Automated Skeleton Network Generation for ReaxFF Molecular Dynamics Simulations of Hydrocarbon Fuel Pyrolysis and Oxidation via a Rate-Based Algorithm

In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 20; no. 13; pp. 5539 - 5557
Main Authors Xiao, Yuanyuan, Zheng, Mo, Li, Xiaoxia, Ren, Chunxing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.07.2024
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.4c00409

Cover

Abstract In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical calculation of reaction rate constants and the generation of skeleton reaction networks using a rate-based algorithm. The RxMD-SN method takes advantage of reaction flux ranking at a small time interval in terms of temporal reaction rate to extract the core reaction networks, which allows for keeping the rare reaction events that may be dominant in a certain period of the reaction network. The kinetic models derived from ReaxFF MD simulation in CH4 oxidation can reproduce what was obtained in the ReaxFF MD simulation, which demonstrates the capability of RxMD-SN in capturing the global reaction kinetics. An evaluation of reaction rate constants indicates that close kinetic parameters are shared for n-octane oxidation of similar reaction classes, shared oxidation reactions of CH4 against n-heptane, and shared pyrolysis reactions of the RP-3 surrogate fuel against n-heptane. This capability of RxMD-SN is particularly beneficial in meeting the challenges in characterizing the oxidation reaction kinetics of large hydrocarbon molecules. RxMD-SN approach is potentially a general approach in chemical kinetics modeling on the basis of ReaxFF MD simulations.
AbstractList In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical calculation of reaction rate constants and the generation of skeleton reaction networks using a rate-based algorithm. The RxMD-SN method takes advantage of reaction flux ranking at a small time interval in terms of temporal reaction rate to extract the core reaction networks, which allows for keeping the rare reaction events that may be dominant in a certain period of the reaction network. The kinetic models derived from ReaxFF MD simulation in CH4 oxidation can reproduce what was obtained in the ReaxFF MD simulation, which demonstrates the capability of RxMD-SN in capturing the global reaction kinetics. An evaluation of reaction rate constants indicates that close kinetic parameters are shared for n-octane oxidation of similar reaction classes, shared oxidation reactions of CH4 against n-heptane, and shared pyrolysis reactions of the RP-3 surrogate fuel against n-heptane. This capability of RxMD-SN is particularly beneficial in meeting the challenges in characterizing the oxidation reaction kinetics of large hydrocarbon molecules. RxMD-SN approach is potentially a general approach in chemical kinetics modeling on the basis of ReaxFF MD simulations.
In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical calculation of reaction rate constants and the generation of skeleton reaction networks using a rate-based algorithm. The RxMD-SN method takes advantage of reaction flux ranking at a small time interval in terms of temporal reaction rate to extract the core reaction networks, which allows for keeping the rare reaction events that may be dominant in a certain period of the reaction network. The kinetic models derived from ReaxFF MD simulation in CH4 oxidation can reproduce what was obtained in the ReaxFF MD simulation, which demonstrates the capability of RxMD-SN in capturing the global reaction kinetics. An evaluation of reaction rate constants indicates that close kinetic parameters are shared for n-octane oxidation of similar reaction classes, shared oxidation reactions of CH4 against n-heptane, and shared pyrolysis reactions of the RP-3 surrogate fuel against n-heptane. This capability of RxMD-SN is particularly beneficial in meeting the challenges in characterizing the oxidation reaction kinetics of large hydrocarbon molecules. RxMD-SN approach is potentially a general approach in chemical kinetics modeling on the basis of ReaxFF MD simulations.In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical calculation of reaction rate constants and the generation of skeleton reaction networks using a rate-based algorithm. The RxMD-SN method takes advantage of reaction flux ranking at a small time interval in terms of temporal reaction rate to extract the core reaction networks, which allows for keeping the rare reaction events that may be dominant in a certain period of the reaction network. The kinetic models derived from ReaxFF MD simulation in CH4 oxidation can reproduce what was obtained in the ReaxFF MD simulation, which demonstrates the capability of RxMD-SN in capturing the global reaction kinetics. An evaluation of reaction rate constants indicates that close kinetic parameters are shared for n-octane oxidation of similar reaction classes, shared oxidation reactions of CH4 against n-heptane, and shared pyrolysis reactions of the RP-3 surrogate fuel against n-heptane. This capability of RxMD-SN is particularly beneficial in meeting the challenges in characterizing the oxidation reaction kinetics of large hydrocarbon molecules. RxMD-SN approach is potentially a general approach in chemical kinetics modeling on the basis of ReaxFF MD simulations.
In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic mechanism of large hydrocarbon fuels in pyrolysis and oxidation from large-scale ReaxFF MD simulations. The approach contains the statistical calculation of reaction rate constants and the generation of skeleton reaction networks using a rate-based algorithm. The RxMD-SN method takes advantage of reaction flux ranking at a small time interval in terms of temporal reaction rate to extract the core reaction networks, which allows for keeping the rare reaction events that may be dominant in a certain period of the reaction network. The kinetic models derived from ReaxFF MD simulation in CH oxidation can reproduce what was obtained in the ReaxFF MD simulation, which demonstrates the capability of RxMD-SN in capturing the global reaction kinetics. An evaluation of reaction rate constants indicates that close kinetic parameters are shared for -octane oxidation of similar reaction classes, shared oxidation reactions of CH against -heptane, and shared pyrolysis reactions of the RP-3 surrogate fuel against -heptane. This capability of RxMD-SN is particularly beneficial in meeting the challenges in characterizing the oxidation reaction kinetics of large hydrocarbon molecules. RxMD-SN approach is potentially a general approach in chemical kinetics modeling on the basis of ReaxFF MD simulations.
Author Li, Xiaoxia
Ren, Chunxing
Xiao, Yuanyuan
Zheng, Mo
AuthorAffiliation State Key Laboratory of Mesoscience and Engineering
Innovation Academy for Green Manufacture
AuthorAffiliation_xml – name: State Key Laboratory of Mesoscience and Engineering
– name: Innovation Academy for Green Manufacture
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Xiao
  fullname: Xiao, Yuanyuan
  organization: Innovation Academy for Green Manufacture
– sequence: 2
  givenname: Mo
  orcidid: 0000-0002-4467-5494
  surname: Zheng
  fullname: Zheng, Mo
  email: mzheng@ipe.ac.cn
  organization: Innovation Academy for Green Manufacture
– sequence: 3
  givenname: Xiaoxia
  orcidid: 0000-0002-1178-124X
  surname: Li
  fullname: Li, Xiaoxia
  email: xxia@ipe.ac.cn
  organization: Innovation Academy for Green Manufacture
– sequence: 4
  givenname: Chunxing
  orcidid: 0000-0003-4402-4859
  surname: Ren
  fullname: Ren, Chunxing
  organization: Innovation Academy for Green Manufacture
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38937883$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URD_gzglZ4sKBLHZm8-HjUtgWqVDUwjma2BPwNomL7UDzR_i9eNltD0ic5sPPOzPye8wORjcSY8-lWEiRyzeow2Kjo14stRBLoR6xI1ksVabKvDx4yGV9yI5D2AgBsMzhCTuEWkFV13DEfq-m6AaMZPj1DfUU3cg_Ufzl_A0_o5E8RptanfP8ivBuveYfXU966tHzd_OIg9WBX9shNbZg4K7j57PxTqNvk3A9Uc8_z971c7CB42j45Z01u6k_LXLkV2l79hZDOmHVf3Pexu_DU_a4wz7Qs308YV_X77-cnmcXl2cfTlcXGYKsYtZpgFyZulRYSANFioiirGooqJVtIQswXVHrVpdtK4wAJagAIfKSBFapPmGvdnNvvfsxUYjNYIOmvseR3BQaEBXkAEKphL78B924yY_pukTVElSlyipRL_bU1A5kmltvB_Rzc__jCRA7QHsXgqfuAZGi2ZraJFObranN3tQkeb2T_H25X_pf_A-8EKXt
Cites_doi 10.1021/jp004368u
10.1214/ss/1177013690
10.1021/jp804939v
10.1021/acs.jpca.6b12367
10.1021/acs.jcim.8b00078
10.1016/j.apenergy.2013.01.058
10.1021/acs.energyfuels.1c01266
10.1021/ef3012596
10.1016/j.pecs.2023.101084
10.1016/j.jmgm.2014.07.002
10.1021/jp3023887
10.1021/acs.jpca.0c09168
10.1016/j.proci.2010.05.027
10.1016/j.combustflame.2014.07.032
10.1021/acs.jpca.5b00837
10.1016/j.combustflame.2013.12.006
10.1016/j.combustflame.2010.08.010
10.1002/kin.20047
10.3866/PKU.WHXB201503022
10.1021/acs.jpca.8b09947
10.1088/1364-7830/3/2/002
10.1016/S0360-1285(03)00060-1
10.1021/acs.jcim.9b00237
10.1016/S0082-0784(00)80559-7
10.1016/S0010-2180(97)00282-4
10.1016/j.combustflame.2011.12.017
10.1038/npjcompumats.2015.11
10.1002/kin.20603
10.1002/jcc.25809
10.1016/j.jmgm.2013.02.001
10.1016/S0010-2180(01)00373-X
10.1016/j.combustflame.2008.07.014
10.1007/s11426-017-9066-9
10.1021/acs.jcim.1c01197
10.1021/acs.jctc.2c00623
10.1016/j.combustflame.2013.06.029
10.1021/jp405262r
10.1016/j.pecs.2017.09.004
10.1021/jp709896w
10.1016/j.proci.2004.08.145
10.1039/D3SC01202F
10.1016/S0082-0784(98)80416-5
10.1016/j.compchemeng.2006.02.007
10.1016/j.combustflame.2008.12.007
10.1021/jp311498u
10.1021/jp304040q
10.1016/S0082-0784(89)80102-X
10.1016/j.combustflame.2013.08.001
10.1016/j.combustflame.2013.08.024
10.1016/j.combustflame.2021.111865
10.1021/acs.jctc.7b00524
10.1016/j.pecs.2007.10.002
10.1016/j.proci.2006.08.041
10.1016/j.combustflame.2014.05.010
10.1016/S1540-7489(02)80161-4
10.1021/jp067592d
10.1063/1.440240
10.1021/acs.jpca.1c00942
10.1016/j.combustflame.2015.09.014
10.1006/jcph.2001.6709
10.1146/annurev.pc.44.100193.002241
10.1039/df9541700040
10.1016/S0082-0784(85)80681-0
10.1021/ef402140n
10.1016/j.pecs.2014.04.003
10.1016/j.combustflame.2016.05.022
10.1016/j.combustflame.2013.08.002
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Jul 9, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Jul 9, 2024
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
DOI 10.1021/acs.jctc.4c00409
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 5557
ExternalDocumentID 38937883
10_1021_acs_jctc_4c00409
b053733758
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-a317t-fc3329d869a51d3569aaa067835eb1b5153df58cbc6bb0d0390e530026e0a7d03
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Thu Jul 10 19:08:49 EDT 2025
Mon Jun 30 17:42:16 EDT 2025
Mon Jul 21 06:00:19 EDT 2025
Tue Jul 01 02:03:38 EDT 2025
Wed Jul 10 03:11:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a317t-fc3329d869a51d3569aaa067835eb1b5153df58cbc6bb0d0390e530026e0a7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4402-4859
0000-0002-4467-5494
0000-0002-1178-124X
PMID 38937883
PQID 3081397967
PQPubID 2048741
PageCount 19
ParticipantIDs proquest_miscellaneous_3073233099
proquest_journals_3081397967
pubmed_primary_38937883
crossref_primary_10_1021_acs_jctc_4c00409
acs_journals_10_1021_acs_jctc_4c00409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-09
PublicationDateYYYYMMDD 2024-07-09
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
Hagberg A. A. (ref65/cit65) 2008
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1021/jp004368u
– ident: ref63/cit63
  doi: 10.1214/ss/1177013690
– ident: ref66/cit66
– ident: ref13/cit13
  doi: 10.1021/jp804939v
– ident: ref42/cit42
  doi: 10.1021/acs.jpca.6b12367
– ident: ref44/cit44
  doi: 10.1021/acs.jcim.8b00078
– ident: ref2/cit2
  doi: 10.1016/j.apenergy.2013.01.058
– ident: ref70/cit70
  doi: 10.1021/acs.energyfuels.1c01266
– ident: ref21/cit21
  doi: 10.1021/ef3012596
– ident: ref31/cit31
  doi: 10.1016/j.pecs.2023.101084
– ident: ref69/cit69
  doi: 10.1016/j.jmgm.2014.07.002
– ident: ref12/cit12
  doi: 10.1021/jp3023887
– ident: ref53/cit53
  doi: 10.1021/acs.jpca.0c09168
– ident: ref18/cit18
  doi: 10.1016/j.proci.2010.05.027
– ident: ref27/cit27
  doi: 10.1016/j.combustflame.2014.07.032
– ident: ref16/cit16
  doi: 10.1021/acs.jpca.5b00837
– ident: ref23/cit23
  doi: 10.1016/j.combustflame.2013.12.006
– ident: ref41/cit41
  doi: 10.1016/j.combustflame.2010.08.010
– ident: ref22/cit22
  doi: 10.1002/kin.20047
– ident: ref67/cit67
  doi: 10.3866/PKU.WHXB201503022
– ident: ref64/cit64
– ident: ref49/cit49
  doi: 10.1021/acs.jpca.8b09947
– ident: ref58/cit58
  doi: 10.1088/1364-7830/3/2/002
– ident: ref3/cit3
  doi: 10.1016/S0360-1285(03)00060-1
– ident: ref48/cit48
  doi: 10.1021/acs.jcim.9b00237
– ident: ref56/cit56
  doi: 10.1016/S0082-0784(00)80559-7
– ident: ref7/cit7
  doi: 10.1016/S0010-2180(97)00282-4
– ident: ref19/cit19
  doi: 10.1016/j.combustflame.2011.12.017
– ident: ref38/cit38
  doi: 10.1038/npjcompumats.2015.11
– ident: ref35/cit35
  doi: 10.1002/kin.20603
– ident: ref47/cit47
  doi: 10.1002/jcc.25809
– ident: ref61/cit61
  doi: 10.1016/j.jmgm.2013.02.001
– ident: ref60/cit60
– ident: ref6/cit6
  doi: 10.1016/S0010-2180(01)00373-X
– ident: ref8/cit8
  doi: 10.1016/j.combustflame.2008.07.014
– ident: ref5/cit5
  doi: 10.1007/s11426-017-9066-9
– ident: ref46/cit46
  doi: 10.1021/acs.jcim.1c01197
– ident: ref51/cit51
  doi: 10.1021/acs.jctc.2c00623
– ident: ref28/cit28
  doi: 10.1016/j.combustflame.2013.06.029
– ident: ref11/cit11
  doi: 10.1021/jp405262r
– ident: ref1/cit1
  doi: 10.1016/j.pecs.2017.09.004
– ident: ref37/cit37
  doi: 10.1021/jp709896w
– ident: ref54/cit54
  doi: 10.1016/j.proci.2004.08.145
– ident: ref52/cit52
  doi: 10.1039/D3SC01202F
– ident: ref57/cit57
  doi: 10.1016/S0082-0784(98)80416-5
– ident: ref68/cit68
  doi: 10.1016/j.compchemeng.2006.02.007
– ident: ref4/cit4
  doi: 10.1016/j.combustflame.2008.12.007
– ident: ref40/cit40
  doi: 10.1021/jp311498u
– ident: ref39/cit39
  doi: 10.1021/jp304040q
– ident: ref55/cit55
  doi: 10.1016/S0082-0784(89)80102-X
– ident: ref25/cit25
  doi: 10.1016/j.combustflame.2013.08.001
– ident: ref9/cit9
  doi: 10.1016/j.combustflame.2013.08.024
– ident: ref43/cit43
  doi: 10.1016/j.combustflame.2021.111865
– ident: ref45/cit45
  doi: 10.1021/acs.jctc.7b00524
– ident: ref10/cit10
  doi: 10.1016/j.pecs.2007.10.002
– ident: ref29/cit29
  doi: 10.1016/j.proci.2006.08.041
– start-page: 11
  volume-title: Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, August 19–24, 2008
  year: 2008
  ident: ref65/cit65
– ident: ref26/cit26
  doi: 10.1016/j.combustflame.2014.05.010
– ident: ref17/cit17
  doi: 10.1016/S1540-7489(02)80161-4
– ident: ref30/cit30
  doi: 10.1021/jp067592d
– ident: ref34/cit34
  doi: 10.1063/1.440240
– ident: ref50/cit50
  doi: 10.1021/acs.jpca.1c00942
– ident: ref15/cit15
  doi: 10.1016/j.combustflame.2015.09.014
– ident: ref59/cit59
  doi: 10.1006/jcph.2001.6709
– ident: ref32/cit32
  doi: 10.1146/annurev.pc.44.100193.002241
– ident: ref33/cit33
  doi: 10.1039/df9541700040
– ident: ref71/cit71
  doi: 10.1016/S0082-0784(85)80681-0
– ident: ref62/cit62
  doi: 10.1021/ef402140n
– ident: ref20/cit20
  doi: 10.1016/j.pecs.2014.04.003
– ident: ref14/cit14
  doi: 10.1016/j.combustflame.2016.05.022
– ident: ref24/cit24
  doi: 10.1016/j.combustflame.2013.08.002
SSID ssj0033423
Score 2.4351568
Snippet In this study, we present an automated approach of rate-based skeleton network generation for ReaxFF MD simulation (RxMD-SN) for deriving the reaction kinetic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 5539
SubjectTerms Algorithms
Automation
Heptanes
Hydrocarbon fuels
Hydrocarbons
Kinetics
Methane
Molecular dynamics
Octane
Oxidation
Pyrolysis
Rate constants
Reaction kinetics
Reaction Mechanisms
Scale (corrosion)
Simulation
Title Automated Skeleton Network Generation for ReaxFF Molecular Dynamics Simulations of Hydrocarbon Fuel Pyrolysis and Oxidation via a Rate-Based Algorithm
URI http://dx.doi.org/10.1021/acs.jctc.4c00409
https://www.ncbi.nlm.nih.gov/pubmed/38937883
https://www.proquest.com/docview/3081397967
https://www.proquest.com/docview/3073233099
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS (American Chemical Society) - Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JbtRAEG2F5AAXIGGbEKKKBAcOHsa9eDkOA9YIiYAyRMrN6s0wJLGjsY0SPoTvpbptJwJClJNluxe7q-z37Cq9IuRlWHAWxVwH_vc9N4UKEhNHgaKKGmG0wV4u22I_mh_yD0fi6Eom5-8IPg3fSF2Pv-tGj7l2HpfeIRs0imOXvjedLYa3LnNKdl4blTvFyTDpQ5LXjeCASNd_AtF_2KVHmexBV66o9uKELrnkeNw2aqx__ivdeIsbeEju92QTpp13bJI1W26Ru7Ohxtsj8mvaNhVyVmtgcYwAhEQQ9rvEcOgEqZ3dAIktHFh5nmXwcSinC--6WvY1LJanfQ2wGqoC5hcGQVGuFHbMWnsCny9WlRc-AVka-HS-7Mo4wY-lBAkHOHvwFrHUwPTka7VaNt9OH5PD7P2X2TzoKzUEEvlHExSaMZqaJEqlCA0TuJXS4SATiAUKORMzhUi00pFSEzNh6cQK5r7_7ETGuP-ErJdVaZ8RiKktCpd3i0SRFwL5K3f6MYxaLrjlfERe4YLm_ZNW5z6ITsPcH8RVzvtVHpHXg3nzs06444a2O4P9rwZmSJZc0DOKR2Tv8jTax0VUZGmr1rWJGWXo5TjE085vLifzTDBJ2PYtL_g5uUeRMPlU4HSHrDer1r5AwtOoXe_pvwH2oPub
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKOZQL78fSAoMEBw5ZNrGdx3FZiBZoF7TbSr1FfqVd2iZok1QtP4Tfy9hJtgIBglMUxx479iTzOTP5hpAXfs5oGDHluc_3TOfSi3UUejKQgeZaaWxloy1m4fSAfTjkhxvE7_-FwUFUKKlyTvwrdgH_tS37omo1ZMoqXnKNXOch8-1-azxZ9C9fagntHEUqs8STftx5Jn8nwdojVf1sj_4AMp2xSW-R-XqYLsbkZNjUcqi-_cLg-F_3cZvc7KAnjFtduUM2THGXbE36jG_3yPdxU5eIYI2GxQmaI4SFMGvDxKGlp7arCAhzYW7ERZrCXp9cF962me0rWCzPuoxgFZQ5TC81mkixktgwbcwpfL5clY4GBUSh4dPFsk3qBOdLAQLm2Lv3Bi2rhvHpUbla1sdn98lB-m5_MvW6vA2eQDRSe7miNEh0HCaC-5pyPAphrSLlaBkkIiiqcx4rqUIpR3pEk5Hh1O4GzUhEeP6AbBZlYR4RiAKT5zYKF2EjyzmiWWbZZGhgGGeGsQF5iROadc9dlTmXeuBnrhBnOetmeUBe9aucfW1pPP5Sd6dXgyvBFKGTdYGG0YA8X1_G9bH-FVGYsrF1IhpQ1HkU8bBVn3VnDhfGMX38jwN-Rram-3u72e772cdtciNAKOWChJMdslmvGvMEoVAtnzrl_wF1egQM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkaCX8i5bCgwSHDhk2cR2HsdlS7S8lqpLUW-RX2mXtkm1SVDLD-H3MnaSRSBAcIri2GPHHme-ZCbfEPLUzxkNI6Y89_me6Vx6sY5CTwYy0Fwrja1stMUsnB6wN4f8cI3w_l8YHESFkirnxLe7-lznHcOA_8KWf1a1GjJllS-5Qq7yEHe6RUSTef8AppbUztGkMks-6cedd_J3EqxNUtXPNukPQNMZnPQG-bQaqoszORk2tRyqr7-wOP73vdwkmx0EhXGrM7fImiluk-uTPvPbHfJt3NQlIlmjYX6CZgnhIczacHFoaartagLCXdg34iJN4X2fZBd22wz3FcwXZ11msArKHKaXGk2lWEpsmDbmFPYul6WjQwFRaPhwsWiTO8GXhQAB-9i79xItrIbx6VG5XNTHZ3fJQfrq42TqdfkbPIGopPZyRWmQ6DhMBPc15XgUwlpHytFCSERSVOc8VlKFUo70iCYjw6l9KzQjEeH5PbJelIW5TyAKTJ7baFyEjyzniGqZZZWhgWGcGcYG5BlOaNbtvypzrvXAz1whznLWzfKAPO9XOjtv6Tz-UnenV4UfgilCKOsKDaMBebK6jOtj_SyiMGVj60Q0oKj7KGKrVaFVZw4fxjHd_scBPybX9nbT7N3r2dsHZCNAROVihZMdsl4vG_MQEVEtHzn9_w7gQwaP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Skeleton+Network+Generation+for+ReaxFF+Molecular+Dynamics+Simulations+of+Hydrocarbon+Fuel+Pyrolysis+and+Oxidation+via+a+Rate-Based+Algorithm&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Xiao%2C+Yuanyuan&rft.au=Zheng%2C+Mo&rft.au=Li%2C+Xiaoxia&rft.au=Ren%2C+Chunxing&rft.date=2024-07-09&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=20&rft.issue=13&rft.spage=5539&rft.epage=5557&rft_id=info:doi/10.1021%2Facs.jctc.4c00409&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jctc_4c00409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon