PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation
PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficien...
        Saved in:
      
    
          | Published in | Journal of chemical information and modeling Vol. 65; no. 13; pp. 6441 - 6445 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        14.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1549-9596 1549-960X 1549-960X  | 
| DOI | 10.1021/acs.jcim.5c00936 | 
Cover
| Abstract | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/. | 
    
|---|---|
| AbstractList | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/. PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly integrated with the AMBER MD suite, it automates QM/MM MD simulations using the parallel cascade selection (PaCS) algorithm, enabling efficient exploration of reaction pathways without predefined reaction coordinates. PaCS-Q supports both RMSD- and distance-based sampling, which is ideal for studying covalent reactions and ligand binding/unbinding events. A key feature is its ability to automatically generate QM input files for Gaussian and ORCA directly from representative structures, streamlining the transition from MD to quantum calculations. With built-in tools for structure analysis and energy profiling, PaCS-Q minimizes setup complexity and enhances reproducibility. Easy to install via pip and compatible with Unix-based systems, PaCS-Q offers a practical, versatile solution for researchers in computational chemistry and drug discovery, enabling advanced simulations with speed, accuracy, and minimal effort. The PaCS-Q Python toolkit publicly available at https://github.com/nyelidl/PaCS-Q/.  | 
    
| Author | Duan, Lian Hengphasatporn, Kowit Shigeta, Yasuteru  | 
    
| AuthorAffiliation | University of Tsukuba Chulalongkorn University Graduate School of Pure and Applied Sciences Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science Center for Computational Sciences  | 
    
| AuthorAffiliation_xml | – name: Center for Computational Sciences – name: Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science – name: Chulalongkorn University – name: University of Tsukuba – name: Graduate School of Pure and Applied Sciences  | 
    
| Author_xml | – sequence: 1 givenname: Lian orcidid: 0009-0001-6713-587X surname: Duan fullname: Duan, Lian organization: University of Tsukuba – sequence: 2 givenname: Kowit orcidid: 0000-0001-8501-3844 surname: Hengphasatporn fullname: Hengphasatporn, Kowit email: kowith@ccs.tsukuba.ac.jp organization: Chulalongkorn University – sequence: 3 givenname: Yasuteru orcidid: 0000-0002-3219-6007 surname: Shigeta fullname: Shigeta, Yasuteru organization: University of Tsukuba  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40568793$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp10c9PwjAUB_DGYOSH3j2ZJl48OGj7tkK9GVQ0YRECJt6W0nUy3FpctwP_vZuABxNPfU0_r6_pt4taxhqN0CUlfUoYHUjl-huV5v1AESKAn6AODXzhCU7eW8c6ELyNus5tCAEQnJ2htk8CPhoK6KDJTI4X3vwOz3bl2hq8tDb7TEuHE1vgmSzXeCHzbZaaD5waHD5gaWI8Dwdh2GwWaV5lskytOUenicycvjisPfT29LgcP3vT18nL-H7qSaCi9OIREJ4ITrVQnCsGPCZUg5-IxF8BlwBaczZKJMQqDqhf17GUAedSAdMyhh662d-7LexXpV0Z5alTOsuk0bZyETDmMw7DEdT0-g_d2Kow9etqBUT4grJGXR1Utcp1HG2LNJfFLjp-UQ3IHqjCOlfo5JdQEjUpRHUKUZNCdEihbrndt_ycHIf-y78B452G9A | 
    
| Cites_doi | 10.1063/1.4813023 10.1021/acs.jcim.3c01153 10.1021/acscatal.5c00719 10.1063/5.0016114 10.1002/wcms.31 10.1021/acscatal.4c01867 10.1021/acs.jcim.1c00897 10.1021/acs.jctc.4c00776 10.1021/ct400341p 10.1016/0021-9991(77)90121-8 10.1021/ar500356n 10.1021/acscatal.0c05522 10.1021/jp045424k 10.1038/s41598-022-22703-1 10.1002/wcms.1606 10.1021/acs.jpclett.4c00514 10.1021/acs.jctc.5c00169 10.1093/bioinformatics/btp163 10.1002/jcc.540130812 10.1021/acscatal.8b04846 10.1039/C4CP05262E 10.3390/ma15041490 10.1073/pnas.202427399 10.1039/C7SC04761D 10.1002/jcc.21787 10.1246/bcsj.20180170 10.1103/PhysRevLett.96.090601  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 American Chemical Society Copyright American Chemical Society 2025  | 
    
| Copyright_xml | – notice: 2025 American Chemical Society – notice: Copyright American Chemical Society 2025  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8  | 
    
| DOI | 10.1021/acs.jcim.5c00936 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1549-960X | 
    
| EndPage | 6445 | 
    
| ExternalDocumentID | 40568793 10_1021_acs_jcim_5c00936 b505861503  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8  | 
    
| ID | FETCH-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead3 | 
    
| IEDL.DBID | ACS | 
    
| ISSN | 1549-9596 1549-960X  | 
    
| IngestDate | Thu Jun 26 17:30:51 EDT 2025 Fri Jul 18 00:10:37 EDT 2025 Tue Jul 15 01:30:40 EDT 2025 Wed Oct 01 05:47:01 EDT 2025 Tue Jul 15 03:10:14 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a319t-d8306f961e9c66c236d01e34f9f4b36a33ee628fa3dcd514628daa566ac32ead3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0009-0001-6713-587X 0000-0002-3219-6007 0000-0001-8501-3844  | 
    
| PMID | 40568793 | 
    
| PQID | 3230949123 | 
    
| PQPubID | 28739 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | proquest_miscellaneous_3224263783 proquest_journals_3230949123 pubmed_primary_40568793 crossref_primary_10_1021_acs_jcim_5c00936 acs_journals_10_1021_acs_jcim_5c00936  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-14 | 
    
| PublicationDateYYYYMMDD | 2025-07-14 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-14 day: 14  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Journal of chemical information and modeling | 
    
| PublicationTitleAlternate | J. Chem. Inf. Model | 
    
| PublicationYear | 2025 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref9/cit9 ref6/cit6 ref3/cit3 ref18/cit18 (ref23/cit23) 2016 ref11/cit11 ref16/cit16 Gowers R. J. (ref25/cit25) 2019 ref29/cit29 ref14/cit14 ref8/cit8 ref5/cit5 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 Case D. A. (ref27/cit27) 2023 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7  | 
    
| References_xml | – ident: ref17/cit17 doi: 10.1063/1.4813023 – volume-title: Conference: PROC. OF THE 15th PYTHON IN SCIENCE CONF (SCIPY 2016) year: 2019 ident: ref25/cit25 – ident: ref29/cit29 doi: 10.1021/acs.jcim.3c01153 – ident: ref4/cit4 doi: 10.1021/acscatal.5c00719 – ident: ref14/cit14 doi: 10.1063/5.0016114 – ident: ref11/cit11 doi: 10.1002/wcms.31 – ident: ref3/cit3 doi: 10.1021/acscatal.4c01867 – ident: ref2/cit2 doi: 10.1021/acs.jcim.1c00897 – ident: ref13/cit13 doi: 10.1021/acs.jctc.4c00776 – ident: ref30/cit30 doi: 10.1021/ct400341p – ident: ref7/cit7 doi: 10.1016/0021-9991(77)90121-8 – ident: ref15/cit15 doi: 10.1021/ar500356n – ident: ref5/cit5 doi: 10.1021/acscatal.0c05522 – ident: ref9/cit9 doi: 10.1021/jp045424k – ident: ref21/cit21 doi: 10.1038/s41598-022-22703-1 – ident: ref24/cit24 doi: 10.1002/wcms.1606 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.4c00514 – volume-title: Gaussian 16 year: 2016 ident: ref23/cit23 – ident: ref16/cit16 doi: 10.1021/acs.jctc.5c00169 – ident: ref28/cit28 doi: 10.1093/bioinformatics/btp163 – ident: ref12/cit12 doi: 10.1002/jcc.540130812 – ident: ref1/cit1 doi: 10.1021/acscatal.8b04846 – ident: ref18/cit18 doi: 10.1039/C4CP05262E – ident: ref20/cit20 doi: 10.3390/ma15041490 – ident: ref8/cit8 doi: 10.1073/pnas.202427399 – ident: ref6/cit6 doi: 10.1039/C7SC04761D – ident: ref26/cit26 doi: 10.1002/jcc.21787 – ident: ref19/cit19 doi: 10.1246/bcsj.20180170 – volume-title: Amber 2023 year: 2023 ident: ref27/cit27 – ident: ref10/cit10 doi: 10.1103/PhysRevLett.96.090601  | 
    
| SSID | ssj0033962 | 
    
| Score | 2.469504 | 
    
| Snippet | PaCS-Q is an open-source Python toolkit that simplifies QM/MM MD and MD simulations, making complex pathway sampling accessible and user-friendly. Seamlessly... | 
    
| SourceID | proquest pubmed crossref acs  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 6441 | 
    
| SubjectTerms | Algorithms Complexity Computational chemistry Molecular Dynamics Simulation Quantum Theory Sampling Simulation Software Structural analysis Toolkits  | 
    
| Title | PaCS-Q: Python Toolkits for Path Sampling in MD and QM/MM MD Simulation | 
    
| URI | http://dx.doi.org/10.1021/acs.jcim.5c00936 https://www.ncbi.nlm.nih.gov/pubmed/40568793 https://www.proquest.com/docview/3230949123 https://www.proquest.com/docview/3224263783  | 
    
| Volume | 65 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-960X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033962 issn: 1549-9596 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYDnBhX8omI8GBg4sap07MDZVNSEGtUqTeIsd2UChNEEkP8PWM3QTEqt6yOE4yY3ueNaP3EDqyUlaejolq-4pACNBE8IQRZbNigA-0rc0J7tjNvXs7aA8-aXK-Z_Cd1qmQRfNRpqNmW5rtN5tF8w7zPFO-d94J61WXUm7FQw3jGOFtXqckf-vBBCJZfA1Ef6BLG2WulidyRYUlJzTFJcPmuIyb8u0ndeMUP7CCliqwic8no2MVzehsDS10ao23dXTdFZ2Q9M5w99VwCOB-nj8N07LAAGVxF8AhDoUpOc8ecJrh4AKLTOFecBoE5iRMR5X41wa6v7rsd25IJa1ABMy5kigftgoJZy3NJWPSoQyco6mb8MSNKROUas0cPxFUSQWYCo6VEAD9hKQODD66ieayPNPbCCfKhaepjmNOYQFIhAZEwFTiObGirksb6BgsEFVTo4hs1ttpRfYimCWqzNJAJ7U_oucJ08Y_bfdqh312TGE3xV0OobiBDj9ug0FNCkRkOh-bNpah3vOhzdbE0R8vA-jKfFiudqb84F206BgxYMOy6e6hufJlrPcBoZTxgR2a71AN3MI | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9swFH4CdmAXxjbGymDzpO2wg1sldtyYGwp03dagshSJW-TEzlQKKSLpYfv1PLtJ0aYNjVviOLbznu33PT3newAfXCqrvsmoDkJN0QQYqmQhqHZRMcQHxp3NiU_F8Jx_vQgu1sBr_4XBQVTYUuWC-PfsAl7Pll3m0-tukFsvXKzDk0Bwz_pbR1HSbr6MSZdD1BKPURnINjL5txasPcqr3-3RP0CmMzaDZ_B9NUx3xmTWXdRZN__1B4Pjo75jG7Ya6EmOlnPlOayZ8gVsRm3Gt5fweayihJ4dkvFPyyhAJvP51WxaVwSBLRkjVCSJsgfQyx9kWpL4mKhSk7O4F8f2JpleN6nAduB8cDKJhrRJtEAVrsCa6hAdh0IKz8hciNxnAlVlGC9kwTMmFGPGCD8sFNO5RoSF11opBIIqZz5ORfYKNsp5aV4DKTTHt5nJMslwOyiUQXwgdNH3M804Zx34iBJIm4VSpS4G7nupK0SxpI1YOvCpVUt6s-TdeKDufqu3-4YZ-laSSzTMHXi_eowCtQERVZr5wtZxfPX9EOvsLvW96gyBrAhx89r7zwG_g83hJB6loy-n397AU9-mCbb8m3wfNurbhTlA7FJnb91svQOfZuUk | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5BJ8Fe2MZgdOOHkbYHHlzUOHHjvaFCKYOgogLqW-TENirQFC3pA_z1O7tJERMgeEscx3bufL7POuc7gJ8ulVVLJ1QFoaLoAjSVwnCqXFQM8YF2Z3OiU9698P8MgsEcBNW_MDiIHFvKXRDfWvWdMiXDQHPXll-nw1EjSO1OnM_Dh4CjpVtE1O5XCzBjwuURteRjVASiik4-14L1SWn-1Ce9ADSdw-l8gsvZUN05k5vGpEga6cN_LI7v_pbPsFRCULI3nTNfYE5ny7DYrjK_fYXDnmz36dlv0ru3zALkfDy-vRkWOUGAS3oIGUlf2oPo2RUZZiTaJzJT5CzajSJ70x-OypRgK3DROThvd2mZcIFKtMSCqhA3EEbwphYp56nHOKpMM98I4yeMS8a05l5oJFOpQqSF10pKBIQyZR5OSbYKtWyc6TUgRvn4NtNJIhguC0ZqxAlcmZaXKOb7rA6_UAJxaTB57GLhXjN2hSiWuBRLHXYq1cR3U_6NV-quV7p7bJjhHkv4Ah10HbZnj1GgNjAiMz2e2DqOt74VYp1vU53POkNAy0NcxL6_ccBbsNDb78QnR6fHP-CjZ7MFWxpOfx1qxd-J3kAIUySbbsL-Az6o56c | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PaCS-Q%3A+Python+Toolkits+for+Path+Sampling+in+MD+and+QM%2FMM+MD+Simulation&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Duan%2C+Lian&rft.au=Hengphasatporn%2C+Kowit&rft.au=Shigeta%2C+Yasuteru&rft.date=2025-07-14&rft.eissn=1549-960X&rft.volume=65&rft.issue=13&rft.spage=6441&rft_id=info:doi/10.1021%2Facs.jcim.5c00936&rft_id=info%3Apmid%2F40568793&rft.externalDocID=40568793 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |