A Guided Self-Consistent-Field Method for Excited-State Wave Function Optimization: Applications to Ligand-Field Transitions in Transition-Metal Complexes

A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous S...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 9; no. 9; pp. 3933 - 3938
Main Authors Peng, Bo, Van Kuiken, Benjamin E, Ding, Feizhi, Li, Xiaosong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.09.2013
Online AccessGet full text
ISSN1549-9618
1549-9626
DOI10.1021/ct400547n

Cover

Abstract A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn–Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.
AbstractList A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.
A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn–Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.
Author Ding, Feizhi
Li, Xiaosong
Van Kuiken, Benjamin E
Peng, Bo
AuthorAffiliation Department of Chemistry
University of Washington
AuthorAffiliation_xml – name: Department of Chemistry
– name: University of Washington
Author_xml – sequence: 1
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
– sequence: 2
  givenname: Benjamin E
  surname: Van Kuiken
  fullname: Van Kuiken, Benjamin E
– sequence: 3
  givenname: Feizhi
  surname: Ding
  fullname: Ding, Feizhi
– sequence: 4
  givenname: Xiaosong
  surname: Li
  fullname: Li, Xiaosong
  email: li@chem.washington.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26592388$$D View this record in MEDLINE/PubMed
BookMark eNptkctOHDEQRS1ExDOL_ADyBilZdLDdj7HZjUYMiTQRC0BZWh67nBi57cZ2I5JPydemYQYURayqrurULenWIdoNMQBCHyj5TAmjZ7o0hLTNLOygA9o2ohId63Zfe8r30WHOd4TUdcPqPbTPulawmvMD9GeOL0dnwOBr8LZaxJBdLhBKtXTgDf4G5Wc02MaELx61K2Cq66IK4O_qAfByDLq4GPDVUFzvfqsncY7nw-CdfhYZl4hX7ocKZut4k9R0YzNz4R9ZTbeUx4vYDx4eIR-jd1b5DO-39QjdLi9uFl-q1dXl18V8VamatqXqBG-t0FQwZanl1ja0myaMKWH1mq-FZWTGNbGsIZYYw3k7o7yxVMNaES3qI_Rx4zukeD9CLrJ3WYP3KkAcs6SzuhWEU8En9GSLjusejByS61X6JV_ynICzDaBTzDmBlVNmz0GUpJyXlMinj8nXj00bn_7beDF9iz3dsEpneRfHFKZc3uD-AiyVpCg
CitedBy_id crossref_primary_10_1021_acs_jctc_5b00298
crossref_primary_10_1021_acs_jctc_6b00333
crossref_primary_10_1021_acsomega_3c01177
crossref_primary_10_1039_C6FD00083E
crossref_primary_10_1063_1_5085121
crossref_primary_10_1021_acs_jctc_6b01161
crossref_primary_10_1021_acs_jctc_2c01317
crossref_primary_10_1002_jcc_26797
crossref_primary_10_1063_1_4868120
crossref_primary_10_1063_1_4896182
crossref_primary_10_1021_acs_jpclett_1c02039
crossref_primary_10_1080_00268976_2014_1003260
crossref_primary_10_1021_acs_jctc_7b00980
crossref_primary_10_1021_acs_jctc_0c00597
crossref_primary_10_11648_j_ajmp_20241302_11
crossref_primary_10_1063_5_0083340
crossref_primary_10_1021_acs_jctc_0c01015
crossref_primary_10_1021_jacs_6b02176
crossref_primary_10_1021_acs_jctc_0c00502
crossref_primary_10_1063_5_0054227
crossref_primary_10_1021_acs_jpclett_2c00741
crossref_primary_10_1080_00268976_2022_2089605
crossref_primary_10_1039_D0FD00064G
Cites_doi 10.1002/(SICI)1097-461X(1996)60:2<667::AID-QUA5>3.0.CO;2-V
10.2138/am.2007.2266
10.1021/jp801738f
10.1016/j.theochem.2009.08.018
10.1103/PhysRevLett.91.146401
10.1063/1.3155082
10.1063/1.1626543
10.1016/S0301-0104(98)00419-4
10.1142/9789812830586_0005
10.1063/1.3092928
10.1063/1.1667913
10.1007/BF01113064
10.1103/PhysRevB.75.115409
10.1002/9781119019572.ch4
10.1063/1.1645787
10.1063/1.448799
10.1063/1.473579
10.1063/1.448800
10.1007/BF01205672
10.1021/ic0110676
10.1103/PhysRevB.13.4274
10.1021/j100096a001
10.1103/RevModPhys.74.601
10.1063/1.1607961
10.1063/1.448975
10.1103/PhysRevA.59.3359
10.1103/PhysRevB.37.785
10.2138/am-2001-8-903
10.1002/0471220655
10.1063/1.1570811
10.1063/1.477483
10.1021/ct100214x
10.1080/00268978600101711
10.1021/ja00247a008
10.1021/ct200485x
10.1063/1.1732840
10.1103/RevModPhys.61.689
10.1021/cr0505627
10.1103/PhysRevA.38.3098
10.1063/1.1412605
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/ct400547n
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 3938
ExternalDocumentID 26592388
10_1021_ct400547n
e77437769
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a315t-6985f9c192af1f8ff416a3122a9fcb8b9f2078c0f240f0dd8857184f1ceba0c93
IEDL.DBID ACS
ISSN 1549-9618
IngestDate Thu Jul 10 20:35:19 EDT 2025
Thu Jan 02 22:25:21 EST 2025
Thu Apr 24 22:50:08 EDT 2025
Tue Jul 01 00:36:45 EDT 2025
Thu Aug 27 13:41:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-6985f9c192af1f8ff416a3122a9fcb8b9f2078c0f240f0dd8857184f1ceba0c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26592388
PQID 1735908198
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1735908198
pubmed_primary_26592388
crossref_citationtrail_10_1021_ct400547n
crossref_primary_10_1021_ct400547n
acs_journals_10_1021_ct400547n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-10
PublicationDateYYYYMMDD 2013-09-10
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Hay P. J. (ref39/cit39) 1985; 82
Johansen H. (ref27/cit27) 1986; 58
ref18/cit18
Millam J. M. (ref22/cit22) 1997; 106
Jones R. O. (ref11/cit11) 1989; 61
Onida G. (ref3/cit3) 2002; 74
Liang W. (ref21/cit21) 2010; 6
Staroverov V. N. (ref38/cit38) 2003; 119
Görling A. (ref13/cit13) 1999; 59
Dreuw A. (ref7/cit7) 2005; 105
Li X. (ref23/cit23) 2003; 119
ref5/cit5
Besley N. A. (ref20/cit20) 2009; 130
ref2/cit2
Lee C. (ref34/cit34) 1988; 37
Wadt W. R. (ref41/cit41) 1985; 82
Weakliem H. A. (ref43/cit43) 1962; 36
Dai B. (ref42/cit42) 2003; 118
Gunnarsson O. (ref10/cit10) 1976; 13
Frisch M. J. (ref25/cit25) 2012
Nover J. (ref31/cit31) 1999; 241
Maestre J. M. (ref32/cit32) 2002; 41
Lions P. (ref16/cit16) 1987; 109
Casida M. E. (ref8/cit8) 2009; 914
Taran M. N. (ref45/cit45) 2001; 86
Hipps K. W. (ref28/cit28) 1987; 109
Gilbert A. T. B. (ref15/cit15) 2008; 112
Tao J. (ref35/cit35) 2003; 91
Becke A. D. (ref33/cit33) 1988; 38
Young D. C. (ref19/cit19) 2001
Stanton R. E. (ref17/cit17) 1968; 48
Li X. (ref24/cit24) 2009; 130
Hellman A. (ref12/cit12) 2004; 120
Wilson P. J. (ref37/cit37) 2001; 115
Bosi F. (ref44/cit44) 2007; 92
Stratmann R. E. (ref6/cit6) 1998; 109
Liang W. (ref9/cit9) 2011; 7
Behler J. (ref14/cit14) 2007; 75
Cassam-Chenai P. (ref30/cit30) 1996; 60
ref4/cit4
Lever A. B. P. (ref26/cit26) 1984
Soudackov A. V. (ref29/cit29) 1992; 83
ref1/cit1
Stephens P. J. (ref36/cit36) 1994; 98
Hay P. J. (ref40/cit40) 1985; 82
References_xml – volume: 60
  start-page: 667
  year: 1996
  ident: ref30/cit30
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(1996)60:2<667::AID-QUA5>3.0.CO;2-V
– volume: 92
  start-page: 27
  year: 2007
  ident: ref44/cit44
  publication-title: Am. Mineral.
  doi: 10.2138/am.2007.2266
– ident: ref2/cit2
– volume: 112
  start-page: 13164
  year: 2008
  ident: ref15/cit15
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp801738f
– volume: 914
  start-page: 3
  year: 2009
  ident: ref8/cit8
  publication-title: J. Mol. Struct.: THEOCHEM
  doi: 10.1016/j.theochem.2009.08.018
– volume: 91
  start-page: 146401
  year: 2003
  ident: ref35/cit35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.146401
– volume: 130
  start-page: 234115
  year: 2009
  ident: ref24/cit24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3155082
– volume: 119
  start-page: 12129
  year: 2003
  ident: ref38/cit38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1626543
– volume: 241
  start-page: 179
  year: 1999
  ident: ref31/cit31
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(98)00419-4
– ident: ref4/cit4
  doi: 10.1142/9789812830586_0005
– volume: 130
  start-page: 124308
  year: 2009
  ident: ref20/cit20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3092928
– volume: 48
  start-page: 257
  year: 1968
  ident: ref17/cit17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1667913
– volume: 83
  start-page: 389
  year: 1992
  ident: ref29/cit29
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF01113064
– volume: 75
  start-page: 115409
  year: 2007
  ident: ref14/cit14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.115409
– ident: ref18/cit18
  doi: 10.1002/9781119019572.ch4
– volume: 120
  start-page: 4593
  year: 2004
  ident: ref12/cit12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1645787
– volume: 82
  start-page: 270
  year: 1985
  ident: ref39/cit39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 106
  start-page: 5569
  year: 1997
  ident: ref22/cit22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473579
– volume-title: Gaussian Development Version, Revision H.21
  year: 2012
  ident: ref25/cit25
– volume: 82
  start-page: 284
  year: 1985
  ident: ref41/cit41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448800
– volume: 109
  start-page: 33
  year: 1987
  ident: ref16/cit16
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01205672
– volume: 41
  start-page: 1883
  year: 2002
  ident: ref32/cit32
  publication-title: Inorg. Chem.
  doi: 10.1021/ic0110676
– volume: 13
  start-page: 4274
  year: 1976
  ident: ref10/cit10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.4274
– volume: 98
  start-page: 11623
  year: 1994
  ident: ref36/cit36
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– ident: ref1/cit1
– volume: 74
  start-page: 601
  year: 2002
  ident: ref3/cit3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.601
– volume: 119
  start-page: 7651
  year: 2003
  ident: ref23/cit23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1607961
– volume-title: Inorganic Electronic Spectroscopy
  year: 1984
  ident: ref26/cit26
– volume: 82
  start-page: 299
  year: 1985
  ident: ref40/cit40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– volume: 59
  start-page: 3359
  year: 1999
  ident: ref13/cit13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.3359
– volume: 37
  start-page: 785
  year: 1988
  ident: ref34/cit34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 86
  start-page: 973
  year: 2001
  ident: ref45/cit45
  publication-title: Am. Mineral.
  doi: 10.2138/am-2001-8-903
– volume-title: Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems
  year: 2001
  ident: ref19/cit19
  doi: 10.1002/0471220655
– volume: 118
  start-page: 9608
  year: 2003
  ident: ref42/cit42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1570811
– volume: 109
  start-page: 8218
  year: 1998
  ident: ref6/cit6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477483
– volume: 6
  start-page: 2034
  year: 2010
  ident: ref21/cit21
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct100214x
– volume: 58
  start-page: 965
  year: 1986
  ident: ref27/cit27
  publication-title: Mol. Phys.
  doi: 10.1080/00268978600101711
– ident: ref5/cit5
– volume: 109
  start-page: 3861
  year: 1987
  ident: ref28/cit28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00247a008
– volume: 7
  start-page: 3540
  year: 2011
  ident: ref9/cit9
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct200485x
– volume: 36
  start-page: 2117
  year: 1962
  ident: ref43/cit43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1732840
– volume: 61
  start-page: 689
  year: 1989
  ident: ref11/cit11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.61.689
– volume: 105
  start-page: 4009
  year: 2005
  ident: ref7/cit7
  publication-title: Chem. Rev.
  doi: 10.1021/cr0505627
– volume: 38
  start-page: 3098
  year: 1988
  ident: ref33/cit33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 115
  start-page: 9233
  year: 2001
  ident: ref37/cit37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1412605
SSID ssj0033423
Score 2.2255347
Snippet A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3933
Title A Guided Self-Consistent-Field Method for Excited-State Wave Function Optimization: Applications to Ligand-Field Transitions in Transition-Metal Complexes
URI http://dx.doi.org/10.1021/ct400547n
https://www.ncbi.nlm.nih.gov/pubmed/26592388
https://www.proquest.com/docview/1735908198
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9618
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT9wwFH6icGgvZek2ZZELHHoxHTvL2NxGA1NUsRwAlVvkeEEjhgzqZBDip_BreXaS0SCWSrlEsR0r37Pf5zz7ewDbRvHYaGuojJmisZMOhxQOvDxNpVBa2zz87zg6Tg_O4z8XycUcbL0Swefsly5jzys6xTtY4KlgfoXV7Z02023kJeyCKGrspSaZaOSDZqt616PHT13PK3wy-JX-Iuw1p3Oq7SRXO5My39H3z8Ua3-ryEnyseSXpVoawDHO2WIH3vSad2yd46JLfk4GxhpzaoaMhUSciXJS07zexkaOQSpoghyX7d9oTURqIKPmrbi3po_vzEJITnGKu67Obu6Q7E_4m5YgcDi5VYeoWgxusdoSRQTFzS_Fd2Fc_FQ3tnR1_hvP-_lnvgNaJGaiKWFJShDFxUiM5VI454RyyOnzCuZJO5yKXjiPz0G2HdMG1jREiQRcYO4bQq7aW0ReYL0aF_QbEK7blhneYNrgQVEYqlmhp8VIpVk9bsIHIZfXAGmchZs5ZNv3ELfjZgJrpWtbcZ9cYvlR0c1r0ptLyeKnQj8YyMkTIh09UYUcTfHUn8gnimRQt-FqZzLQZ7qPTkRDf_9fdVfjAQ0INiQ5wDebLfxO7jrSmzDeCWT8CAAjzmQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLa27gAX2MYYHazzJg67mNX5VZtbVbXrthYObQW3yPEPVNGl05Kiij-Fv5ZnJykFFW1SLlEc58nv2e9LnvN9CB0r4QVKakV4QAUJDDcwpWDiJVHEmZBSJ-57x_As6k-Cn5fhZUmTY_-FASMy6ClzRfwHdgH6TeaBhRet9CV65RhQLAzqjKpV17dMdo4bNbCMk5RVLELrt9oMJLPHGegZWOnSS2-30ClyhrldJdcnizw5kbdPOBv_z_LXaKdEmbhdhMUb9EKnb9FWpxJ320N3bfx9MVVa4ZGeGeJkO8HfaU56dksbHjphaQyIFneX0sJS4mApvhA3GvcgGVqH4nNYcH6Xf3Ke4vZaMRznczyYXolUlT26pFjsD8PTdO2UwLPAVrswzfRSZ-_QpNcdd_qklGkgwqdhTsCpoeESoKIw1DBjAOPBFc8T3MiEJdx4gENk0wB4ME2lGAshIQaGQiCIpuT-Pqql81QfIGz52xLltahU8FooFBc0lFzDISK4PaqjBoxwXE6zLHYVdI_GqyGuo6-Vb2NZkpxbrY3ZpqZfVk3_FMwemxp9rgIkBg_ZYopI9XwBj275Vi6eclZH74vIWXXj2Vq1z9iHf5n7CW31x8NBPPhx9usQbXtOaoNDajxCtfzvQn8EwJMnDRfp97DO_AQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgIu0PJcoK1BHLi4rPNam9tqaSjQB1Kp6C1y_KhWXbIVyaKKn8KvZcabrLZVEUi5RPFj5Bl7PmfsbwBeWx0l1jjLVSI0T7zyOKVw4pVZpqQ2xpXhf8fBYbZ3knw6TU_bjSLdhUEhamypDkF8mtUX1rcMA-KtaRKCGIPqFqylRP1GUGh03K28MbHZBX7UhFgnheyYhJarkhcy9VUv9BdoGVxMfh-OFsKFkyXnO7Om3DG_rvE2_r_063CvRZtsODePDVhx1QO4M-qSvD2E30P2YTa2zrJjN_E8pO9EvVcNz-loGzsICaYZIlu2e2kInvIAT9k3_dOxHJ0iKZYd4cLzvb3R-Y4Nl4LirJmy_fGZrmzbYnCO83NibFwtvXLsC2WlBWriLl39CE7y3a-jPd6ma-A6FmnDUbmpVwYho_bCS-8R6-GXKNLKm1KWykeIR0zfI4jwfWulTNExJl6gQei-UfFjWK2mlXsKjHjcShsNhLG4PdRWaZEa5fDRGVbPerCFo1y0060uQiQ9EsViiHvwptNvYVqyc8q5Mbmp6KtF0Ys5w8dNhV52RlKghiioois3nWHXg5jSxgsle_Bkbj2LZiKKWcdSPvuXuNtw-8v7vNj_ePj5OdyNQsYNhR7yBaw2P2ZuE3FPU24FY_8Dv7_-fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Guided+Self-Consistent-Field+Method+for+Excited-State+Wave+Function+Optimization%3A+Applications+to+Ligand-Field+Transitions+in+Transition-Metal+Complexes&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Peng%2C+Bo&rft.au=Van+Kuiken%2C+Benjamin+E&rft.au=Ding%2C+Feizhi&rft.au=Li%2C+Xiaosong&rft.date=2013-09-10&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=9&rft.issue=9&rft.spage=3933&rft.epage=3938&rft_id=info:doi/10.1021%2Fct400547n&rft.externalDocID=e77437769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon