A comparison of hillslope drainage area estimation methods using high‐resolution DEMs with implications for topographic studies of gullies

Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used...

Full description

Saved in:
Bibliographic Details
Published inEarth surface processes and landforms Vol. 46; no. 11; pp. 2229 - 2247
Main Authors Walker, Simon J., Dijk, Albert I. J. M., Wilkinson, Scott N., Hairsine, Peter B.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 15.09.2021
Subjects
Online AccessGet full text
ISSN0197-9337
1096-9837
DOI10.1002/esp.5171

Cover

Abstract Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. DEM‐based models of gully topographic thresholds are improved in low‐relief environments by using a finer resolution (≤2 m) DEM and multiple‐direction flow routing algorithm. This is especially true where divergent flow conditions exist upstream of gully heads. Hydrologic‐enforcement methods (breaching and filling) also affect gully topographic threshold analysis. For a semi‐arid savannah landscape in north‐eastern Australia (Weany Creek) we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.
AbstractList Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km 2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k ) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k  = 0.033 and b  = 0.189, indicating that it is highly susceptible to gully erosion.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high‐resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high‐resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high‐resolution data. Specifically, we investigated the impact of single‐ or multiple‐direction flow routing algorithms, DEM hydrologic‐enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low‐relief semi‐arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single‐ or multiple‐direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple‐direction flow routing algorithm achieve the most realistic drainage area estimates in low‐relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion. DEM‐based models of gully topographic thresholds are improved in low‐relief environments by using a finer resolution (≤2 m) DEM and multiple‐direction flow routing algorithm. This is especially true where divergent flow conditions exist upstream of gully heads. Hydrologic‐enforcement methods (breaching and filling) also affect gully topographic threshold analysis. For a semi‐arid savannah landscape in north‐eastern Australia (Weany Creek) we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.
Author Hairsine, Peter B.
Dijk, Albert I. J. M.
Wilkinson, Scott N.
Walker, Simon J.
Author_xml – sequence: 1
  givenname: Simon J.
  orcidid: 0000-0002-5257-3172
  surname: Walker
  fullname: Walker, Simon J.
  email: simon.walker@anu.edu.au
  organization: CSIRO Land and Water
– sequence: 2
  givenname: Albert I. J. M.
  orcidid: 0000-0002-6508-7480
  surname: Dijk
  fullname: Dijk, Albert I. J. M.
  organization: Australian National University
– sequence: 3
  givenname: Scott N.
  orcidid: 0000-0002-2879-8603
  surname: Wilkinson
  fullname: Wilkinson, Scott N.
  organization: CSIRO Land and Water
– sequence: 4
  givenname: Peter B.
  surname: Hairsine
  fullname: Hairsine, Peter B.
  organization: Australian National University
BookMark eNp1kM9KAzEQh4NUsK2CjxDw4mVr0nSbzbHU-gcqCup5ye5OdlPSzZrsUnrzATz4jD6JaetJ9DQD8_1mmG-AerWtAaFzSkaUkPEV-GYUU06PUJ8SMY1EwngP9QkVPBKM8RM08H5FCKWTRPTRxwzndt1Ip72tsVW40sZ4YxvAhZO6liVg6UBi8K1ey1YHag1tZQuPO6_rMgTK6uv904G3ptvPrxcPHm90W2G9bozO9ymPlXW4tY0tnWwqnWPfdoUGvztadsaE9hQdK2k8nP3UIXq9WbzM76Ll4-39fLaMJKNTGsUZxGwipCIi4WQqpRI8yRThjGZMyVgWkopcAYgMElLEDDLIJKdsGk-SsWJsiC4Oextn37rwWbqynavDyXQc8zGlSWADNTpQubPeO1Bprtv9L20wY1JK0p3xNBhPd8ZD4PJXoHHBmdv-hUYHdKMNbP_l0sXz057_BsdTlnA
CitedBy_id crossref_primary_10_1002_esp_5248
crossref_primary_10_1016_j_geoderma_2024_117015
crossref_primary_10_3390_land11020204
crossref_primary_10_1002_esp_5575
crossref_primary_10_1016_j_rse_2024_114522
crossref_primary_10_1016_j_still_2023_105697
crossref_primary_10_1002_ldr_4161
crossref_primary_10_1016_j_catena_2023_107323
crossref_primary_10_1016_j_catena_2024_107897
crossref_primary_10_1111_1752_1688_13012
Cites_doi 10.5194/hess-18-3279-2014
10.1029/2005WR004648
10.1016/j.jhydrol.2019.124520
10.1016/S0341-8162(02)00129-7
10.1016/j.jseaes.2009.02.004
10.1002/esp.4339
10.1016/j.jhydrol.2008.05.008
10.1175/JCLI-D-13-00715.1
10.1016/j.jag.2016.08.012
10.1177/0309133318819403
10.1071/RJ13013
10.1016/j.jhydrol.2010.06.014
10.1016/j.rse.2019.111629
10.1007/s11069-015-1701-2
10.1002/hyp.3360050106
10.1002/jgrf.20127
10.1111/j.1365-2389.2008.01094.x
10.1016/j.geomorph.2020.107115
10.1016/j.cageo.2016.07.003
10.5194/hess-10-101-2006
10.1016/j.cageo.2013.04.024
10.1016/j.geomorph.2020.107123
10.1002/1096-9837(200010)25:11<1201::AID-ESP131>3.0.CO;2-L
10.1080/02723646.2013.778691
10.1080/13658816.2014.975715
10.1016/j.catena.2010.08.002
10.1002/esp.404
10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B
10.1029/1999WR900034
10.1016/0098-3004(91)90048-I
10.1002/hyp.10648
10.1038/336201a0
10.1002/ldr.2976
10.1002/ldr.931
10.1016/S0734-189X(84)80011-0
10.5194/isprsarchives-XXXIX-B8-469-2012
10.1029/96WR03137
10.1002/hyp.6277
10.1016/j.earscirev.2013.12.006
10.1002/ldr.2805
10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2
10.1002/esp.1285
10.1029/2004GL020802
10.5194/esurf-5-21-2017
10.1016/j.catena.2011.07.003
10.1002/ldr.3807
10.3390/w9070540
10.1016/j.jhydrol.2007.09.001
10.1071/EG992353
10.1016/j.geomorph.2019.05.012
10.1038/sdata.2018.214
10.1029/2006WR005128
10.1002/esp.1321
10.1016/j.earscirev.2016.01.009
10.5194/esurf-8-379-2020
10.1002/esp.1286
10.1080/02693799608902081
10.1038/336232a0
10.1016/S0341-8162(02)00143-1
10.1016/j.jhydrol.2010.05.002
10.1002/hyp.3360080405
10.3390/ijgi6110328
10.1016/0169-555X(95)00141-Q
10.13031/2013.30829
10.1016/0034-4257(86)90018-0
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
DOI 10.1002/esp.5171
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1096-9837
EndPage 2247
ExternalDocumentID 10_1002_esp_5171
ESP5171
Genre article
GrantInformation_xml – fundername: Commonwealth Scientific and Industrial Research Organisation
– fundername: Australian Government's National Environment Science Program (NESP) Tropical Water Quality Hub
  funderid: Projects 2.1.4 and 5.9
GroupedDBID -DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
ID FETCH-LOGICAL-a3161-5be5349af098706aaf978bf0731b3fa5ada19cfee9be80d53ebeba71365482f33
IEDL.DBID DR2
ISSN 0197-9337
IngestDate Sun Sep 07 02:40:54 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Wed Oct 01 02:10:32 EDT 2025
Wed Jan 22 16:29:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3161-5be5349af098706aaf978bf0731b3fa5ada19cfee9be80d53ebeba71365482f33
Notes Funding information
Commonwealth Scientific and Industrial Research Organisation; Australian Government's National Environment Science Program (NESP) Tropical Water Quality Hub, Grant/Award Number: Projects 2.1.4 and 5.9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2879-8603
0000-0002-5257-3172
0000-0002-6508-7480
PQID 2572118136
PQPubID 866381
PageCount 19
ParticipantIDs proquest_journals_2572118136
crossref_citationtrail_10_1002_esp_5171
crossref_primary_10_1002_esp_5171
wiley_primary_10_1002_esp_5171_ESP5171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2021
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 15 September 2021
  day: 15
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationSubtitle The Journal of the British Geomorphological Research Group
PublicationTitle Earth surface processes and landforms
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 79
2017; 6
1991; 17
2006; 31
2007; 347
1984; 28
2014; 27
1988; 31
2014; 62
2003; 50
2014; 130
2018; 43
2017; 9
2020; 8
2004; 31
2018; 5
2010a; 389
2013; 118
2016; 154
2008; 357
1982
2014; 18
1981
2007; 21
1998; 12
1975; 3
1988; 336
2018; 29
2009; 20
2012
2000; 25
2017; 28
2006; 10
2020; 582
2009; 60
2016b; 95
2007
1994
2002
2020; 32
1996; 16
1996; 10
2010; 83
1991; 5
2019; 341
2002; 27
1994; 8
2009; 35
2006; 42
2015; 29
1997; 33
1986; 20
2020
2013; 34
2019; 43
2017; 54
2015; 2015
1999; 35
2020; 358
2010b; 389
1964
2014; 36
2020; 239
2020; 359
2011; 87
2014
2007; 43
1992; 23
2016a; 30
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
Australian Bureau of Meteorology (e_1_2_9_2_1) 2020
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
Tindall D. (e_1_2_9_66_1) 2014
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
Sibson R. (e_1_2_9_59_1) 1981
Montgomery D.R. (e_1_2_9_37_1) 1994
e_1_2_9_26_1
e_1_2_9_49_1
Leopold L.B. (e_1_2_9_31_1) 1964
e_1_2_9_47_1
Drover D.R. (e_1_2_9_13_1) 2015; 2015
Klingaman N.P. (e_1_2_9_28_1) 2012
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Heine A. (e_1_2_9_21_1) 2002
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
Selby M.J. (e_1_2_9_56_1) 1982
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 62
  start-page: 117
  year: 2014
  end-page: 127
  article-title: Priority‐flood: An optimal depression‐filling and watershed‐labeling algorithm for digital elevation models
  publication-title: Computers & Geosciences
– volume: 18
  start-page: 3279
  issue: 8
  year: 2014
  end-page: 3299
  article-title: Evaluating topographic wetness indices across central New York agricultural landscapes
  publication-title: Hydrology and Earth System Sciences
– volume: 16
  start-page: 161
  issue: 2
  year: 1996
  end-page: 173
  article-title: Geomorphic threshold conditions for ephemeral gully incision
  publication-title: Geomorphology
– volume: 2015
  start-page: 11817
  year: 2015
  end-page: 11846
  article-title: Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 20
  start-page: 535
  issue: 5
  year: 2009
  end-page: 550
  article-title: Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain
  publication-title: Land Degradation & Development
– volume: 28
  start-page: 2540
  issue: 8
  year: 2017
  end-page: 2552
  article-title: Rainfall and vegetation effects on temporal variation of topographic thresholds for gully initiation in Mediterranean cropland and olive groves
  publication-title: Land Degradation & Development
– volume: 33
  start-page: 309
  issue: 2
  year: 1997
  end-page: 319
  article-title: A new method for the determination of flow directions and upslope areas in grid digital elevation models
  publication-title: Water Resources Research
– volume: 8
  start-page: 379
  year: 2020
  end-page: 397
  article-title: Short communication: Landlab v2.0 – a software package for earth surface dynamics
  publication-title: Earth Surface Dynamics
– volume: 239
  year: 2020
  article-title: Global satellite‐based river gauging and the influence of river morphology on its application
  publication-title: Remote Sensing of Environment
– volume: 21
  start-page: 1026
  issue: 8
  year: 2007
  end-page: 1044
  article-title: Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis
  publication-title: Hydrological Processes: An International Journal
– volume: 35
  start-page: 180
  issue: 2
  year: 2009
  end-page: 189
  article-title: Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr‐Samal watershed)
  publication-title: Journal of Asian Earth Sciences
– volume: 9
  issue: 7
  year: 2017
  article-title: Characterisation of hydrological response to rainfall at multi spatio‐temporal scales in savannas of semi‐arid Australia
  publication-title: Watermark
– year: 2014
– volume: 43
  start-page: 46
  issue: 1
  year: 2019
  end-page: 64
  article-title: Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling
  publication-title: Progress in Physical Geography: Earth and Environment
– volume: 29
  start-page: 1896
  issue: 6
  year: 2018
  end-page: 1905
  article-title: Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques
  publication-title: Land Degradation & Development
– volume: 28
  start-page: 323
  issue: 3
  year: 1984
  end-page: 344
  article-title: The extraction of drainage networks from digital elevation data
  publication-title: Computer Vision, Graphics, and Image Processing
– year: 1982
– volume: 50
  start-page: 401
  issue: 2–4
  year: 2003
  end-page: 414
  article-title: Threshold conditions for initiation of valley‐side gullies in the Middle Veld of Swaziland
  publication-title: Catena
– volume: 79
  start-page: 51
  issue: S1
  year: 2015
  end-page: 69
  article-title: Bias in topographic thresholds for gully heads
  publication-title: Natural Hazards
– volume: 336
  start-page: 232
  issue: 6196
  year: 1988
  end-page: 234
  article-title: Where do channels begin?
  publication-title: Nature
– volume: 29
  start-page: 397
  issue: 3
  year: 2015
  end-page: 411
  article-title: Modelling surface drainage patterns in altered landscapes using LiDAR
  publication-title: International Journal of Geographical Information Science
– volume: 389
  start-page: 237
  issue: 3–4
  year: 2010a
  end-page: 248
  article-title: Impacts of improved grazing land management on sediment yields. Part 1: Hillslope processes
  publication-title: Journal of Hydrology
– volume: 83
  start-page: 148
  issue: 2‐3
  year: 2010
  end-page: 157
  article-title: Factors related to gully erosion in woody encroachment in south‐eastern Australia
  publication-title: Catena
– volume: 60
  start-page: 94
  issue: 1
  year: 2009
  end-page: 109
  article-title: Topographic modelling of soil moisture conditions: A comparison and verification of two models
  publication-title: European Journal of Soil Science
– volume: 5
  start-page: 59
  issue: 1
  year: 1991
  end-page: 79
  article-title: The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models
  publication-title: Hydrological Processes
– volume: 6
  issue: 11
  year: 2017
  article-title: Assessment of UAV and ground‐based structure from motion with multi‐view stereo photogrammetry in a gullied savanna catchment
  publication-title: ISPRS International Journal of Geo‐Information
– volume: 87
  start-page: 368
  issue: 3
  year: 2011
  end-page: 375
  article-title: Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes
  publication-title: Catena
– volume: 154
  start-page: 336
  year: 2016
  end-page: 355
  article-title: How fast do gully headcuts retreat?
  publication-title: Earth‐Science Reviews
– volume: 54
  start-page: 38
  year: 2017
  end-page: 52
  article-title: Defining optimal DEM resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 35
  start-page: 2259
  issue: 7
  year: 1999
  end-page: 2268
  article-title: On the effect of digital elevation model accuracy on hydrology and geomorphology
  publication-title: Water Resources Research
– volume: 27
  start-page: 6035
  issue: 15
  year: 2014
  end-page: 6050
  article-title: Extreme rainfall variability in Australia: Patterns, drivers, and predictability
  publication-title: Journal of Climate
– volume: 8
  start-page: 327
  issue: 4
  year: 1994
  end-page: 334
  article-title: Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation
  publication-title: Hydrological Processes
– year: 1964
– volume: 42
  issue: 9
  year: 2006
  article-title: Comparison of grid‐based algorithms for computing upslope contributing area
  publication-title: Water Resources Research
– volume: 12
  start-page: 857
  issue: 6
  year: 1998
  end-page: 872
  article-title: A phenomenon‐based approach to upslope contributing area and depressions in DEMs
  publication-title: Hydrological Processes
– volume: 50
  start-page: 91
  issue: 2–4
  year: 2003
  end-page: 133
  article-title: Gully erosion and environmental change: Importance and research needs
  publication-title: Catena
– volume: 3
  start-page: 88
  issue: 2
  year: 1975
  end-page: 90
  article-title: Gully erosion, Northwestern Colorado: A threshold phenomenon
  publication-title: Geology
– volume: 43
  issue: 4
  year: 2007
  article-title: A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models
  publication-title: Water Resources Research
– volume: 10
  start-page: 101
  issue: 1
  year: 2006
  end-page: 112
  article-title: On the calculation of the topographic wetness index: Evaluation of different methods based on field observations
  publication-title: Hydrology and Earth System Sciences
– volume: 17
  start-page: 413
  issue: 3
  year: 1991
  end-page: 422
  article-title: Calculating catchment area with divergent flow based on a regular grid
  publication-title: Computers & Geosciences
– year: 2007
– volume: 25
  start-page: 1201
  issue: 11
  year: 2000
  end-page: 1220
  article-title: Thresholds for gully initiation and sedimentation in Mediterranean Europe
  publication-title: Earth Surface Processes and Landforms
– volume: 31
  start-page: 1098
  issue: 4
  year: 1988
  end-page: 1107
  article-title: Topographic effects on the distribution of surface soil water and the location of ephemeral gullies
  publication-title: Transactions of ASAE
– volume: 31
  start-page: 507
  issue: 4
  year: 2006
  end-page: 525
  article-title: Gullying and erosion control at archaeological sites in Grand Canyon, Arizona
  publication-title: Earth Surface Processes and Landforms
– volume: 336
  start-page: 201
  issue: 6196
  year: 1988
  end-page: 201
  article-title: Hill slopes and hollows
  publication-title: Nature
– start-page: 21
  year: 1981
  end-page: 36
– volume: 34
  start-page: 50
  issue: 1
  year: 2013
  end-page: 59
  article-title: Critical topographic threshold of gully erosion in Yuanmou dry–hot valley in Southwestern China
  publication-title: Physical Geography
– volume: 347
  start-page: 79
  issue: 1–2
  year: 2007
  end-page: 89
  article-title: Effects of DEM resolution on the calculation of topographical indices: TWI and its components
  publication-title: Journal of Hydrology
– volume: 341
  start-page: 15
  year: 2019
  end-page: 27
  article-title: Morphological characteristics and topographic thresholds of gullies in different agro‐ecological environments
  publication-title: Geomorphology
– year: 2012
– volume: 130
  start-page: 73
  year: 2014
  end-page: 85
  article-title: A review of topographic threshold conditions for gully head development in different environments
  publication-title: Earth‐Science Reviews
– volume: 359
  year: 2020
  article-title: Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models
  publication-title: Geomorphology
– volume: 31
  start-page: 187
  issue: 2
  year: 2006
  end-page: 199
  article-title: Development and controlling factors of gullies and gully complexes, East Coast, New Zealand
  publication-title: Earth Surface Processes and Landforms
– start-page: B8
  year: 2012
– volume: 30
  start-page: 846
  issue: 6
  year: 2016a
  end-page: 857
  article-title: Efficient hybrid breaching–filling sink removal methods for flow path enforcement in digital elevation models
  publication-title: Hydrological Processes
– volume: 95
  start-page: 75
  year: 2016b
  end-page: 84
  article-title: Whitebox GAT: A case study in geomorphometric analysis
  publication-title: Computers & Geosciences
– volume: 32
  start-page: 1555
  issue: 3
  year: 2020
  end-page: 1569
  article-title: Agricultural development risks increasing gully erosion and cumulative sediment yields from headwater streams in Great Barrier Reef catchments
  publication-title: Land Degradation and Development
– volume: 357
  start-page: 93
  issue: 1–2
  year: 2008
  end-page: 111
  article-title: Flow characteristics of rivers in northern Australia: Implications for development
  publication-title: Journal of Hydrology
– volume: 10
  start-page: 311
  issue: 3
  year: 1996
  end-page: 331
  article-title: Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies
  publication-title: International Journal of Geographical Information Systems
– volume: 20
  start-page: 121
  issue: 2
  year: 1986
  end-page: 139
  article-title: On the nature of models in remote sensing
  publication-title: Remote Sensing of Environment
– volume: 118
  start-page: 2105
  issue: 4
  year: 2013
  end-page: 2123
  article-title: Impact of flow routing on catchment area calculations, slope estimates, and numerical simulations of landscape development
  publication-title: Journal of Geophysical Research – Earth Surface
– volume: 23
  start-page: 353
  issue: 1–2
  year: 1992
  end-page: 359
  article-title: New insights into the structure and subdivision of the Ravenswood Batholith — a geophysical perspective
  publication-title: Exploration Geophysics
– volume: 36
  start-page: 67
  issue: 1
  year: 2014
  end-page: 84
  article-title: Can changes to pasture management reduce runoff and sediment loss to the Great Barrier Reef? The results of a 10‐year study in the Burdekin catchment, Australia
  publication-title: The Rangeland Journal
– year: 2002
– year: 2020
– volume: 358
  year: 2020
  article-title: A multi‐resolution method to map and identify locations of future gully and channel incision
  publication-title: Geomorphology
– volume: 5
  start-page: 21
  issue: 1
  year: 2017
  end-page: 46
  article-title: Creative computing with Landlab: An open‐source toolkit for building, coupling, and exploring two‐dimensional numerical models of earth‐surface dynamics
  publication-title: Earth Surface Dynamics
– start-page: 221
  year: 1994
  end-page: 246
– volume: 5
  start-page: 180214
  issue: 1
  year: 2018
  article-title: Present and future Köppen–Geiger climate classification maps at 1‐km resolution
  publication-title: Scientific Data
– volume: 582
  year: 2020
  article-title: Effect of reduced grazing pressure on sediment and nutrient yields in savanna rangeland streams draining to the Great Barrier Reef
  publication-title: Journal of Hydrology
– volume: 389
  start-page: 249
  issue: 3–4
  year: 2010b
  end-page: 259
  article-title: Impacts of improved grazing land management on sediment yields. Part 2: Catchment response
  publication-title: Journal of Hydrology
– volume: 43
  start-page: 1711
  issue: 8
  year: 2018
  end-page: 1725
  article-title: Grazing impacts on gully dynamics indicate approaches for gully erosion control in northeast Australia
  publication-title: Earth Surface Processes and Landforms
– volume: 27
  start-page: 1267
  issue: 12
  year: 2002
  end-page: 1283
  article-title: Impact of road building on gully erosion risk: A case study from the Northern Ethiopian Highlands
  publication-title: Earth Surface Processes and Landforms
– volume: 31
  issue: 20
  year: 2004
  article-title: Persistent drainage migration in a numerical landscape evolution model
  publication-title: Geophysical Research Letters
– volume: 31
  start-page: 809
  issue: 7
  year: 2006
  end-page: 824
  article-title: Channel head location and characteristics using digital elevation models
  publication-title: Earth Surface Processes and Landforms
– ident: e_1_2_9_9_1
  doi: 10.5194/hess-18-3279-2014
– ident: e_1_2_9_14_1
  doi: 10.1029/2005WR004648
– ident: e_1_2_9_30_1
  doi: 10.1016/j.jhydrol.2019.124520
– ident: e_1_2_9_39_1
  doi: 10.1016/S0341-8162(02)00129-7
– ident: e_1_2_9_42_1
  doi: 10.1016/j.jseaes.2009.02.004
– volume-title: Rainfall in Queensland. Part 1. A literature survey of key rainfall drivers in Queensland Australia: Rainfall variability and change
  year: 2012
  ident: e_1_2_9_28_1
– ident: e_1_2_9_73_1
  doi: 10.1002/esp.4339
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jhydrol.2008.05.008
– ident: e_1_2_9_26_1
  doi: 10.1175/JCLI-D-13-00715.1
– ident: e_1_2_9_65_1
  doi: 10.1016/j.jag.2016.08.012
– ident: e_1_2_9_60_1
  doi: 10.1177/0309133318819403
– ident: e_1_2_9_6_1
  doi: 10.1071/RJ13013
– ident: e_1_2_9_7_1
  doi: 10.1016/j.jhydrol.2010.06.014
– ident: e_1_2_9_24_1
  doi: 10.1016/j.rse.2019.111629
– ident: e_1_2_9_54_1
  doi: 10.1007/s11069-015-1701-2
– volume-title: Fluvial processes in geomorphology
  year: 1964
  ident: e_1_2_9_31_1
– ident: e_1_2_9_52_1
  doi: 10.1002/hyp.3360050106
– ident: e_1_2_9_57_1
  doi: 10.1002/jgrf.20127
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-2389.2008.01094.x
– ident: e_1_2_9_72_1
  doi: 10.1016/j.geomorph.2020.107115
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cageo.2016.07.003
– ident: e_1_2_9_62_1
  doi: 10.5194/hess-10-101-2006
– ident: e_1_2_9_3_1
  doi: 10.1016/j.cageo.2013.04.024
– ident: e_1_2_9_10_1
  doi: 10.1016/j.geomorph.2020.107123
– ident: e_1_2_9_69_1
  doi: 10.1002/1096-9837(200010)25:11<1201::AID-ESP131>3.0.CO;2-L
– ident: e_1_2_9_12_1
  doi: 10.1080/02723646.2013.778691
– ident: e_1_2_9_34_1
  doi: 10.1080/13658816.2014.975715
– ident: e_1_2_9_40_1
  doi: 10.1016/j.catena.2010.08.002
– start-page: 21
  volume-title: Interpreting Multivariate Data
  year: 1981
  ident: e_1_2_9_59_1
– ident: e_1_2_9_43_1
  doi: 10.1002/esp.404
– ident: e_1_2_9_53_1
  doi: 10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B
– ident: e_1_2_9_71_1
  doi: 10.1029/1999WR900034
– ident: e_1_2_9_15_1
  doi: 10.1016/0098-3004(91)90048-I
– ident: e_1_2_9_32_1
  doi: 10.1002/hyp.10648
– ident: e_1_2_9_27_1
  doi: 10.1038/336201a0
– ident: e_1_2_9_17_1
  doi: 10.1002/ldr.2976
– ident: e_1_2_9_18_1
  doi: 10.1002/ldr.931
– ident: e_1_2_9_44_1
  doi: 10.1016/S0734-189X(84)80011-0
– ident: e_1_2_9_16_1
  doi: 10.5194/isprsarchives-XXXIX-B8-469-2012
– ident: e_1_2_9_64_1
  doi: 10.1029/96WR03137
– ident: e_1_2_9_74_1
  doi: 10.1002/hyp.6277
– ident: e_1_2_9_67_1
  doi: 10.1016/j.earscirev.2013.12.006
– ident: e_1_2_9_20_1
  doi: 10.1002/ldr.2805
– ident: e_1_2_9_47_1
  doi: 10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO;2
– start-page: 221
  volume-title: Process Models and Theoretical Geomorphology
  year: 1994
  ident: e_1_2_9_37_1
– volume-title: Climate data online
  year: 2020
  ident: e_1_2_9_2_1
– ident: e_1_2_9_19_1
  doi: 10.1002/esp.1285
– ident: e_1_2_9_49_1
  doi: 10.1029/2004GL020802
– ident: e_1_2_9_22_1
  doi: 10.5194/esurf-5-21-2017
– ident: e_1_2_9_35_1
  doi: 10.1016/j.catena.2011.07.003
– ident: e_1_2_9_58_1
  doi: 10.1002/ldr.3807
– ident: e_1_2_9_25_1
  doi: 10.3390/w9070540
– ident: e_1_2_9_61_1
  doi: 10.1016/j.jhydrol.2007.09.001
– ident: e_1_2_9_75_1
  doi: 10.1071/EG992353
– ident: e_1_2_9_76_1
  doi: 10.1016/j.geomorph.2019.05.012
– ident: e_1_2_9_8_1
  doi: 10.1038/sdata.2018.214
– ident: e_1_2_9_55_1
  doi: 10.1029/2006WR005128
– volume-title: Characterisation of gully erosion by airphoto interpretation and GIS techniques of rangelands in semiarid northeastern Australia
  year: 2002
  ident: e_1_2_9_21_1
– ident: e_1_2_9_46_1
  doi: 10.1002/esp.1321
– ident: e_1_2_9_70_1
  doi: 10.1016/j.earscirev.2016.01.009
– ident: e_1_2_9_4_1
  doi: 10.5194/esurf-8-379-2020
– ident: e_1_2_9_48_1
  doi: 10.1002/esp.1286
– ident: e_1_2_9_11_1
  doi: 10.1080/02693799608902081
– volume-title: Hillslope Materials and Processes
  year: 1982
  ident: e_1_2_9_56_1
– volume: 2015
  start-page: 11817
  year: 2015
  ident: e_1_2_9_13_1
  article-title: Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics
  publication-title: Hydrology and Earth System Sciences Discussions
– ident: e_1_2_9_36_1
  doi: 10.1038/336232a0
– ident: e_1_2_9_51_1
  doi: 10.1016/S0341-8162(02)00143-1
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jhydrol.2010.05.002
– ident: e_1_2_9_23_1
  doi: 10.1002/hyp.3360080405
– ident: e_1_2_9_29_1
  doi: 10.3390/ijgi6110328
– ident: e_1_2_9_68_1
  doi: 10.1016/0169-555X(95)00141-Q
– ident: e_1_2_9_38_1
  doi: 10.13031/2013.30829
– ident: e_1_2_9_45_1
– ident: e_1_2_9_63_1
  doi: 10.1016/0034-4257(86)90018-0
– volume-title: Gully Mapping and Drivers in the Grazing Lands of the Burdekin Catchment
  year: 2014
  ident: e_1_2_9_66_1
SSID ssj0011489
Score 2.3876326
Snippet Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2229
SubjectTerms Algorithms
Arid zones
Aridity
Barrier reefs
Coastal inlets
Convergence
Creeks
Digital Elevation Models
Direction
divergence and convergence
Drainage
Drainage area
Enforcement
Estimates
Flow distribution
Flow pattern
flow routing algorithms
Gullies
Gully erosion
gully headcut
hydrologic enforcement
Hydrology
Lidar
Methods
Motion perception
Parameter estimation
Parameters
Photogrammetry
Resolution
Spatial discrimination
Spatial resolution
threshold analysis
Topography
Title A comparison of hillslope drainage area estimation methods using high‐resolution DEMs with implications for topographic studies of gullies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fesp.5171
https://www.proquest.com/docview/2572118136
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0197-9337
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-9837
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011489
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF58i-uLEURPXbdp026OIj4QFPEBgoeSNImKsrvY9aAnf4AHf6O_xJmmXR8oiKdekjZNJsk3ycz3MbYWcm64SWTQ5ioO4pzrQDpnAxeHaSqNbieKHMXDo2T_PD64EBdVVCXlwnh-iMGBG82Mcr2mCa50sflBGmqLXlOEZfp4GCWlN3UyYI4ilC99pnQaoM-e1ryzLb5ZV_y6E33Ay88gtdxldifYZd0-H1xy23zo62b-9I268X8_MMnGK_AJW95aptiQ7Uyz0UoH_fpxmo3slUK_jzPsZQvygUQhdB3QrUFx1-1ZMKQqgcsQKAScQCwdPv0RvBp1ARRLfwVEhPz2_IrufGXdgGNeAB38ws2nOHZA2Az9bs834iaHwoc20kev6KrKFrPsfHfnbHs_qJQbAhUhhAyEtiKKpXItSfeoSjl0VrXD5STUkVNCGRXK3FkrtW23jIjQlLRKKeQubnMXRXNsuNPt2HkGWog8iU2IUBF9UWO1U2lL5PgOidjPpA22UY9ille05qSucZd5QmaeYT9n1M8Ntjoo2fNUHj-UWaoNIasmc5HhqsYpPzdKGmy9HNFf62c7p8f0XPhrwUU2xilKhkQpxBIb7t8_2GWEOX29Uhr0O3xW_l0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hqopeaKGtWKAwSFV7yrJx4mStnlAFbMuHqhYkDpUiO7YBgXZXZDnQU38AB35jf0ln4mShVStVPeViJ449tt_YM-8BvI6FsMJmKuoLnUZpKUykvHeRT-M8V9b0M82O4sFhNjhOP57Ikxl41-bCBH6I6YEbz4x6veYJzgfSm_esoa4ad2XM-eOP0ozcFEZEn6fcUYzzVciVziPy2vOWebYnNtuav-5F9wDzIUyt95mdp_C1bWEIL7noXk9Mt_z2G3njf_7CM5hv8CduBYNZgBk3XIS5Rgr97GYRHu_WWr83z-F2C8upSiGOPPLFQXU5Gju0LCxBKxFqwpzIRB0hAxKDIHWFHE5_isyF_OP7HXn0jYEjDXuFfPaL5w9C2ZGQM05G49CI8xKrEN3IHz3l2ypXvYDjne2j94OoEW-IdEIoMpLGySRV2vcUX6Vq7clfNZ5WlNgkXkttdaxK75wyrt-zMiFrMjrnqLu0L3ySvITZ4WjolgCNlGWW2pjQIrmj1hmv854s6R2K4J_NO_C2HcaibJjNWWDjsgiczKKgfi64nzuwMS05Dmwefyiz2lpC0cznqqCFTXCKbpJ14E09pH-tX2x_-cTP5X8tuA5zg6OD_WL_w-HeCjwRHDTDGhVyFWYnV9fuFaGeiVmrrfsnVwQCjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1Vrfi4FChULC0wSAhO2W6cOInVU0W7lK-qAir1gBTZsV0qqt2IbA_tiR_Aob-RX8JMnGwLAglxysVOHHtsv7Fn3gN4Ggthhc1UVAidRmklTKS8d5FP4zxX1hSZZkfx3V62e5C-PpSHC7DZ58IEfoj5gRvPjHa95gnuaus3LllDXVMPZcz540upVAXH822_n3NHMc5XIVc6j8hrz3vm2ZHY6Gv-uhddAsyrMLXdZ8a34FPfwhBe8mV4OjPD6vw38sb__IXbsNzhT9wKBnMHFtxkBW50Uuifz1bg2stW6_fsLnzfwmquUohTj3xx0JxMa4eWhSVoJUJNmBOZqCNkQGIQpG6Qw-mPkLmQf3y7II--M3CkYW-Qz37x-EooOxJyxtm0Do04rrAJ0Y380SO-rXLNPTgY73x8sRt14g2RTghFRtI4maRK-5Hiq1StPfmrxtOKEpvEa6mtjlXlnVPGFSMrE7Imo3OOuksL4ZNkFRYn04m7D2ikrLLUxoQWyR21znidj2RF71AE_2w-gOf9MJZVx2zOAhsnZeBkFiX1c8n9PIAn85J1YPP4Q5n13hLKbj43JS1sglN0k2wAz9oh_Wv9cufDPj8f_GvBx3B9f3tcvn2192YNbgqOmWGJCrkOi7Ovp-4hgZ6ZedQa90_9RgIR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+hillslope+drainage+area+estimation+methods+using+high%E2%80%90resolution+DEMs+with+implications+for+topographic+studies+of+gullies&rft.jtitle=Earth+surface+processes+and+landforms&rft.au=Walker%2C+Simon+J.&rft.au=van+Dijk%2C+Albert+I.+J.+M.&rft.au=Wilkinson%2C+Scott+N.&rft.au=Hairsine%2C+Peter+B.&rft.date=2021-09-15&rft.issn=0197-9337&rft.eissn=1096-9837&rft.volume=46&rft.issue=11&rft.spage=2229&rft.epage=2247&rft_id=info:doi/10.1002%2Fesp.5171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_esp_5171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-9337&client=summon