13:42:07 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | 2011 American Chemical Society |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a319u-20bd91f1dd65ad73026aede45dfe7d8040be3a01c52e7753946d6d21ba066e6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3192532 |
PMID | 21910480 |
PQID | 897814424 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3192532 proquest_miscellaneous_897814424 pubmed_primary_21910480 crossref_citationtrail_10_1021_bi201050u crossref_primary_10_1021_bi201050u acs_journals_10_1021_bi201050u |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-18 |
PublicationDateYYYYMMDD | 2011-10-18 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biochemistry (Easton) |
PublicationTitleAlternate | Biochemistry |
PublicationYear | 2011 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Reinke S. O. (ref21/cit21) 2007; 581 Noguchi S. (ref9/cit9) 2004; 279 Cheng H. (ref27/cit27) 2005; 46 Ha S. (ref14/cit14) 2000; 9 Zhao B. (ref35/cit35) 2007; 16 Chen X. (ref3/cit3) 2010; 5 Bernstein F. C. (ref23/cit23) 1977; 112 Horstkorte R. (ref41/cit41) 2000; 470 Campbell R. E. (ref15/cit15) 2000; 39 Huizing M. (ref8/cit8) 2009; 1792 Xie K. (ref36/cit36) 2004; 101 Bryson K. (ref29/cit29) 2005; 33 Nishimasu H. (ref17/cit17) 2007; 282 Lucka L. (ref31/cit31) 1999; 454 Wang Z. (ref39/cit39) 2006; 281 Sen T. Z. (ref28/cit28) 2006; 15 Mukai T. (ref19/cit19) 2004; 279 Hinderlich S. (ref1/cit1) 1997; 272 Ishiyama N. (ref34/cit34) 2004; 279 Bork P. (ref18/cit18) 1992; 89 Effertz K. (ref10/cit10) 1999; 274 Watts G. D. (ref20/cit20) 2003; 13 Seppala R. (ref6/cit6) 1999; 64 Kornfeld S. (ref5/cit5) 1964; 52 Kurochkina N. (ref11/cit11) 2010; 20 Krause S. (ref40/cit40) 2005; 304 Tong Y. (ref16/cit16) 2009; 4 Abad-Zapatero C. (ref33/cit33) 1987; 198 Yogev O. (ref38/cit38) 2011; 1808 Reinke S. O. (ref22/cit22) 2009; 26 Kloczkowski A. (ref26/cit26) 2002; 49 Teh A. H. (ref37/cit37) 2006; 45 Schmittgen T. D. (ref24/cit24) 2008; 3 Ghaderi D. (ref42/cit42) 2007; 369 Leroy J. G. (ref7/cit7) 2001; 68 Eisenberg I. (ref30/cit30) 2003; 21 Velloso L. M. (ref12/cit12) 2008; 9 Eisenberg I. (ref2/cit2) 2001; 29 Varki N. M. (ref4/cit4) 2007; 87 Blume A. (ref32/cit32) 2004; 384 Rao S. T. (ref13/cit13) 1973; 76 Garnier J. (ref25/cit25) 1978; 120 |
References_xml | – volume: 5 start-page: 163 year: 2010 ident: ref3/cit3 publication-title: ACS Chem. Biol. doi: 10.1021/cb900266r – volume: 26 start-page: 415 year: 2009 ident: ref22/cit22 publication-title: Glycoconjugate J. doi: 10.1007/s10719-008-9189-6 – volume: 3 start-page: 1101 year: 2008 ident: ref24/cit24 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 274 start-page: 28771 year: 1999 ident: ref10/cit10 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.40.28771 – volume: 46 start-page: 4314 year: 2005 ident: ref27/cit27 publication-title: Polymer doi: 10.1016/j.polymer.2005.02.040 – volume: 279 start-page: 22635 year: 2004 ident: ref34/cit34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401642200 – volume: 304 start-page: 365 year: 2005 ident: ref40/cit40 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.11.010 – volume: 1808 start-page: 1012 year: 2011 ident: ref38/cit38 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.07.004 – volume: 9 start-page: 199 year: 2008 ident: ref12/cit12 publication-title: EMBO Rep. doi: 10.1038/sj.embor.7401154 – volume: 76 start-page: 241 year: 1973 ident: ref13/cit13 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(73)90388-4 – volume: 45 start-page: 7825 year: 2006 ident: ref37/cit37 publication-title: Biochemistry doi: 10.1021/bi060345f – volume: 4 start-page: e7165 year: 2009 ident: ref16/cit16 publication-title: PLoS One doi: 10.1371/journal.pone.0007165 – volume: 581 start-page: 3327 year: 2007 ident: ref21/cit21 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.06.026 – volume: 15 start-page: 2499 year: 2006 ident: ref28/cit28 publication-title: Protein Sci. doi: 10.1110/ps.062125306 – volume: 112 start-page: 535 year: 1977 ident: ref23/cit23 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(77)80200-3 – volume: 454 start-page: 341 year: 1999 ident: ref31/cit31 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00837-6 – volume: 369 start-page: 746 year: 2007 ident: ref42/cit42 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.03.037 – volume: 87 start-page: 851 year: 2007 ident: ref4/cit4 publication-title: Lab. Invest. doi: 10.1038/labinvest.3700656 – volume: 64 start-page: 1563 year: 1999 ident: ref6/cit6 publication-title: Am. J. Hum. Genet. doi: 10.1086/302411 – volume: 68 start-page: 1419 year: 2001 ident: ref7/cit7 publication-title: Am. J. Hum. Genet. doi: 10.1086/320598 – volume: 1792 start-page: 881 year: 2009 ident: ref8/cit8 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.07.001 – volume: 279 start-page: 11402 year: 2004 ident: ref9/cit9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313171200 – volume: 120 start-page: 97 year: 1978 ident: ref25/cit25 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(78)90297-8 – volume: 49 start-page: 154 year: 2002 ident: ref26/cit26 publication-title: Proteins doi: 10.1002/prot.10181 – volume: 29 start-page: 83 year: 2001 ident: ref2/cit2 publication-title: Nat. Genet. doi: 10.1038/ng718 – volume: 384 start-page: 599 year: 2004 ident: ref32/cit32 publication-title: Biochem. J. doi: 10.1042/BJ20040917 – volume: 16 start-page: 2761 year: 2007 ident: ref35/cit35 publication-title: Protein Sci. doi: 10.1110/ps.073161707 – volume: 52 start-page: 371 year: 1964 ident: ref5/cit5 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.52.2.371 – volume: 282 start-page: 9923 year: 2007 ident: ref17/cit17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610678200 – volume: 281 start-page: 27016 year: 2006 ident: ref39/cit39 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604903200 – volume: 13 start-page: 559 year: 2003 ident: ref20/cit20 publication-title: Neuromuscular Disord. doi: 10.1016/S0960-8966(03)00070-1 – volume: 39 start-page: 14993 year: 2000 ident: ref15/cit15 publication-title: Biochemistry doi: 10.1021/bi001627x – volume: 33 start-page: W36 year: 2005 ident: ref29/cit29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki410 – volume: 272 start-page: 24313 year: 1997 ident: ref1/cit1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.39.24313 – volume: 20 start-page: 322 year: 2010 ident: ref11/cit11 publication-title: Glycobiology doi: 10.1093/glycob/cwp176 – volume: 89 start-page: 7290 year: 1992 ident: ref18/cit18 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.89.16.7290 – volume: 101 start-page: 8114 year: 2004 ident: ref36/cit36 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0400493101 – volume: 279 start-page: 50591 year: 2004 ident: ref19/cit19 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408126200 – volume: 198 start-page: 445 year: 1987 ident: ref33/cit33 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90293-2 – volume: 21 start-page: 99 year: 2003 ident: ref30/cit30 publication-title: Hum. Mutat. doi: 10.1002/humu.9100 – volume: 9 start-page: 1045 year: 2000 ident: ref14/cit14 publication-title: Protein Sci. doi: 10.1110/ps.9.6.1045 – volume: 470 start-page: 315 year: 2000 ident: ref41/cit41 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(00)01331-4 |
SSID | ssj0004074 |
Score | 2.1637182 |
Snippet | UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described... UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the previously described 3 human... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8914 |
SubjectTerms | Amino Acid Sequence Carbohydrate Epimerases - chemistry Catalysis Catalytic Domain DNA, Complementary - metabolism Gene Deletion Humans Models, Molecular Molecular Sequence Data N-Acetylneuraminic Acid - chemistry Polymerase Chain Reaction Protein Isoforms Sequence Homology, Amino Acid Tissue Distribution |
Title | Identification, Tissue Distribution, and Molecular Modeling of Novel Human Isoforms of the Key Enzyme in Sialic Acid Synthesis, UDP-GlcNAc 2-Epimerase/ManNAc Kinase |
URI | http://dx.doi.org/10.1021/bi201050u https://www.ncbi.nlm.nih.gov/pubmed/21910480 https://www.proquest.com/docview/897814424 https://pubmed.ncbi.nlm.nih.gov/PMC3192532 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-4995 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004074 issn: 0006-2960 databaseCode: ACS dateStart: 19620101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6VcoALlJZHoK1GgBCHuPVu1q-jlaQUqkRIaaTerPXuWlik6wrHSOnv4Ycy60fa0AJH744t2TPj-WbnRcj7UAx0mEWRE2iFDgpNXUcoN3PSVIWcBmhRMlsoPJn6p3P-5cK72CLv_hLBZ_Q4zW3A1nOrB-Qh80NqPax4OLspfnTbVsvoGjPE4137oNu3WtMjy03TcwdP_pkWecvOnDwlo65ap0kv-X5ULdMjeX23eeO_XmGHPGlxJsSNYDwjW9rskr3YoI99uYIPUGd-1kfqu-TRsJv6tkd-NZW7WXuU14fzmjMwsvvtbKw-CKNg0g3WBTtPzVa1Q5HBtPipF1CHBuBzWVhIXNp1xJlwplcwNterSw25gRlKfi4hlrmC2cogQZmXfZiPvjqfFnIaS2DO-Cq3h2alPp4IY5fOcoNXz8n8ZHw-PHXaSQ6OQBWvUBVTFdGMKuV7QuFPhflCK809lelAhcjDVA-ES6XHdIAOVMR95StGU4GISPtq8IJsm8LoVwSEcF2pOAI3yXnm-ZHPNII-rjR6epKrHjlEVietJpZJHWRnNFnzoEc-dlKQyLYPuh3HsbiP9O2a9Kpp_nEfEXSilCCvbLxFGF1UZRLW_cQ44z3yspGs9VPQTlBbzd8jwYbMrQls1-_NHZN_q7t_4wdl3oC9_t97viGPWZuvSMN9sr38UekDBFDL9LBWoN84ZBZx |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQLjxZKeJQRQohD3Nqb9esYpSkpaSKkJFJv1np3LSzSdYVjpPT38EOZXdtpUyrB0fbEsjMznm92dr4h5GPEeyrK4tgJlcQExUtdh0s3c9JURswLMaJkplF4Mg1GC_b1wr9oaHJMLww-RIl3Km0R_4ZdwDtOc1O39d3qIXlkGVAMDBrMbnog3YZxGTNkirC8ZRG6_VMTgUS5HYH-gpV3d0feCjenT-u5RfZB7S6TH0fVKj0S13c4HP_vTZ6RJw3qhH5tJs_JA6X3yH5fY8Z9uYZPYPeB2gX2PbI7aGfA7ZPfdR9v1izsdWFu9QQn5nozKasLXEuYtGN2wUxXMz3uUGQwLX6pJdhCAZyVhQHIpTmPqBPGag1Dfb2-VJBrmKEf5AL6IpcwW2sUKPOyC4uTb86XpZj2BVBneJWbJbRSHU-4NqfGucajF2RxOpwPRk4z18Hh6PAVOmYqYy_zpAx8LvETQwOupGK-zFQoI1Rlqnrc9YRPVYjpVMwCGUjqpRzxkQpk7yXZ0YVWrwhw7rpCMoRxgrHMD-KAKoSATCrM-wSTHXKIKkgavywTW3KnXrLRQYd8bo0hEQ0ruhnOsbxP9MNG9KqmArlPCFqLSlBXpvrCtSqqMoksuxijrEMOagPb3AWjhmd6-zsk3DK9jYDhAN--ovPvlgsc_1Dq9-jrf73ne7I7mk_Ok_Oz6fgNeUybnYxe9JbsrH5W6h1Cq1V6aH3qD8i-Htw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BkYALj5bS8CgjhBCHuPVu1q9jlActIaFSGqk3a727FhbpOqpjpPT38EOZdRzTlEpwtD2x7MyM55udnW8I-RCKjg7TKHICrTBBoYnrCOWmTpKokNMAI0pqG4XHE_9kxr9ceBd1omh7YfAhCrxTURXxrVcvVFozDNDjJLO1W88t75MHnqV-s1CoN_3TB-nWrMuYJTOE5hsmoZs_tVFIFttR6C9oeXuH5I2QM3xKvjUPW-00-XFULpMjeX2Lx_H_3-YZeVKjT-iuzeU5uafNLtnrGsy8L1fwEar9oNVC-y551NvMgtsjv9b9vGm9wNeG80pf0LfX64lZbRBGwXgzbhfslDXb6w55CpP8p55DVTCA0yK3QLmw5xF9wkivYGCuV5caMgNT9IdMQldmCqYrgwJFVrRh1j9zPs_lpCuBOYNFZpfSCn08FsaeGmUGj16Q2XBw3jtx6vkOjkDHL9FBExXRlCrle0Lhp4b5QivNPZXqQIWozkR3hEulx3SAaVXEfeUrRhOBOEn7qrNPdkxu9AEBIVxXKo5wTnKeen7kM41QkCuN-Z_kqkUOUQ1x7Z9FXJXeGY0bHbTIp41BxLJmR7dDOuZ3ib5vRBdrSpC7hGBjVTHqylZhhNF5WcRhxTLGGW-Rl2sja-6C0YPaHv8WCbbMrxGwXODbV0z2veIExz-UeR326l_v-Y48POsP46-nk9Fr8pjVGxpp-IbsLK9K_RYR1jI5rNzqN95XIVY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification%2C+tissue+distribution%2C+and+molecular+modeling+of+novel+human+isoforms+of+the+key+enzyme+in+sialic+acid+synthesis%2C+UDP-GlcNAc+2-epimerase%2FManNAc+kinase&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Yardeni%2C+Tal&rft.au=Choekyi%2C+Tsering&rft.au=Jacobs%2C+Katherine&rft.au=Ciccone%2C+Carla&rft.date=2011-10-18&rft.eissn=1520-4995&rft.volume=50&rft.issue=41&rft.spage=8914&rft_id=info:doi/10.1021%2Fbi201050u&rft_id=info%3Apmid%2F21910480&rft.externalDocID=21910480 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon |