Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications

The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the cho...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 7; no. 12; pp. 4019 - 4025
Main Authors Behn, Andrew, Zimmerman, Paul M, Bell, Alexis T, Head-Gordon, Martin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.12.2011
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
DOI10.1021/ct200654u

Cover

Abstract The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30–50%).
AbstractList The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).
Author Behn, Andrew
Zimmerman, Paul M
Head-Gordon, Martin
Bell, Alexis T
AuthorAffiliation Department of Chemistry
Department of Chemical and Biomolecular Engineering
University of California
AuthorAffiliation_xml – name: University of California
– name: Department of Chemistry
– name: Department of Chemical and Biomolecular Engineering
Author_xml – sequence: 1
  givenname: Andrew
  surname: Behn
  fullname: Behn, Andrew
– sequence: 2
  givenname: Paul M
  surname: Zimmerman
  fullname: Zimmerman, Paul M
– sequence: 3
  givenname: Alexis T
  surname: Bell
  fullname: Bell, Alexis T
– sequence: 4
  givenname: Martin
  surname: Head-Gordon
  fullname: Head-Gordon, Martin
  email: mhg@cchem.berkeley.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26598348$$D View this record in MEDLINE/PubMed
BookMark eNpt0UtLAzEQB_AgitrqwS8guQh6qM1rX95K0VqoeFDPISZZG9kma5JF-u1Nnwfpaebw-w_MTA8cW2c1AFcY3WNE8FBGglCese4InOOMVYMqJ_nxvsflGeiF8I0QpYzQU3BG8qwqKSvPwc_USudb50U09gvOjNXCw7ellXPvrOsCfPfCBhPh1EadYJOgs9DY6GCcazjx7neVfIt-VV50nDv1AEfNl_MmzhdQWAVHbdsYuU6GC3BSiyboy23tg4-nx_fx82D2OpmOR7OBoDiLgxqXNaoIlopVNSuVKKjSSqOSlLIqMlwQJossw7UmiiDGKEZYCFqSTFGZBO2D283c1rufTofIFyZI3TTC6rQXxwXNGU5zqkSvt7T7XGjFW28Wwi_57kwJDDdAeheC1zWXJq7XiV6YhmPEV4_g-0ekxN2_xG7oIXuzsUIG_u06b9NdDrg_oe2VZA
CitedBy_id crossref_primary_10_1007_s10822_018_0137_7
crossref_primary_10_1080_00268976_2014_952696
crossref_primary_10_1039_D3CP02443A
crossref_primary_10_1063_1_4948439
crossref_primary_10_1021_acs_jpca_5b11156
crossref_primary_10_1021_acs_jcim_8b00286
crossref_primary_10_1371_journal_pone_0177740
crossref_primary_10_1002_qua_26123
crossref_primary_10_1021_acs_jctc_9b00869
crossref_primary_10_1021_ct400319w
crossref_primary_10_1002_qua_26390
crossref_primary_10_1063_1_4937764
crossref_primary_10_1063_5_0178947
crossref_primary_10_1021_acscatal_8b01494
crossref_primary_10_1039_C5CP02175H
crossref_primary_10_1021_acs_jctc_8b00799
crossref_primary_10_1021_acs_jctc_7b00764
crossref_primary_10_1063_1_4878664
crossref_primary_10_1021_acs_jctc_8b00529
crossref_primary_10_1039_D3CP05772K
crossref_primary_10_1002_jcc_23271
crossref_primary_10_1063_1_4826470
crossref_primary_10_1021_ct300951j
crossref_primary_10_1021_acs_jctc_5b00830
crossref_primary_10_1002_aic_18092
crossref_primary_10_1021_acs_jctc_7b01070
crossref_primary_10_1063_1_4804162
crossref_primary_10_1002_jcc_24720
crossref_primary_10_1016_j_chemphys_2020_111046
crossref_primary_10_1021_acs_jctc_4c01692
crossref_primary_10_1021_acs_jpca_8b10007
crossref_primary_10_1021_ja3089372
crossref_primary_10_1002_jcc_23790
crossref_primary_10_1002_jcc_23833
crossref_primary_10_1021_ct300659d
crossref_primary_10_1007_s00894_017_3326_8
crossref_primary_10_1021_jp502804q
Cites_doi 10.1063/1.3605539
10.1063/1.2834930
10.1016/j.cplett.2009.11.050
10.1002/jcc.10231
10.1063/1.2841941
10.1063/1.3445772
10.1002/jcc.20688
10.1002/ijch.199300051
10.1021/j100717a029
10.1021/j100247a015
10.1063/1.2767621
10.1063/1.1323224
10.1063/1.1329672
10.1063/1.3457903
10.1002/jcc.10267
10.1103/PhysRevLett.72.1124
10.1063/1.1691018
10.1039/B517914A
10.1021/jp0455430
10.1063/1.456010
10.1016/0009-2614(87)80576-6
10.1063/1.474398
10.1063/1.2950083
10.1063/1.2992618
10.1007/BF01584071
10.1063/1.1315348
10.1093/comjnl/13.2.185
10.1063/1.2720838
10.1103/PhysRevB.66.052301
10.1016/0009-2614(77)80574-5
10.1063/1.3156312
10.1002/jcc.21539
10.1063/1.2163875
10.1063/1.2780147
10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-#
10.1142/S0219633609004575
10.1080/00268970500460390
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
Copyright_xml – notice: Copyright © 2011 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ct200654u
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 4025
ExternalDocumentID 26598348
10_1021_ct200654u
b648499849
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a315t-f18f0921cd49f48da73dede0828c9751724c7551fe2d20443101aa3825d3cc973
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Fri Jul 11 09:45:27 EDT 2025
Thu Jan 02 22:25:37 EST 2025
Tue Jul 01 00:36:41 EDT 2025
Thu Apr 24 22:50:08 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-f18f0921cd49f48da73dede0828c9751724c7551fe2d20443101aa3825d3cc973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26598348
PQID 1736411729
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1736411729
pubmed_primary_26598348
crossref_citationtrail_10_1021_ct200654u
crossref_primary_10_1021_ct200654u
acs_journals_10_1021_ct200654u
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-13
PublicationDateYYYYMMDD 2011-12-13
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2011
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Rhee Y. M. (ref37/cit37) 2000; 113
Perczel A. (ref40/cit40) 2002; 24
Goodrow A. (ref20/cit20) 2010; 484
Halgren T. A. (ref34/cit34) 1977; 49
Burger S. K. (ref16/cit16) 2007; 127
Aguilar-Mogas A. (ref30/cit30) 2008; 128
Goodrow A. (ref19/cit19) 2009; 130
del Campo J. M. (ref25/cit25) 2008; 129
Gonzalez C. (ref6/cit6) 1989; 90
Maeda S. (ref28/cit28) 2010; 132
Quapp W. (ref21/cit21) 2007; 28
E W. (ref13/cit13) 2007; 126
Ghasemi S. A. (ref26/cit26) 2011; 135
Klimes J. (ref32/cit32) 2010; 22
Banerjee A. (ref2/cit2) 1985; 89
Ayala P. Y. (ref24/cit24) 1997; 107
Hrantchian H. P. (ref3/cit3) 2003; 24
Schlegel H. B. (ref4/cit4) 2003; 24
Sheppard D. (ref14/cit14) 2008; 128
Goodrow A. (ref18/cit18) 2008; 129
Koslover E. F. (ref33/cit33) 2007; 127
Burger S. K. (ref15/cit15) 2006; 124
Quapp W. (ref22/cit22) 2009; 8
Elber R. (ref23/cit23) 1987; 139
Burger S. K. (ref27/cit27) 2010; 132
Dey B. K. (ref29/cit29) 2006; 104
Aguilar-Mogas A. (ref31/cit31) 2010; 31
E W. (ref11/cit11) 2002; 66
Murtagh B. A. (ref39/cit39) 1972; 13
Shao Y. (ref36/cit36) 2006; 8
Trygubenko S. A. (ref10/cit10) 2004; 120
Henkelman G. (ref9/cit9) 2000; 113
Peng C. (ref35/cit35) 1993; 33
Mills G. (ref7/cit7) 1994; 72
Henkelman G. (ref8/cit8) 2000; 113
Peters B. (ref17/cit17) 2004; 120
Fukui K. (ref5/cit5) 1970; 74
Cerjan C. J. (ref1/cit1) 1981; 112
Powell M. J. D. (ref38/cit38) 1971; 1
E W. (ref12/cit12) 2005; 109
Wendt K. U. (ref41/cit41) 2000; 39
References_xml – volume: 135
  start-page: 014108
  year: 2011
  ident: ref26/cit26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3605539
– volume: 128
  start-page: 104102
  year: 2008
  ident: ref30/cit30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2834930
– volume: 484
  start-page: 393
  year: 2010
  ident: ref20/cit20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.11.050
– volume: 24
  start-page: 1514
  year: 2003
  ident: ref3/cit3
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10231
– volume: 128
  start-page: 134106
  year: 2008
  ident: ref14/cit14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2841941
– volume: 24
  start-page: 1514
  year: 2003
  ident: ref4/cit4
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10231
– volume: 132
  start-page: 234110
  year: 2010
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3445772
– volume: 28
  start-page: 1834
  year: 2007
  ident: ref21/cit21
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20688
– volume: 33
  start-page: 449
  year: 1993
  ident: ref35/cit35
  publication-title: Israel J. Chem
  doi: 10.1002/ijch.199300051
– volume: 74
  start-page: 4161
  year: 1970
  ident: ref5/cit5
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100717a029
– volume: 22
  start-page: 074203
  year: 2010
  ident: ref32/cit32
  publication-title: J. Phys: Condens. Mater.
– volume: 89
  start-page: 52
  year: 1985
  ident: ref2/cit2
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100247a015
– volume: 127
  start-page: 134102
  year: 2007
  ident: ref33/cit33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2767621
– volume: 113
  start-page: 9978
  year: 2000
  ident: ref8/cit8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1323224
– volume: 113
  start-page: 9901
  year: 2000
  ident: ref9/cit9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 132
  start-page: 241102
  year: 2010
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3457903
– volume: 24
  start-page: 1026
  year: 2002
  ident: ref40/cit40
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10267
– volume: 120
  start-page: 2083
  year: 2004
  ident: ref10/cit10
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 1124
  year: 1994
  ident: ref7/cit7
  publication-title: Phys. Rev. Let
  doi: 10.1103/PhysRevLett.72.1124
– volume: 120
  start-page: 7877
  year: 2004
  ident: ref17/cit17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1691018
– volume: 8
  start-page: 3172
  year: 2006
  ident: ref36/cit36
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B517914A
– volume: 109
  start-page: 6688
  year: 2005
  ident: ref12/cit12
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp0455430
– volume: 90
  start-page: 2154
  year: 1989
  ident: ref6/cit6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– volume: 139
  start-page: 375
  year: 1987
  ident: ref23/cit23
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(87)80576-6
– volume: 107
  start-page: 375
  year: 1997
  ident: ref24/cit24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474398
– volume: 129
  start-page: 024107
  year: 2008
  ident: ref25/cit25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2950083
– volume: 129
  start-page: 174109
  year: 2008
  ident: ref18/cit18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2992618
– volume: 1
  start-page: 26
  year: 1971
  ident: ref38/cit38
  publication-title: Math. Prog.
  doi: 10.1007/BF01584071
– volume: 113
  start-page: 6021
  year: 2000
  ident: ref37/cit37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1315348
– volume: 13
  start-page: 185
  year: 1972
  ident: ref39/cit39
  publication-title: Comput. J.
  doi: 10.1093/comjnl/13.2.185
– volume: 126
  start-page: 164103
  year: 2007
  ident: ref13/cit13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2720838
– volume: 66
  start-page: 052301
  year: 2002
  ident: ref11/cit11
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.66.052301
– volume: 49
  start-page: 225
  year: 1977
  ident: ref34/cit34
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(77)80574-5
– volume: 130
  start-page: 244108
  year: 2009
  ident: ref19/cit19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3156312
– volume: 31
  start-page: 2510
  year: 2010
  ident: ref31/cit31
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21539
– volume: 124
  start-page: 054109
  year: 2006
  ident: ref15/cit15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2163875
– volume: 127
  start-page: 164107
  year: 2007
  ident: ref16/cit16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2780147
– volume: 112
  start-page: 2129
  year: 1981
  ident: ref1/cit1
  publication-title: J. Chem. Phys.
– volume: 39
  start-page: 2812
  year: 2000
  ident: ref41/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-#
– volume: 8
  start-page: 101
  year: 2009
  ident: ref22/cit22
  publication-title: J. Theor. Comput. Chem.
  doi: 10.1142/S0219633609004575
– volume: 104
  start-page: 541
  year: 2006
  ident: ref29/cit29
  publication-title: Mol. Phys.
  doi: 10.1080/00268970500460390
SSID ssj0033423
Score 2.2061906
Snippet The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4019
SubjectTerms Reaction Mechanisms
Title Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications
URI http://dx.doi.org/10.1021/ct200654u
https://www.ncbi.nlm.nih.gov/pubmed/26598348
https://www.proquest.com/docview/1736411729
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTuQwEC2xHIbLsAwwzSazHLgE4iUbt1azS82lB4lbZDsxtGDSA7gP8PWUnU6r0bDcy5FTLrteucqvAPaMY7_WTAUCz_9AiCIOlEnjINHKEZRpGfkeS92r-PxaXN5EN1Ow-0kGn9FDbZl_ATmchlkWJ4mr22t3es1xyx2FnSdFFY5qkqYNfdDkUOd69PN71_MJnvR-5XQejpvXOXU5yf3B0KoD_fo_WeNXU16AnyNcSdq1ISzCVFktwY9O087tFzxeOMZKz1qM3opgDIo2TnovlXb0uBj_E--2-pbUdYiDukiO9Cs7IIgSyRkG7G5kz7qrQNL1raePSPvhdvDUt3d_iawK0p7Ihy_D9enJn855MOq3EEhOIxsYmpowY1QXIjMiLWTCi7IoHcmdzpIIoY7QCSIsU7KChQKhR0il5BhjFlyjBF-BmWpQlb-BsEgrLnWciZALlRgljXLRZxbpUGkjW7CFC5KP9stz7lPhjOZjzbVgv1mrXI_Yyl3TjIePRHfGov9qio6PhLabBc9R8S4rIqsSlZvThMeC4s9lLVitLWH8GRZHWcpFuvbddNdhzl82UxZQvgEz9mlYbiJasWrLW-sbEOjkIg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENaU9FAuhfJq6APBcODiYD386i2TaZtAkkvamdw8kmxBpq3dxsoBfn1Xsh1KJwy9rzTr1Vr7rVb6FqHP2rJfKyo9Dvu_x3kWelLHoRcpaQnKlAhcj6XJNBxe8m_zYN7Q5Ni3MKBEBTNVroj_h12AfFWGuoeQq2doOwg5sYlWfzBrd11mmewcNyq3jJMkblmEHg61EUhVf0egf8BKF17OXtR9ipxi7lbJVW9lZE_9fsTZ-DTNX6LdBmXifu0We2grL16hnUHb3O01uhtZ_krHYQyxC0NGCh6PZ78KZclyy1WFXRBbGFzfSizrK3N4UZgSA2bE55C-25EzYw8G8cQ1oj7B_esf5XJhft5gUWS4_6A6_gZdnp1eDIZe033BE4wExtMk1n5Cicp4onmciYhleZZbyjuVRAEAH64iwFs6pxn1OQARnwjBIOPMmAIJ9hZ1irLI9xGmgZJMqDDhPuMy0lJoaXPRJFC-VFp00TEYLm3-nip1hXFK0rXluuhLu2SparjLbQuN602in9aitzVhxyahj-26p2B4WyMRRQ7GTUnEwLng45Iuelc7xHoaGgZJzHj8_n_qfkA7w4vJOB2Ppt8P0HN3DE2oR9gh6pjlKj8CHGPksXPge_-G7IQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAX3rTLo7iIA5e08SMvbquFpW-Qlkq9RX7EdNU2KY33AL-esZOsCiqC-ziajMeebzz2NwBvrWe_1kxFAvf_SAiTRsrmaZRp5QnKtExCj6XDo3TnWOydJCd9oujfwqASLX6pDUV8v6ovje0ZBui2diw8hlzchjtJikvcQ6HJbNh5uWezC_yowrNO0nxgEro-1Ech3f4ehf4CLUOImT6Az0vlws2Ss62FU1v65x-8jf-v_UO436NNMu7c4xHcqurHcG8yNHl7At93PY9l4DLGGEYwM0XPJ7Mftfakuc2iJSGYzR3pbic23dU5Mq9dQxA7kk-YxvuRM-cPCMlhaEj9nozPvzVXc3d6QWRtyPhalfwpHE8_fp3sRH0XhkhymrjI0tzGBaPaiMKK3MiMm8pUnvpOF1mCAEjoDHGXrZhhsUBAElMpOWaehmuU4M9gpW7qah0IS7TiUqeFiLlQmVXSKp-TFomOlbZyBBtovLJfRW0ZCuSMlkvLjeDdMG2l7jnMfSuN85tE3yxFLzvijpuENoe5L9HwvlYi6wqNW9KMp4LizxUjWOucYvkZliZFzkX-_F_qvoa7Xz5My4Pdo_0XsBpOoymLKH8JK-5qUb1COOPURvDhX7q37wc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+Linear+Synchronous+Transit+Interpolation+into+the+Growing+String+Method%3A+Algorithm+and+Applications&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Behn%2C+Andrew&rft.au=Zimmerman%2C+Paul+M&rft.au=Bell%2C+Alexis+T&rft.au=Head-Gordon%2C+Martin&rft.date=2011-12-13&rft.issn=1549-9618&rft.volume=7&rft.issue=12&rft.spage=4019&rft_id=info:doi/10.1021%2Fct200654u&rft_id=info%3Apmid%2F26598348&rft.externalDocID=26598348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon