Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications
The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the cho...
Saved in:
| Published in | Journal of chemical theory and computation Vol. 7; no. 12; pp. 4019 - 4025 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
13.12.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-9618 1549-9626 |
| DOI | 10.1021/ct200654u |
Cover
| Abstract | The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30–50%). |
|---|---|
| AbstractList | The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%). |
| Author | Behn, Andrew Zimmerman, Paul M Head-Gordon, Martin Bell, Alexis T |
| AuthorAffiliation | Department of Chemistry Department of Chemical and Biomolecular Engineering University of California |
| AuthorAffiliation_xml | – name: University of California – name: Department of Chemistry – name: Department of Chemical and Biomolecular Engineering |
| Author_xml | – sequence: 1 givenname: Andrew surname: Behn fullname: Behn, Andrew – sequence: 2 givenname: Paul M surname: Zimmerman fullname: Zimmerman, Paul M – sequence: 3 givenname: Alexis T surname: Bell fullname: Bell, Alexis T – sequence: 4 givenname: Martin surname: Head-Gordon fullname: Head-Gordon, Martin email: mhg@cchem.berkeley.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26598348$$D View this record in MEDLINE/PubMed |
| BookMark | eNpt0UtLAzEQB_AgitrqwS8guQh6qM1rX95K0VqoeFDPISZZG9kma5JF-u1Nnwfpaebw-w_MTA8cW2c1AFcY3WNE8FBGglCese4InOOMVYMqJ_nxvsflGeiF8I0QpYzQU3BG8qwqKSvPwc_USudb50U09gvOjNXCw7ellXPvrOsCfPfCBhPh1EadYJOgs9DY6GCcazjx7neVfIt-VV50nDv1AEfNl_MmzhdQWAVHbdsYuU6GC3BSiyboy23tg4-nx_fx82D2OpmOR7OBoDiLgxqXNaoIlopVNSuVKKjSSqOSlLIqMlwQJossw7UmiiDGKEZYCFqSTFGZBO2D283c1rufTofIFyZI3TTC6rQXxwXNGU5zqkSvt7T7XGjFW28Wwi_57kwJDDdAeheC1zWXJq7XiV6YhmPEV4_g-0ekxN2_xG7oIXuzsUIG_u06b9NdDrg_oe2VZA |
| CitedBy_id | crossref_primary_10_1007_s10822_018_0137_7 crossref_primary_10_1080_00268976_2014_952696 crossref_primary_10_1039_D3CP02443A crossref_primary_10_1063_1_4948439 crossref_primary_10_1021_acs_jpca_5b11156 crossref_primary_10_1021_acs_jcim_8b00286 crossref_primary_10_1371_journal_pone_0177740 crossref_primary_10_1002_qua_26123 crossref_primary_10_1021_acs_jctc_9b00869 crossref_primary_10_1021_ct400319w crossref_primary_10_1002_qua_26390 crossref_primary_10_1063_1_4937764 crossref_primary_10_1063_5_0178947 crossref_primary_10_1021_acscatal_8b01494 crossref_primary_10_1039_C5CP02175H crossref_primary_10_1021_acs_jctc_8b00799 crossref_primary_10_1021_acs_jctc_7b00764 crossref_primary_10_1063_1_4878664 crossref_primary_10_1021_acs_jctc_8b00529 crossref_primary_10_1039_D3CP05772K crossref_primary_10_1002_jcc_23271 crossref_primary_10_1063_1_4826470 crossref_primary_10_1021_ct300951j crossref_primary_10_1021_acs_jctc_5b00830 crossref_primary_10_1002_aic_18092 crossref_primary_10_1021_acs_jctc_7b01070 crossref_primary_10_1063_1_4804162 crossref_primary_10_1002_jcc_24720 crossref_primary_10_1016_j_chemphys_2020_111046 crossref_primary_10_1021_acs_jctc_4c01692 crossref_primary_10_1021_acs_jpca_8b10007 crossref_primary_10_1021_ja3089372 crossref_primary_10_1002_jcc_23790 crossref_primary_10_1002_jcc_23833 crossref_primary_10_1021_ct300659d crossref_primary_10_1007_s00894_017_3326_8 crossref_primary_10_1021_jp502804q |
| Cites_doi | 10.1063/1.3605539 10.1063/1.2834930 10.1016/j.cplett.2009.11.050 10.1002/jcc.10231 10.1063/1.2841941 10.1063/1.3445772 10.1002/jcc.20688 10.1002/ijch.199300051 10.1021/j100717a029 10.1021/j100247a015 10.1063/1.2767621 10.1063/1.1323224 10.1063/1.1329672 10.1063/1.3457903 10.1002/jcc.10267 10.1103/PhysRevLett.72.1124 10.1063/1.1691018 10.1039/B517914A 10.1021/jp0455430 10.1063/1.456010 10.1016/0009-2614(87)80576-6 10.1063/1.474398 10.1063/1.2950083 10.1063/1.2992618 10.1007/BF01584071 10.1063/1.1315348 10.1093/comjnl/13.2.185 10.1063/1.2720838 10.1103/PhysRevB.66.052301 10.1016/0009-2614(77)80574-5 10.1063/1.3156312 10.1002/jcc.21539 10.1063/1.2163875 10.1063/1.2780147 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-# 10.1142/S0219633609004575 10.1080/00268970500460390 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2011 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/ct200654u |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| EndPage | 4025 |
| ExternalDocumentID | 26598348 10_1021_ct200654u b648499849 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
| ID | FETCH-LOGICAL-a315t-f18f0921cd49f48da73dede0828c9751724c7551fe2d20443101aa3825d3cc973 |
| IEDL.DBID | ACS |
| ISSN | 1549-9618 |
| IngestDate | Fri Jul 11 09:45:27 EDT 2025 Thu Jan 02 22:25:37 EST 2025 Tue Jul 01 00:36:41 EDT 2025 Thu Apr 24 22:50:08 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a315t-f18f0921cd49f48da73dede0828c9751724c7551fe2d20443101aa3825d3cc973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26598348 |
| PQID | 1736411729 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1736411729 pubmed_primary_26598348 crossref_citationtrail_10_1021_ct200654u crossref_primary_10_1021_ct200654u acs_journals_10_1021_ct200654u |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-12-13 |
| PublicationDateYYYYMMDD | 2011-12-13 |
| PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J. Chem. Theory Comput |
| PublicationYear | 2011 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Rhee Y. M. (ref37/cit37) 2000; 113 Perczel A. (ref40/cit40) 2002; 24 Goodrow A. (ref20/cit20) 2010; 484 Halgren T. A. (ref34/cit34) 1977; 49 Burger S. K. (ref16/cit16) 2007; 127 Aguilar-Mogas A. (ref30/cit30) 2008; 128 Goodrow A. (ref19/cit19) 2009; 130 del Campo J. M. (ref25/cit25) 2008; 129 Gonzalez C. (ref6/cit6) 1989; 90 Maeda S. (ref28/cit28) 2010; 132 Quapp W. (ref21/cit21) 2007; 28 E W. (ref13/cit13) 2007; 126 Ghasemi S. A. (ref26/cit26) 2011; 135 Klimes J. (ref32/cit32) 2010; 22 Banerjee A. (ref2/cit2) 1985; 89 Ayala P. Y. (ref24/cit24) 1997; 107 Hrantchian H. P. (ref3/cit3) 2003; 24 Schlegel H. B. (ref4/cit4) 2003; 24 Sheppard D. (ref14/cit14) 2008; 128 Goodrow A. (ref18/cit18) 2008; 129 Koslover E. F. (ref33/cit33) 2007; 127 Burger S. K. (ref15/cit15) 2006; 124 Quapp W. (ref22/cit22) 2009; 8 Elber R. (ref23/cit23) 1987; 139 Burger S. K. (ref27/cit27) 2010; 132 Dey B. K. (ref29/cit29) 2006; 104 Aguilar-Mogas A. (ref31/cit31) 2010; 31 E W. (ref11/cit11) 2002; 66 Murtagh B. A. (ref39/cit39) 1972; 13 Shao Y. (ref36/cit36) 2006; 8 Trygubenko S. A. (ref10/cit10) 2004; 120 Henkelman G. (ref9/cit9) 2000; 113 Peng C. (ref35/cit35) 1993; 33 Mills G. (ref7/cit7) 1994; 72 Henkelman G. (ref8/cit8) 2000; 113 Peters B. (ref17/cit17) 2004; 120 Fukui K. (ref5/cit5) 1970; 74 Cerjan C. J. (ref1/cit1) 1981; 112 Powell M. J. D. (ref38/cit38) 1971; 1 E W. (ref12/cit12) 2005; 109 Wendt K. U. (ref41/cit41) 2000; 39 |
| References_xml | – volume: 135 start-page: 014108 year: 2011 ident: ref26/cit26 publication-title: J. Chem. Phys. doi: 10.1063/1.3605539 – volume: 128 start-page: 104102 year: 2008 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.2834930 – volume: 484 start-page: 393 year: 2010 ident: ref20/cit20 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.11.050 – volume: 24 start-page: 1514 year: 2003 ident: ref3/cit3 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10231 – volume: 128 start-page: 134106 year: 2008 ident: ref14/cit14 publication-title: J. Chem. Phys. doi: 10.1063/1.2841941 – volume: 24 start-page: 1514 year: 2003 ident: ref4/cit4 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10231 – volume: 132 start-page: 234110 year: 2010 ident: ref27/cit27 publication-title: J. Chem. Phys. doi: 10.1063/1.3445772 – volume: 28 start-page: 1834 year: 2007 ident: ref21/cit21 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20688 – volume: 33 start-page: 449 year: 1993 ident: ref35/cit35 publication-title: Israel J. Chem doi: 10.1002/ijch.199300051 – volume: 74 start-page: 4161 year: 1970 ident: ref5/cit5 publication-title: J. Phys. Chem. doi: 10.1021/j100717a029 – volume: 22 start-page: 074203 year: 2010 ident: ref32/cit32 publication-title: J. Phys: Condens. Mater. – volume: 89 start-page: 52 year: 1985 ident: ref2/cit2 publication-title: J. Phys. Chem. doi: 10.1021/j100247a015 – volume: 127 start-page: 134102 year: 2007 ident: ref33/cit33 publication-title: J. Chem. Phys. doi: 10.1063/1.2767621 – volume: 113 start-page: 9978 year: 2000 ident: ref8/cit8 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 113 start-page: 9901 year: 2000 ident: ref9/cit9 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 132 start-page: 241102 year: 2010 ident: ref28/cit28 publication-title: J. Chem. Phys. doi: 10.1063/1.3457903 – volume: 24 start-page: 1026 year: 2002 ident: ref40/cit40 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10267 – volume: 120 start-page: 2083 year: 2004 ident: ref10/cit10 publication-title: J. Chem. Phys. – volume: 72 start-page: 1124 year: 1994 ident: ref7/cit7 publication-title: Phys. Rev. Let doi: 10.1103/PhysRevLett.72.1124 – volume: 120 start-page: 7877 year: 2004 ident: ref17/cit17 publication-title: J. Chem. Phys. doi: 10.1063/1.1691018 – volume: 8 start-page: 3172 year: 2006 ident: ref36/cit36 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B517914A – volume: 109 start-page: 6688 year: 2005 ident: ref12/cit12 publication-title: J. Phys. Chem. B. doi: 10.1021/jp0455430 – volume: 90 start-page: 2154 year: 1989 ident: ref6/cit6 publication-title: J. Chem. Phys. doi: 10.1063/1.456010 – volume: 139 start-page: 375 year: 1987 ident: ref23/cit23 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)80576-6 – volume: 107 start-page: 375 year: 1997 ident: ref24/cit24 publication-title: J. Chem. Phys. doi: 10.1063/1.474398 – volume: 129 start-page: 024107 year: 2008 ident: ref25/cit25 publication-title: J. Chem. Phys. doi: 10.1063/1.2950083 – volume: 129 start-page: 174109 year: 2008 ident: ref18/cit18 publication-title: J. Chem. Phys. doi: 10.1063/1.2992618 – volume: 1 start-page: 26 year: 1971 ident: ref38/cit38 publication-title: Math. Prog. doi: 10.1007/BF01584071 – volume: 113 start-page: 6021 year: 2000 ident: ref37/cit37 publication-title: J. Chem. Phys. doi: 10.1063/1.1315348 – volume: 13 start-page: 185 year: 1972 ident: ref39/cit39 publication-title: Comput. J. doi: 10.1093/comjnl/13.2.185 – volume: 126 start-page: 164103 year: 2007 ident: ref13/cit13 publication-title: J. Chem. Phys. doi: 10.1063/1.2720838 – volume: 66 start-page: 052301 year: 2002 ident: ref11/cit11 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.66.052301 – volume: 49 start-page: 225 year: 1977 ident: ref34/cit34 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(77)80574-5 – volume: 130 start-page: 244108 year: 2009 ident: ref19/cit19 publication-title: J. Chem. Phys. doi: 10.1063/1.3156312 – volume: 31 start-page: 2510 year: 2010 ident: ref31/cit31 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21539 – volume: 124 start-page: 054109 year: 2006 ident: ref15/cit15 publication-title: J. Chem. Phys. doi: 10.1063/1.2163875 – volume: 127 start-page: 164107 year: 2007 ident: ref16/cit16 publication-title: J. Chem. Phys. doi: 10.1063/1.2780147 – volume: 112 start-page: 2129 year: 1981 ident: ref1/cit1 publication-title: J. Chem. Phys. – volume: 39 start-page: 2812 year: 2000 ident: ref41/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000818)39:16<2812::AID-ANIE2812>3.0.CO;2-# – volume: 8 start-page: 101 year: 2009 ident: ref22/cit22 publication-title: J. Theor. Comput. Chem. doi: 10.1142/S0219633609004575 – volume: 104 start-page: 541 year: 2006 ident: ref29/cit29 publication-title: Mol. Phys. doi: 10.1080/00268970500460390 |
| SSID | ssj0033423 |
| Score | 2.2061906 |
| Snippet | The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4019 |
| SubjectTerms | Reaction Mechanisms |
| Title | Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications |
| URI | http://dx.doi.org/10.1021/ct200654u https://www.ncbi.nlm.nih.gov/pubmed/26598348 https://www.proquest.com/docview/1736411729 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTuQwEC2xHIbLsAwwzSazHLgE4iUbt1azS82lB4lbZDsxtGDSA7gP8PWUnU6r0bDcy5FTLrteucqvAPaMY7_WTAUCz_9AiCIOlEnjINHKEZRpGfkeS92r-PxaXN5EN1Ow-0kGn9FDbZl_ATmchlkWJ4mr22t3es1xyx2FnSdFFY5qkqYNfdDkUOd69PN71_MJnvR-5XQejpvXOXU5yf3B0KoD_fo_WeNXU16AnyNcSdq1ISzCVFktwY9O087tFzxeOMZKz1qM3opgDIo2TnovlXb0uBj_E--2-pbUdYiDukiO9Cs7IIgSyRkG7G5kz7qrQNL1raePSPvhdvDUt3d_iawK0p7Ihy_D9enJn855MOq3EEhOIxsYmpowY1QXIjMiLWTCi7IoHcmdzpIIoY7QCSIsU7KChQKhR0il5BhjFlyjBF-BmWpQlb-BsEgrLnWciZALlRgljXLRZxbpUGkjW7CFC5KP9stz7lPhjOZjzbVgv1mrXI_Yyl3TjIePRHfGov9qio6PhLabBc9R8S4rIqsSlZvThMeC4s9lLVitLWH8GRZHWcpFuvbddNdhzl82UxZQvgEz9mlYbiJasWrLW-sbEOjkIg |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lc9MwENaU9FAuhfJq6APBcODiYD386i2TaZtAkkvamdw8kmxBpq3dxsoBfn1Xsh1KJwy9rzTr1Vr7rVb6FqHP2rJfKyo9Dvu_x3kWelLHoRcpaQnKlAhcj6XJNBxe8m_zYN7Q5Ni3MKBEBTNVroj_h12AfFWGuoeQq2doOwg5sYlWfzBrd11mmewcNyq3jJMkblmEHg61EUhVf0egf8BKF17OXtR9ipxi7lbJVW9lZE_9fsTZ-DTNX6LdBmXifu0We2grL16hnUHb3O01uhtZ_krHYQyxC0NGCh6PZ78KZclyy1WFXRBbGFzfSizrK3N4UZgSA2bE55C-25EzYw8G8cQ1oj7B_esf5XJhft5gUWS4_6A6_gZdnp1eDIZe033BE4wExtMk1n5Cicp4onmciYhleZZbyjuVRAEAH64iwFs6pxn1OQARnwjBIOPMmAIJ9hZ1irLI9xGmgZJMqDDhPuMy0lJoaXPRJFC-VFp00TEYLm3-nip1hXFK0rXluuhLu2SparjLbQuN602in9aitzVhxyahj-26p2B4WyMRRQ7GTUnEwLng45Iuelc7xHoaGgZJzHj8_n_qfkA7w4vJOB2Ppt8P0HN3DE2oR9gh6pjlKj8CHGPksXPge_-G7IQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAX3rTLo7iIA5e08SMvbquFpW-Qlkq9RX7EdNU2KY33AL-esZOsCiqC-ziajMeebzz2NwBvrWe_1kxFAvf_SAiTRsrmaZRp5QnKtExCj6XDo3TnWOydJCd9oujfwqASLX6pDUV8v6ovje0ZBui2diw8hlzchjtJikvcQ6HJbNh5uWezC_yowrNO0nxgEro-1Ech3f4ehf4CLUOImT6Az0vlws2Ss62FU1v65x-8jf-v_UO436NNMu7c4xHcqurHcG8yNHl7At93PY9l4DLGGEYwM0XPJ7Mftfakuc2iJSGYzR3pbic23dU5Mq9dQxA7kk-YxvuRM-cPCMlhaEj9nozPvzVXc3d6QWRtyPhalfwpHE8_fp3sRH0XhkhymrjI0tzGBaPaiMKK3MiMm8pUnvpOF1mCAEjoDHGXrZhhsUBAElMpOWaehmuU4M9gpW7qah0IS7TiUqeFiLlQmVXSKp-TFomOlbZyBBtovLJfRW0ZCuSMlkvLjeDdMG2l7jnMfSuN85tE3yxFLzvijpuENoe5L9HwvlYi6wqNW9KMp4LizxUjWOucYvkZliZFzkX-_F_qvoa7Xz5My4Pdo_0XsBpOoymLKH8JK-5qUb1COOPURvDhX7q37wc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+Linear+Synchronous+Transit+Interpolation+into+the+Growing+String+Method%3A+Algorithm+and+Applications&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Behn%2C+Andrew&rft.au=Zimmerman%2C+Paul+M&rft.au=Bell%2C+Alexis+T&rft.au=Head-Gordon%2C+Martin&rft.date=2011-12-13&rft.issn=1549-9618&rft.volume=7&rft.issue=12&rft.spage=4019&rft_id=info:doi/10.1021%2Fct200654u&rft_id=info%3Apmid%2F26598348&rft.externalDocID=26598348 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |