PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation

PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficien...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical information and modeling Vol. 65; no. 13; pp. 6441 - 6445
Main Authors Duan, Lian, Hengphasatporn, Kowit, Shigeta, Yasuteru
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.07.2025
Subjects
Online AccessGet full text
ISSN1549-9596
1549-960X
1549-960X
DOI10.1021/acs.jcim.5c00936

Cover

Abstract PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
AbstractList PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.
Author Duan, Lian
Hengphasatporn, Kowit
Shigeta, Yasuteru
AuthorAffiliation University of Tsukuba
Chulalongkorn University
Graduate School of Pure and Applied Sciences
Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science
Center for Computational Sciences
AuthorAffiliation_xml – name: Center for Computational Sciences
– name: Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science
– name: Chulalongkorn University
– name: University of Tsukuba
– name: Graduate School of Pure and Applied Sciences
Author_xml – sequence: 1
  givenname: Lian
  orcidid: 0009-0001-6713-587X
  surname: Duan
  fullname: Duan, Lian
  organization: University of Tsukuba
– sequence: 2
  givenname: Kowit
  orcidid: 0000-0001-8501-3844
  surname: Hengphasatporn
  fullname: Hengphasatporn, Kowit
  email: kowith@ccs.tsukuba.ac.jp
  organization: Chulalongkorn University
– sequence: 3
  givenname: Yasuteru
  orcidid: 0000-0002-3219-6007
  surname: Shigeta
  fullname: Shigeta, Yasuteru
  organization: University of Tsukuba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40568793$$D View this record in MEDLINE/PubMed
BookMark eNp10c9PwjAUB_DGYOSH3j2ZJl48OGj7tkK9GVQ0YRECJt6W0nUy3FpctwP_vZuABxNPfU0_r6_pt4taxhqN0CUlfUoYHUjl-huV5v1AESKAn6AODXzhCU7eW8c6ELyNus5tCAEQnJ2htk8CPhoK6KDJTI4X3vwOz3bl2hq8tDb7TEuHE1vgmSzXeCHzbZaaD5waHD5gaWI8Dwdh2GwWaV5lskytOUenicycvjisPfT29LgcP3vT18nL-H7qSaCi9OIREJ4ITrVQnCsGPCZUg5-IxF8BlwBaczZKJMQqDqhf17GUAedSAdMyhh662d-7LexXpV0Z5alTOsuk0bZyETDmMw7DEdT0-g_d2Kow9etqBUT4grJGXR1Utcp1HG2LNJfFLjp-UQ3IHqjCOlfo5JdQEjUpRHUKUZNCdEihbrndt_ycHIf-y78B452G9A
Cites_doi 10.1063/1.4813023
10.1021/acs.jcim.3c01153
10.1021/acscatal.5c00719
10.1063/5.0016114
10.1002/wcms.31
10.1021/acscatal.4c01867
10.1021/acs.jcim.1c00897
10.1021/acs.jctc.4c00776
10.1021/ct400341p
10.1016/0021-9991(77)90121-8
10.1021/ar500356n
10.1021/acscatal.0c05522
10.1021/jp045424k
10.1038/s41598-022-22703-1
10.1002/wcms.1606
10.1021/acs.jpclett.4c00514
10.1021/acs.jctc.5c00169
10.1093/bioinformatics/btp163
10.1002/jcc.540130812
10.1021/acscatal.8b04846
10.1039/C4CP05262E
10.3390/ma15041490
10.1073/pnas.202427399
10.1039/C7SC04761D
10.1002/jcc.21787
10.1246/bcsj.20180170
10.1103/PhysRevLett.96.090601
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright American Chemical Society 2025
Copyright_xml – notice: 2025 American Chemical Society
– notice: Copyright American Chemical Society 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jcim.5c00936
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-960X
EndPage 6445
ExternalDocumentID 40568793
10_1021_acs_jcim_5c00936
b505861503
Genre Journal Article
GroupedDBID ---
-~X
4.4
55A
5GY
5VS
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
PQQKQ
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead3
IEDL.DBID ACS
ISSN 1549-9596
1549-960X
IngestDate Thu Jun 26 17:30:51 EDT 2025
Fri Jul 18 00:10:37 EDT 2025
Tue Jul 15 01:30:40 EDT 2025
Wed Oct 01 05:47:01 EDT 2025
Tue Jul 15 03:10:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0001-6713-587X
0000-0002-3219-6007
0000-0001-8501-3844
PMID 40568793
PQID 3230949123
PQPubID 28739
PageCount 5
ParticipantIDs proquest_miscellaneous_3224263783
proquest_journals_3230949123
pubmed_primary_40568793
crossref_primary_10_1021_acs_jcim_5c00936
acs_journals_10_1021_acs_jcim_5c00936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-14
PublicationDateYYYYMMDD 2025-07-14
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical information and modeling
PublicationTitleAlternate J. Chem. Inf. Model
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref18/cit18
(ref23/cit23) 2016
ref11/cit11
ref16/cit16
Gowers R. J. (ref25/cit25) 2019
ref29/cit29
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
Case D. A. (ref27/cit27) 2023
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref17/cit17
  doi: 10.1063/1.4813023
– volume-title: Conference: PROC. OF THE 15th PYTHON IN SCIENCE CONF (SCIPY 2016)
  year: 2019
  ident: ref25/cit25
– ident: ref29/cit29
  doi: 10.1021/acs.jcim.3c01153
– ident: ref4/cit4
  doi: 10.1021/acscatal.5c00719
– ident: ref14/cit14
  doi: 10.1063/5.0016114
– ident: ref11/cit11
  doi: 10.1002/wcms.31
– ident: ref3/cit3
  doi: 10.1021/acscatal.4c01867
– ident: ref2/cit2
  doi: 10.1021/acs.jcim.1c00897
– ident: ref13/cit13
  doi: 10.1021/acs.jctc.4c00776
– ident: ref30/cit30
  doi: 10.1021/ct400341p
– ident: ref7/cit7
  doi: 10.1016/0021-9991(77)90121-8
– ident: ref15/cit15
  doi: 10.1021/ar500356n
– ident: ref5/cit5
  doi: 10.1021/acscatal.0c05522
– ident: ref9/cit9
  doi: 10.1021/jp045424k
– ident: ref21/cit21
  doi: 10.1038/s41598-022-22703-1
– ident: ref24/cit24
  doi: 10.1002/wcms.1606
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.4c00514
– volume-title: Gaussian 16
  year: 2016
  ident: ref23/cit23
– ident: ref16/cit16
  doi: 10.1021/acs.jctc.5c00169
– ident: ref28/cit28
  doi: 10.1093/bioinformatics/btp163
– ident: ref12/cit12
  doi: 10.1002/jcc.540130812
– ident: ref1/cit1
  doi: 10.1021/acscatal.8b04846
– ident: ref18/cit18
  doi: 10.1039/C4CP05262E
– ident: ref20/cit20
  doi: 10.3390/ma15041490
– ident: ref8/cit8
  doi: 10.1073/pnas.202427399
– ident: ref6/cit6
  doi: 10.1039/C7SC04761D
– ident: ref26/cit26
  doi: 10.1002/jcc.21787
– ident: ref19/cit19
  doi: 10.1246/bcsj.20180170
– volume-title: Amber 2023
  year: 2023
  ident: ref27/cit27
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.96.090601
SSID ssj0033962
Score 2.469504
Snippet PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 6441
SubjectTerms Algorithms
Complexity
Computational chemistry
Molecular Dynamics Simulation
Quantum Theory
Sampling
Simulation
Software
Structural analysis
Toolkits
Title PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation
URI http://dx.doi.org/10.1021/acs.jcim.5c00936
https://www.ncbi.nlm.nih.gov/pubmed/40568793
https://www.proquest.com/docview/3230949123
https://www.proquest.com/docview/3224263783
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-960X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033962
  issn: 1549-9596
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8GBg4sap07MDZVNSEGtUqTeIsd2UChNEEkP8PWM3QTEqt6yOE4yY3ueNaP3EDqyUlaejolq-4pACNBE8IQRZbNigA-0rc0J7tjNvXs7aA8-aXK-Z_Cd1qmQRfNRpqNmW5rtN5tF8w7zPFO-d94J61WXUm7FQw3jGOFtXqckf-vBBCJZfA1Ef6BLG2WulidyRYUlJzTFJcPmuIyb8u0ndeMUP7CCliqwic8no2MVzehsDS10ao23dXTdFZ2Q9M5w99VwCOB-nj8N07LAAGVxF8AhDoUpOc8ecJrh4AKLTOFecBoE5iRMR5X41wa6v7rsd25IJa1ABMy5kigftgoJZy3NJWPSoQyco6mb8MSNKROUas0cPxFUSQWYCo6VEAD9hKQODD66ieayPNPbCCfKhaepjmNOYQFIhAZEwFTiObGirksb6BgsEFVTo4hs1ttpRfYimCWqzNJAJ7U_oucJ08Y_bfdqh312TGE3xV0OobiBDj9ug0FNCkRkOh-bNpah3vOhzdbE0R8vA-jKfFiudqb84F206BgxYMOy6e6hufJlrPcBoZTxgR2a71AN3MI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CdmAXxjbGymDzpO2wg1sldtyYGwp03dagshSJW-TEzlQKKSLpYfv1PLtJ0aYNjVviOLbznu33PT3newAfXCqrvsmoDkJN0QQYqmQhqHZRMcQHxp3NiU_F8Jx_vQgu1sBr_4XBQVTYUuWC-PfsAl7Pll3m0-tukFsvXKzDk0Bwz_pbR1HSbr6MSZdD1BKPURnINjL5txasPcqr3-3RP0CmMzaDZ_B9NUx3xmTWXdRZN__1B4Pjo75jG7Ya6EmOlnPlOayZ8gVsRm3Gt5fweayihJ4dkvFPyyhAJvP51WxaVwSBLRkjVCSJsgfQyx9kWpL4mKhSk7O4F8f2JpleN6nAduB8cDKJhrRJtEAVrsCa6hAdh0IKz8hciNxnAlVlGC9kwTMmFGPGCD8sFNO5RoSF11opBIIqZz5ORfYKNsp5aV4DKTTHt5nJMslwOyiUQXwgdNH3M804Zx34iBJIm4VSpS4G7nupK0SxpI1YOvCpVUt6s-TdeKDufqu3-4YZ-laSSzTMHXi_eowCtQERVZr5wtZxfPX9EOvsLvW96gyBrAhx89r7zwG_g83hJB6loy-n397AU9-mCbb8m3wfNurbhTlA7FJnb91svQOfZuUk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BJ8Fe2MZgdOOHkbYHHlzUOHHjvaFCKYOgogLqW-TENirQFC3pA_z1O7tJERMgeEscx3bufL7POuc7gJ8ulVVLJ1QFoaLoAjSVwnCqXFQM8YF2Z3OiU9698P8MgsEcBNW_MDiIHFvKXRDfWvWdMiXDQHPXll-nw1EjSO1OnM_Dh4CjpVtE1O5XCzBjwuURteRjVASiik4-14L1SWn-1Ce9ADSdw-l8gsvZUN05k5vGpEga6cN_LI7v_pbPsFRCULI3nTNfYE5ny7DYrjK_fYXDnmz36dlv0ru3zALkfDy-vRkWOUGAS3oIGUlf2oPo2RUZZiTaJzJT5CzajSJ70x-OypRgK3DROThvd2mZcIFKtMSCqhA3EEbwphYp56nHOKpMM98I4yeMS8a05l5oJFOpQqSF10pKBIQyZR5OSbYKtWyc6TUgRvn4NtNJIhguC0ZqxAlcmZaXKOb7rA6_UAJxaTB57GLhXjN2hSiWuBRLHXYq1cR3U_6NV-quV7p7bJjhHkv4Ah10HbZnj1GgNjAiMz2e2DqOt74VYp1vU53POkNAy0NcxL6_ccBbsNDb78QnR6fHP-CjZ7MFWxpOfx1qxd-J3kAIUySbbsL-Az6o56c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCS-Q%3A+Python+Toolkits+for+Path+Sampling+in+MD+and+QM%2FMM+MD+Simulation&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Duan%2C+Lian&rft.au=Hengphasatporn%2C+Kowit&rft.au=Shigeta%2C+Yasuteru&rft.date=2025-07-14&rft.eissn=1549-960X&rft.volume=65&rft.issue=13&rft.spage=6441&rft_id=info:doi/10.1021%2Facs.jcim.5c00936&rft_id=info%3Apmid%2F40568793&rft.externalDocID=40568793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon