Automatic Feature Selection for Atom-Centered Neural Network Potentials Using a Gradient Boosting Decision Algorithm
Atom-centered neural network (ANN) potentials have shown high accuracy and computational efficiency in modeling atomic systems. A crucial step in developing reliable ANN potentials is the proper selection of atom-centered symmetry functions (ACSFs), also known as atomic features, to describe atomic...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 20; no. 23; pp. 10564 - 10573 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
10.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 1549-9626 |
| DOI | 10.1021/acs.jctc.4c01176 |
Cover
| Summary: | Atom-centered neural network (ANN) potentials have shown high accuracy and computational efficiency in modeling atomic systems. A crucial step in developing reliable ANN potentials is the proper selection of atom-centered symmetry functions (ACSFs), also known as atomic features, to describe atomic environments. Inappropriate selection of ACSFs can lead to poor-quality ANN potentials. Here, we propose a gradient boosting decision tree (GBDT)-based framework for the automatic selection of optimal ACSFs. This framework takes uniformly distributed sets of ACSFs as input and evaluates their relative importance. The ACSFs with high average importance scores are selected and used to train an ANN potential. We applied this method to the Ge system, resulting in an ANN potential with root-mean-square errors (RMSE) of 10.2 meV/atom for energy and 84.8 meV/Å for force predictions, utilizing only 18 ACSFs to achieve a balance between accuracy and computational efficiency. The framework is validated using the grid searching method, demonstrating that ACSFs selected with our framework are in the optimal region. Furthermore, we also compared our method with commonly used feature selection algorithms. The results show that our algorithm outperforms the others in terms of effectiveness and accuracy. This study highlights the significance of the ACSF parameter effect on the ANN performance and presents a promising method for automatic ACSF selection, facilitating the development of machine learning potentials. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1549-9618 1549-9626 1549-9626 |
| DOI: | 10.1021/acs.jctc.4c01176 |