A comparison of hillslope drainage area estimation methods using high‐resolution DEMs with implications for topographic studies of gullies
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used...
        Saved in:
      
    
          | Published in | Earth surface processes and landforms Vol. 46; no. 11; pp. 2229 - 2247 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Bognor Regis
          Wiley Subscription Services, Inc
    
        15.09.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0197-9337 1096-9837  | 
| DOI | 10.1002/esp.5171 | 
Cover
| Abstract | Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.
DEM‐based models of gully topographic thresholds are improved in low‐relief environments by using a finer resolution (≤2 m) DEM and multiple‐direction flow routing algorithm. This is especially true where divergent flow conditions exist upstream of gully heads. Hydrologic‐enforcement methods (breaching and filling) also affect gully topographic threshold analysis. For a semi‐arid savannah landscape in north‐eastern Australia (Weany Creek) we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. | 
    
|---|---|
| AbstractList | Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km 2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k ) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. DEM‐based models of gully topographic thresholds are improved in low‐relief environments by using a finer resolution (≤2 m) DEM and multiple‐direction flow routing algorithm. This is especially true where divergent flow conditions exist upstream of gully heads. Hydrologic‐enforcement methods (breaching and filling) also affect gully topographic threshold analysis. For a semi‐arid savannah landscape in north‐eastern Australia (Weany Creek) we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  | 
    
| Author | Hairsine, Peter B. Dijk, Albert I. J. M. Wilkinson, Scott N. Walker, Simon J.  | 
    
| Author_xml | – sequence: 1 givenname: Simon J. orcidid: 0000-0002-5257-3172 surname: Walker fullname: Walker, Simon J. email: simon.walker@anu.edu.au organization: CSIRO Land and Water – sequence: 2 givenname: Albert I. J. M. orcidid: 0000-0002-6508-7480 surname: Dijk fullname: Dijk, Albert I. J. M. organization: Australian National University – sequence: 3 givenname: Scott N. orcidid: 0000-0002-2879-8603 surname: Wilkinson fullname: Wilkinson, Scott N. organization: CSIRO Land and Water – sequence: 4 givenname: Peter B. surname: Hairsine fullname: Hairsine, Peter B. organization: Australian National University  | 
    
| BookMark | eNp1kM9KAzEQh4NUsK2CjxDw4mVr0nSbzbHU-gcqCup5ye5OdlPSzZrsUnrzATz4jD6JaetJ9DQD8_1mmG-AerWtAaFzSkaUkPEV-GYUU06PUJ8SMY1EwngP9QkVPBKM8RM08H5FCKWTRPTRxwzndt1Ip72tsVW40sZ4YxvAhZO6liVg6UBi8K1ey1YHag1tZQuPO6_rMgTK6uv904G3ptvPrxcPHm90W2G9bozO9ymPlXW4tY0tnWwqnWPfdoUGvztadsaE9hQdK2k8nP3UIXq9WbzM76Ll4-39fLaMJKNTGsUZxGwipCIi4WQqpRI8yRThjGZMyVgWkopcAYgMElLEDDLIJKdsGk-SsWJsiC4Oextn37rwWbqynavDyXQc8zGlSWADNTpQubPeO1Bprtv9L20wY1JK0p3xNBhPd8ZD4PJXoHHBmdv-hUYHdKMNbP_l0sXz057_BsdTlnA | 
    
| CitedBy_id | crossref_primary_10_1002_esp_5248 crossref_primary_10_1016_j_geoderma_2024_117015 crossref_primary_10_3390_land11020204 crossref_primary_10_1002_esp_5575 crossref_primary_10_1016_j_rse_2024_114522 crossref_primary_10_1016_j_still_2023_105697 crossref_primary_10_1002_ldr_4161 crossref_primary_10_1016_j_catena_2023_107323 crossref_primary_10_1016_j_catena_2024_107897 crossref_primary_10_1111_1752_1688_13012  | 
    
| Cites_doi | 10.5194/hess-18-3279-2014 10.1029/2005WR004648 10.1016/j.jhydrol.2019.124520 10.1016/S0341-8162(02)00129-7 10.1016/j.jseaes.2009.02.004 10.1002/esp.4339 10.1016/j.jhydrol.2008.05.008 10.1175/JCLI-D-13-00715.1 10.1016/j.jag.2016.08.012 10.1177/0309133318819403 10.1071/RJ13013 10.1016/j.jhydrol.2010.06.014 10.1016/j.rse.2019.111629 10.1007/s11069-015-1701-2 10.1002/hyp.3360050106 10.1002/jgrf.20127 10.1111/j.1365-2389.2008.01094.x 10.1016/j.geomorph.2020.107115 10.1016/j.cageo.2016.07.003 10.5194/hess-10-101-2006 10.1016/j.cageo.2013.04.024 10.1016/j.geomorph.2020.107123 10.1002/1096-9837(200010)25:11<1201::AID-ESP131>3.0.CO;2-L 10.1080/02723646.2013.778691 10.1080/13658816.2014.975715 10.1016/j.catena.2010.08.002 10.1002/esp.404 10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B 10.1029/1999WR900034 10.1016/0098-3004(91)90048-I 10.1002/hyp.10648 10.1038/336201a0 10.1002/ldr.2976 10.1002/ldr.931 10.1016/S0734-189X(84)80011-0 10.5194/isprsarchives-XXXIX-B8-469-2012 10.1029/96WR03137 10.1002/hyp.6277 10.1016/j.earscirev.2013.12.006 10.1002/ldr.2805 10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2 10.1002/esp.1285 10.1029/2004GL020802 10.5194/esurf-5-21-2017 10.1016/j.catena.2011.07.003 10.1002/ldr.3807 10.3390/w9070540 10.1016/j.jhydrol.2007.09.001 10.1071/EG992353 10.1016/j.geomorph.2019.05.012 10.1038/sdata.2018.214 10.1029/2006WR005128 10.1002/esp.1321 10.1016/j.earscirev.2016.01.009 10.5194/esurf-8-379-2020 10.1002/esp.1286 10.1080/02693799608902081 10.1038/336232a0 10.1016/S0341-8162(02)00143-1 10.1016/j.jhydrol.2010.05.002 10.1002/hyp.3360080405 10.3390/ijgi6110328 10.1016/0169-555X(95)00141-Q 10.13031/2013.30829 10.1016/0034-4257(86)90018-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd.  | 
    
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd.  | 
    
| DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G  | 
    
| DOI | 10.1002/esp.5171 | 
    
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Civil Engineering Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology  | 
    
| EISSN | 1096-9837 | 
    
| EndPage | 2247 | 
    
| ExternalDocumentID | 10_1002_esp_5171 ESP5171  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Commonwealth Scientific and Industrial Research Organisation – fundername: Australian Government's National Environment Science Program (NESP) Tropical Water Quality Hub funderid: Projects 2.1.4 and 5.9  | 
    
| GroupedDBID | -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G  | 
    
| ID | FETCH-LOGICAL-a3161-5be5349af098706aaf978bf0731b3fa5ada19cfee9be80d53ebeba71365482f33 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0197-9337 | 
    
| IngestDate | Sun Sep 07 02:40:54 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Wed Oct 01 02:10:32 EDT 2025 Wed Jan 22 16:29:02 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a3161-5be5349af098706aaf978bf0731b3fa5ada19cfee9be80d53ebeba71365482f33 | 
    
| Notes | Funding information Commonwealth Scientific and Industrial Research Organisation; Australian Government's National Environment Science Program (NESP) Tropical Water Quality Hub, Grant/Award Number: Projects 2.1.4 and 5.9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2879-8603 0000-0002-5257-3172 0000-0002-6508-7480  | 
    
| PQID | 2572118136 | 
    
| PQPubID | 866381 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | proquest_journals_2572118136 crossref_citationtrail_10_1002_esp_5171 crossref_primary_10_1002_esp_5171 wiley_primary_10_1002_esp_5171_ESP5171  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 15 September 2021 | 
    
| PublicationDateYYYYMMDD | 2021-09-15 | 
    
| PublicationDate_xml | – month: 09 year: 2021 text: 15 September 2021 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Bognor Regis | 
    
| PublicationPlace_xml | – name: Bognor Regis | 
    
| PublicationSubtitle | The Journal of the British Geomorphological Research Group | 
    
| PublicationTitle | Earth surface processes and landforms | 
    
| PublicationYear | 2021 | 
    
| Publisher | Wiley Subscription Services, Inc | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc | 
    
| References | 2017; 5 2015; 79 2017; 6 1991; 17 2006; 31 2007; 347 1984; 28 2014; 27 1988; 31 2014; 62 2003; 50 2014; 130 2018; 43 2017; 9 2020; 8 2004; 31 2018; 5 2010a; 389 2013; 118 2016; 154 2008; 357 1982 2014; 18 1981 2007; 21 1998; 12 1975; 3 1988; 336 2018; 29 2009; 20 2012 2000; 25 2017; 28 2006; 10 2020; 582 2009; 60 2016b; 95 2007 1994 2002 2020; 32 1996; 16 1996; 10 2010; 83 1991; 5 2019; 341 2002; 27 1994; 8 2009; 35 2006; 42 2015; 29 1997; 33 1986; 20 2020 2013; 34 2019; 43 2017; 54 2015; 2015 1999; 35 2020; 358 2010b; 389 1964 2014; 36 2020; 239 2020; 359 2011; 87 2014 2007; 43 1992; 23 2016a; 30 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 Australian Bureau of Meteorology (e_1_2_9_2_1) 2020 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 Tindall D. (e_1_2_9_66_1) 2014 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 Sibson R. (e_1_2_9_59_1) 1981 Montgomery D.R. (e_1_2_9_37_1) 1994 e_1_2_9_26_1 e_1_2_9_49_1 Leopold L.B. (e_1_2_9_31_1) 1964 e_1_2_9_47_1 Drover D.R. (e_1_2_9_13_1) 2015; 2015 Klingaman N.P. (e_1_2_9_28_1) 2012 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Heine A. (e_1_2_9_21_1) 2002 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 Selby M.J. (e_1_2_9_56_1) 1982 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 62 start-page: 117 year: 2014 end-page: 127 article-title: Priority‐flood: An optimal depression‐filling and watershed‐labeling algorithm for digital elevation models publication-title: Computers & Geosciences – volume: 18 start-page: 3279 issue: 8 year: 2014 end-page: 3299 article-title: Evaluating topographic wetness indices across central New York agricultural landscapes publication-title: Hydrology and Earth System Sciences – volume: 16 start-page: 161 issue: 2 year: 1996 end-page: 173 article-title: Geomorphic threshold conditions for ephemeral gully incision publication-title: Geomorphology – volume: 2015 start-page: 11817 year: 2015 end-page: 11846 article-title: Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics publication-title: Hydrology and Earth System Sciences Discussions – volume: 20 start-page: 535 issue: 5 year: 2009 end-page: 550 article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain publication-title: Land Degradation & Development – volume: 28 start-page: 2540 issue: 8 year: 2017 end-page: 2552 article-title: Rainfall and vegetation effects on temporal variation of topographic thresholds for gully initiation in Mediterranean cropland and olive groves publication-title: Land Degradation & Development – volume: 33 start-page: 309 issue: 2 year: 1997 end-page: 319 article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models publication-title: Water Resources Research – volume: 8 start-page: 379 year: 2020 end-page: 397 article-title: Short communication: Landlab v2.0 – a software package for earth surface dynamics publication-title: Earth Surface Dynamics – volume: 239 year: 2020 article-title: Global satellite‐based river gauging and the influence of river morphology on its application publication-title: Remote Sensing of Environment – volume: 21 start-page: 1026 issue: 8 year: 2007 end-page: 1044 article-title: Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis publication-title: Hydrological Processes: An International Journal – volume: 35 start-page: 180 issue: 2 year: 2009 end-page: 189 article-title: Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr‐Samal watershed) publication-title: Journal of Asian Earth Sciences – volume: 9 issue: 7 year: 2017 article-title: Characterisation of hydrological response to rainfall at multi spatio‐temporal scales in savannas of semi‐arid Australia publication-title: Watermark – year: 2014 – volume: 43 start-page: 46 issue: 1 year: 2019 end-page: 64 article-title: Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling publication-title: Progress in Physical Geography: Earth and Environment – volume: 29 start-page: 1896 issue: 6 year: 2018 end-page: 1905 article-title: Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques publication-title: Land Degradation & Development – volume: 28 start-page: 323 issue: 3 year: 1984 end-page: 344 article-title: The extraction of drainage networks from digital elevation data publication-title: Computer Vision, Graphics, and Image Processing – year: 1982 – volume: 50 start-page: 401 issue: 2–4 year: 2003 end-page: 414 article-title: Threshold conditions for initiation of valley‐side gullies in the Middle Veld of Swaziland publication-title: Catena – volume: 79 start-page: 51 issue: S1 year: 2015 end-page: 69 article-title: Bias in topographic thresholds for gully heads publication-title: Natural Hazards – volume: 336 start-page: 232 issue: 6196 year: 1988 end-page: 234 article-title: Where do channels begin? publication-title: Nature – volume: 29 start-page: 397 issue: 3 year: 2015 end-page: 411 article-title: Modelling surface drainage patterns in altered landscapes using LiDAR publication-title: International Journal of Geographical Information Science – volume: 389 start-page: 237 issue: 3–4 year: 2010a end-page: 248 article-title: Impacts of improved grazing land management on sediment yields. Part 1: Hillslope processes publication-title: Journal of Hydrology – volume: 83 start-page: 148 issue: 2‐3 year: 2010 end-page: 157 article-title: Factors related to gully erosion in woody encroachment in south‐eastern Australia publication-title: Catena – volume: 60 start-page: 94 issue: 1 year: 2009 end-page: 109 article-title: Topographic modelling of soil moisture conditions: A comparison and verification of two models publication-title: European Journal of Soil Science – volume: 5 start-page: 59 issue: 1 year: 1991 end-page: 79 article-title: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models publication-title: Hydrological Processes – volume: 6 issue: 11 year: 2017 article-title: Assessment of UAV and ground‐based structure from motion with multi‐view stereo photogrammetry in a gullied savanna catchment publication-title: ISPRS International Journal of Geo‐Information – volume: 87 start-page: 368 issue: 3 year: 2011 end-page: 375 article-title: Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes publication-title: Catena – volume: 154 start-page: 336 year: 2016 end-page: 355 article-title: How fast do gully headcuts retreat? publication-title: Earth‐Science Reviews – volume: 54 start-page: 38 year: 2017 end-page: 52 article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography publication-title: International Journal of Applied Earth Observation and Geoinformation – volume: 35 start-page: 2259 issue: 7 year: 1999 end-page: 2268 article-title: On the effect of digital elevation model accuracy on hydrology and geomorphology publication-title: Water Resources Research – volume: 27 start-page: 6035 issue: 15 year: 2014 end-page: 6050 article-title: Extreme rainfall variability in Australia: Patterns, drivers, and predictability publication-title: Journal of Climate – volume: 8 start-page: 327 issue: 4 year: 1994 end-page: 334 article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation publication-title: Hydrological Processes – year: 1964 – volume: 42 issue: 9 year: 2006 article-title: Comparison of grid‐based algorithms for computing upslope contributing area publication-title: Water Resources Research – volume: 12 start-page: 857 issue: 6 year: 1998 end-page: 872 article-title: A phenomenon‐based approach to upslope contributing area and depressions in DEMs publication-title: Hydrological Processes – volume: 50 start-page: 91 issue: 2–4 year: 2003 end-page: 133 article-title: Gully erosion and environmental change: Importance and research needs publication-title: Catena – volume: 3 start-page: 88 issue: 2 year: 1975 end-page: 90 article-title: Gully erosion, Northwestern Colorado: A threshold phenomenon publication-title: Geology – volume: 43 issue: 4 year: 2007 article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models publication-title: Water Resources Research – volume: 10 start-page: 101 issue: 1 year: 2006 end-page: 112 article-title: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations publication-title: Hydrology and Earth System Sciences – volume: 17 start-page: 413 issue: 3 year: 1991 end-page: 422 article-title: Calculating catchment area with divergent flow based on a regular grid publication-title: Computers & Geosciences – year: 2007 – volume: 25 start-page: 1201 issue: 11 year: 2000 end-page: 1220 article-title: Thresholds for gully initiation and sedimentation in Mediterranean Europe publication-title: Earth Surface Processes and Landforms – volume: 31 start-page: 1098 issue: 4 year: 1988 end-page: 1107 article-title: Topographic effects on the distribution of surface soil water and the location of ephemeral gullies publication-title: Transactions of ASAE – volume: 31 start-page: 507 issue: 4 year: 2006 end-page: 525 article-title: Gullying and erosion control at archaeological sites in Grand Canyon, Arizona publication-title: Earth Surface Processes and Landforms – volume: 336 start-page: 201 issue: 6196 year: 1988 end-page: 201 article-title: Hill slopes and hollows publication-title: Nature – start-page: 21 year: 1981 end-page: 36 – volume: 34 start-page: 50 issue: 1 year: 2013 end-page: 59 article-title: Critical topographic threshold of gully erosion in Yuanmou dry–hot valley in Southwestern China publication-title: Physical Geography – volume: 347 start-page: 79 issue: 1–2 year: 2007 end-page: 89 article-title: Effects of DEM resolution on the calculation of topographical indices: TWI and its components publication-title: Journal of Hydrology – volume: 341 start-page: 15 year: 2019 end-page: 27 article-title: Morphological characteristics and topographic thresholds of gullies in different agro‐ecological environments publication-title: Geomorphology – year: 2012 – volume: 130 start-page: 73 year: 2014 end-page: 85 article-title: A review of topographic threshold conditions for gully head development in different environments publication-title: Earth‐Science Reviews – volume: 359 year: 2020 article-title: Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models publication-title: Geomorphology – volume: 31 start-page: 187 issue: 2 year: 2006 end-page: 199 article-title: Development and controlling factors of gullies and gully complexes, East Coast, New Zealand publication-title: Earth Surface Processes and Landforms – start-page: B8 year: 2012 – volume: 30 start-page: 846 issue: 6 year: 2016a end-page: 857 article-title: Efficient hybrid breaching–filling sink removal methods for flow path enforcement in digital elevation models publication-title: Hydrological Processes – volume: 95 start-page: 75 year: 2016b end-page: 84 article-title: Whitebox GAT: A case study in geomorphometric analysis publication-title: Computers & Geosciences – volume: 32 start-page: 1555 issue: 3 year: 2020 end-page: 1569 article-title: Agricultural development risks increasing gully erosion and cumulative sediment yields from headwater streams in Great Barrier Reef catchments publication-title: Land Degradation and Development – volume: 357 start-page: 93 issue: 1–2 year: 2008 end-page: 111 article-title: Flow characteristics of rivers in northern Australia: Implications for development publication-title: Journal of Hydrology – volume: 10 start-page: 311 issue: 3 year: 1996 end-page: 331 article-title: Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies publication-title: International Journal of Geographical Information Systems – volume: 20 start-page: 121 issue: 2 year: 1986 end-page: 139 article-title: On the nature of models in remote sensing publication-title: Remote Sensing of Environment – volume: 118 start-page: 2105 issue: 4 year: 2013 end-page: 2123 article-title: Impact of flow routing on catchment area calculations, slope estimates, and numerical simulations of landscape development publication-title: Journal of Geophysical Research – Earth Surface – volume: 23 start-page: 353 issue: 1–2 year: 1992 end-page: 359 article-title: New insights into the structure and subdivision of the Ravenswood Batholith — a geophysical perspective publication-title: Exploration Geophysics – volume: 36 start-page: 67 issue: 1 year: 2014 end-page: 84 article-title: Can changes to pasture management reduce runoff and sediment loss to the Great Barrier Reef? The results of a 10‐year study in the Burdekin catchment, Australia publication-title: The Rangeland Journal – year: 2002 – year: 2020 – volume: 358 year: 2020 article-title: A multi‐resolution method to map and identify locations of future gully and channel incision publication-title: Geomorphology – volume: 5 start-page: 21 issue: 1 year: 2017 end-page: 46 article-title: Creative computing with Landlab: An open‐source toolkit for building, coupling, and exploring two‐dimensional numerical models of earth‐surface dynamics publication-title: Earth Surface Dynamics – start-page: 221 year: 1994 end-page: 246 – volume: 5 start-page: 180214 issue: 1 year: 2018 article-title: Present and future Köppen–Geiger climate classification maps at 1‐km resolution publication-title: Scientific Data – volume: 582 year: 2020 article-title: Effect of reduced grazing pressure on sediment and nutrient yields in savanna rangeland streams draining to the Great Barrier Reef publication-title: Journal of Hydrology – volume: 389 start-page: 249 issue: 3–4 year: 2010b end-page: 259 article-title: Impacts of improved grazing land management on sediment yields. Part 2: Catchment response publication-title: Journal of Hydrology – volume: 43 start-page: 1711 issue: 8 year: 2018 end-page: 1725 article-title: Grazing impacts on gully dynamics indicate approaches for gully erosion control in northeast Australia publication-title: Earth Surface Processes and Landforms – volume: 27 start-page: 1267 issue: 12 year: 2002 end-page: 1283 article-title: Impact of road building on gully erosion risk: A case study from the Northern Ethiopian Highlands publication-title: Earth Surface Processes and Landforms – volume: 31 issue: 20 year: 2004 article-title: Persistent drainage migration in a numerical landscape evolution model publication-title: Geophysical Research Letters – volume: 31 start-page: 809 issue: 7 year: 2006 end-page: 824 article-title: Channel head location and characteristics using digital elevation models publication-title: Earth Surface Processes and Landforms – ident: e_1_2_9_9_1 doi: 10.5194/hess-18-3279-2014 – ident: e_1_2_9_14_1 doi: 10.1029/2005WR004648 – ident: e_1_2_9_30_1 doi: 10.1016/j.jhydrol.2019.124520 – ident: e_1_2_9_39_1 doi: 10.1016/S0341-8162(02)00129-7 – ident: e_1_2_9_42_1 doi: 10.1016/j.jseaes.2009.02.004 – volume-title: Rainfall in Queensland. Part 1. A literature survey of key rainfall drivers in Queensland Australia: Rainfall variability and change year: 2012 ident: e_1_2_9_28_1 – ident: e_1_2_9_73_1 doi: 10.1002/esp.4339 – ident: e_1_2_9_50_1 doi: 10.1016/j.jhydrol.2008.05.008 – ident: e_1_2_9_26_1 doi: 10.1175/JCLI-D-13-00715.1 – ident: e_1_2_9_65_1 doi: 10.1016/j.jag.2016.08.012 – ident: e_1_2_9_60_1 doi: 10.1177/0309133318819403 – ident: e_1_2_9_6_1 doi: 10.1071/RJ13013 – ident: e_1_2_9_7_1 doi: 10.1016/j.jhydrol.2010.06.014 – ident: e_1_2_9_24_1 doi: 10.1016/j.rse.2019.111629 – ident: e_1_2_9_54_1 doi: 10.1007/s11069-015-1701-2 – volume-title: Fluvial processes in geomorphology year: 1964 ident: e_1_2_9_31_1 – ident: e_1_2_9_52_1 doi: 10.1002/hyp.3360050106 – ident: e_1_2_9_57_1 doi: 10.1002/jgrf.20127 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-2389.2008.01094.x – ident: e_1_2_9_72_1 doi: 10.1016/j.geomorph.2020.107115 – ident: e_1_2_9_33_1 doi: 10.1016/j.cageo.2016.07.003 – ident: e_1_2_9_62_1 doi: 10.5194/hess-10-101-2006 – ident: e_1_2_9_3_1 doi: 10.1016/j.cageo.2013.04.024 – ident: e_1_2_9_10_1 doi: 10.1016/j.geomorph.2020.107123 – ident: e_1_2_9_69_1 doi: 10.1002/1096-9837(200010)25:11<1201::AID-ESP131>3.0.CO;2-L – ident: e_1_2_9_12_1 doi: 10.1080/02723646.2013.778691 – ident: e_1_2_9_34_1 doi: 10.1080/13658816.2014.975715 – ident: e_1_2_9_40_1 doi: 10.1016/j.catena.2010.08.002 – start-page: 21 volume-title: Interpreting Multivariate Data year: 1981 ident: e_1_2_9_59_1 – ident: e_1_2_9_43_1 doi: 10.1002/esp.404 – ident: e_1_2_9_53_1 doi: 10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B – ident: e_1_2_9_71_1 doi: 10.1029/1999WR900034 – ident: e_1_2_9_15_1 doi: 10.1016/0098-3004(91)90048-I – ident: e_1_2_9_32_1 doi: 10.1002/hyp.10648 – ident: e_1_2_9_27_1 doi: 10.1038/336201a0 – ident: e_1_2_9_17_1 doi: 10.1002/ldr.2976 – ident: e_1_2_9_18_1 doi: 10.1002/ldr.931 – ident: e_1_2_9_44_1 doi: 10.1016/S0734-189X(84)80011-0 – ident: e_1_2_9_16_1 doi: 10.5194/isprsarchives-XXXIX-B8-469-2012 – ident: e_1_2_9_64_1 doi: 10.1029/96WR03137 – ident: e_1_2_9_74_1 doi: 10.1002/hyp.6277 – ident: e_1_2_9_67_1 doi: 10.1016/j.earscirev.2013.12.006 – ident: e_1_2_9_20_1 doi: 10.1002/ldr.2805 – ident: e_1_2_9_47_1 doi: 10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2 – start-page: 221 volume-title: Process Models and Theoretical Geomorphology year: 1994 ident: e_1_2_9_37_1 – volume-title: Climate data online year: 2020 ident: e_1_2_9_2_1 – ident: e_1_2_9_19_1 doi: 10.1002/esp.1285 – ident: e_1_2_9_49_1 doi: 10.1029/2004GL020802 – ident: e_1_2_9_22_1 doi: 10.5194/esurf-5-21-2017 – ident: e_1_2_9_35_1 doi: 10.1016/j.catena.2011.07.003 – ident: e_1_2_9_58_1 doi: 10.1002/ldr.3807 – ident: e_1_2_9_25_1 doi: 10.3390/w9070540 – ident: e_1_2_9_61_1 doi: 10.1016/j.jhydrol.2007.09.001 – ident: e_1_2_9_75_1 doi: 10.1071/EG992353 – ident: e_1_2_9_76_1 doi: 10.1016/j.geomorph.2019.05.012 – ident: e_1_2_9_8_1 doi: 10.1038/sdata.2018.214 – ident: e_1_2_9_55_1 doi: 10.1029/2006WR005128 – volume-title: Characterisation of gully erosion by airphoto interpretation and GIS techniques of rangelands in semiarid northeastern Australia year: 2002 ident: e_1_2_9_21_1 – ident: e_1_2_9_46_1 doi: 10.1002/esp.1321 – ident: e_1_2_9_70_1 doi: 10.1016/j.earscirev.2016.01.009 – ident: e_1_2_9_4_1 doi: 10.5194/esurf-8-379-2020 – ident: e_1_2_9_48_1 doi: 10.1002/esp.1286 – ident: e_1_2_9_11_1 doi: 10.1080/02693799608902081 – volume-title: Hillslope Materials and Processes year: 1982 ident: e_1_2_9_56_1 – volume: 2015 start-page: 11817 year: 2015 ident: e_1_2_9_13_1 article-title: Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics publication-title: Hydrology and Earth System Sciences Discussions – ident: e_1_2_9_36_1 doi: 10.1038/336232a0 – ident: e_1_2_9_51_1 doi: 10.1016/S0341-8162(02)00143-1 – ident: e_1_2_9_5_1 doi: 10.1016/j.jhydrol.2010.05.002 – ident: e_1_2_9_23_1 doi: 10.1002/hyp.3360080405 – ident: e_1_2_9_29_1 doi: 10.3390/ijgi6110328 – ident: e_1_2_9_68_1 doi: 10.1016/0169-555X(95)00141-Q – ident: e_1_2_9_38_1 doi: 10.13031/2013.30829 – ident: e_1_2_9_45_1 – ident: e_1_2_9_63_1 doi: 10.1016/0034-4257(86)90018-0 – volume-title: Gully Mapping and Drivers in the Grazing Lands of the Burdekin Catchment year: 2014 ident: e_1_2_9_66_1  | 
    
| SSID | ssj0011489 | 
    
| Score | 2.3876326 | 
    
| Snippet | Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas.... | 
    
| SourceID | proquest crossref wiley  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2229 | 
    
| SubjectTerms | Algorithms Arid zones Aridity Barrier reefs Coastal inlets Convergence Creeks Digital Elevation Models Direction divergence and convergence Drainage Drainage area Enforcement Estimates Flow distribution Flow pattern flow routing algorithms Gullies Gully erosion gully headcut hydrologic enforcement Hydrology Lidar Methods Motion perception Parameter estimation Parameters Photogrammetry Resolution Spatial discrimination Spatial resolution threshold analysis Topography  | 
    
| Title | A comparison of hillslope drainage area estimation methods using high‐resolution DEMs with implications for topographic studies of gullies | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.5171 https://www.proquest.com/docview/2572118136  | 
    
| Volume | 46 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0197-9337 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1096-9837 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011489 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i-uLEURPXbdp026OIj4QFPEBgoeSNImKsrvY9aAnf4AHf6O_xJmmXR8oiKdekjZNJsk3ycz3MbYWcm64SWTQ5ioO4pzrQDpnAxeHaSqNbieKHMXDo2T_PD64EBdVVCXlwnh-iMGBG82Mcr2mCa50sflBGmqLXlOEZfp4GCWlN3UyYI4ilC99pnQaoM-e1ryzLb5ZV_y6E33Ay88gtdxldifYZd0-H1xy23zo62b-9I268X8_MMnGK_AJW95aptiQ7Uyz0UoH_fpxmo3slUK_jzPsZQvygUQhdB3QrUFx1-1ZMKQqgcsQKAScQCwdPv0RvBp1ARRLfwVEhPz2_IrufGXdgGNeAB38ws2nOHZA2Az9bs834iaHwoc20kev6KrKFrPsfHfnbHs_qJQbAhUhhAyEtiKKpXItSfeoSjl0VrXD5STUkVNCGRXK3FkrtW23jIjQlLRKKeQubnMXRXNsuNPt2HkGWog8iU2IUBF9UWO1U2lL5PgOidjPpA22UY9ille05qSucZd5QmaeYT9n1M8Ntjoo2fNUHj-UWaoNIasmc5HhqsYpPzdKGmy9HNFf62c7p8f0XPhrwUU2xilKhkQpxBIb7t8_2GWEOX29Uhr0O3xW_l0 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hqopeaKGtWKAwSFV7yrJx4mStnlAFbMuHqhYkDpUiO7YBgXZXZDnQU38AB35jf0ln4mShVStVPeViJ449tt_YM-8BvI6FsMJmKuoLnUZpKUykvHeRT-M8V9b0M82O4sFhNjhOP57Ikxl41-bCBH6I6YEbz4x6veYJzgfSm_esoa4ad2XM-eOP0ozcFEZEn6fcUYzzVciVziPy2vOWebYnNtuav-5F9wDzIUyt95mdp_C1bWEIL7noXk9Mt_z2G3njf_7CM5hv8CduBYNZgBk3XIS5Rgr97GYRHu_WWr83z-F2C8upSiGOPPLFQXU5Gju0LCxBKxFqwpzIRB0hAxKDIHWFHE5_isyF_OP7HXn0jYEjDXuFfPaL5w9C2ZGQM05G49CI8xKrEN3IHz3l2ypXvYDjne2j94OoEW-IdEIoMpLGySRV2vcUX6Vq7clfNZ5WlNgkXkttdaxK75wyrt-zMiFrMjrnqLu0L3ySvITZ4WjolgCNlGWW2pjQIrmj1hmv854s6R2K4J_NO_C2HcaibJjNWWDjsgiczKKgfi64nzuwMS05Dmwefyiz2lpC0cznqqCFTXCKbpJ14E09pH-tX2x_-cTP5X8tuA5zg6OD_WL_w-HeCjwRHDTDGhVyFWYnV9fuFaGeiVmrrfsnVwQCjQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1Vrfi4FChULC0wSAhO2W6cOInVU0W7lK-qAir1gBTZsV0qqt2IbA_tiR_Aob-RX8JMnGwLAglxysVOHHtsv7Fn3gN4Ggthhc1UVAidRmklTKS8d5FP4zxX1hSZZkfx3V62e5C-PpSHC7DZ58IEfoj5gRvPjHa95gnuaus3LllDXVMPZcz540upVAXH822_n3NHMc5XIVc6j8hrz3vm2ZHY6Gv-uhddAsyrMLXdZ8a34FPfwhBe8mV4OjPD6vw38sb__IXbsNzhT9wKBnMHFtxkBW50Uuifz1bg2stW6_fsLnzfwmquUohTj3xx0JxMa4eWhSVoJUJNmBOZqCNkQGIQpG6Qw-mPkLmQf3y7II--M3CkYW-Qz37x-EooOxJyxtm0Do04rrAJ0Y380SO-rXLNPTgY73x8sRt14g2RTghFRtI4maRK-5Hiq1StPfmrxtOKEpvEa6mtjlXlnVPGFSMrE7Imo3OOuksL4ZNkFRYn04m7D2ikrLLUxoQWyR21znidj2RF71AE_2w-gOf9MJZVx2zOAhsnZeBkFiX1c8n9PIAn85J1YPP4Q5n13hLKbj43JS1sglN0k2wAz9oh_Wv9cufDPj8f_GvBx3B9f3tcvn2192YNbgqOmWGJCrkOi7Ovp-4hgZ6ZedQa90_9RgIR | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+hillslope+drainage+area+estimation+methods+using+high%E2%80%90resolution+DEMs+with+implications+for+topographic+studies+of+gullies&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Walker%2C+Simon+J.&rft.au=van+Dijk%2C+Albert+I.+J.+M.&rft.au=Wilkinson%2C+Scott+N.&rft.au=Hairsine%2C+Peter+B.&rft.date=2021-09-15&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=46&rft.issue=11&rft.spage=2229&rft.epage=2247&rft_id=info:doi/10.1002%2Fesp.5171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_5171 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon |