A Guided Self-Consistent-Field Method for Excited-State Wave Function Optimization: Applications to Ligand-Field Transitions in Transition-Metal Complexes
A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous S...
Saved in:
Published in | Journal of chemical theory and computation Vol. 9; no. 9; pp. 3933 - 3938 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
10.09.2013
|
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 |
DOI | 10.1021/ct400547n |
Cover
Abstract | A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn–Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method. |
---|---|
AbstractList | A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method.A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan-Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn-Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method. A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for optimizing wave functions that are higher-energy solutions to the Roothaan–Hall equation. In this method, the eigenvectors of the previous SCF step are used to prediagonalize the current Fock/Kohn–Sham matrix, preserving the ordering of orbital occupations. When the subject of interest is an excited state of the same spin symmetry as the ground state, the initial guess of excited wave function is improved with a preconditioning step. The preconditioning step is an SCF iteration applied to the β spin manifold if the initial guess is generated by orbital permutation in the α spin manifold. This simple preconditioning step gives rise to more-stable SCF convergence using the algorithm presented herein. The guided SCF method is used to optimize ligand-field excited states in tetrahedral transition-metal complexes, and calculate ΔSCF excitation energies. The calculated ligand-field transition energies are compared with those obtained from orbital energy differences, linear response time-dependent density functional theory, and experiments. The excitation energies obtained using the method presented in this work show a significant improvement over orbital energy differences and linear response method. |
Author | Ding, Feizhi Li, Xiaosong Van Kuiken, Benjamin E Peng, Bo |
AuthorAffiliation | Department of Chemistry University of Washington |
AuthorAffiliation_xml | – name: Department of Chemistry – name: University of Washington |
Author_xml | – sequence: 1 givenname: Bo surname: Peng fullname: Peng, Bo – sequence: 2 givenname: Benjamin E surname: Van Kuiken fullname: Van Kuiken, Benjamin E – sequence: 3 givenname: Feizhi surname: Ding fullname: Ding, Feizhi – sequence: 4 givenname: Xiaosong surname: Li fullname: Li, Xiaosong email: li@chem.washington.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26592388$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctOHDEQRS1ExDOL_ADyBilZdLDdj7HZjUYMiTQRC0BZWh67nBi57cZ2I5JPydemYQYURayqrurULenWIdoNMQBCHyj5TAmjZ7o0hLTNLOygA9o2ohId63Zfe8r30WHOd4TUdcPqPbTPulawmvMD9GeOL0dnwOBr8LZaxJBdLhBKtXTgDf4G5Wc02MaELx61K2Cq66IK4O_qAfByDLq4GPDVUFzvfqsncY7nw-CdfhYZl4hX7ocKZut4k9R0YzNz4R9ZTbeUx4vYDx4eIR-jd1b5DO-39QjdLi9uFl-q1dXl18V8VamatqXqBG-t0FQwZanl1ja0myaMKWH1mq-FZWTGNbGsIZYYw3k7o7yxVMNaES3qI_Rx4zukeD9CLrJ3WYP3KkAcs6SzuhWEU8En9GSLjusejByS61X6JV_ynICzDaBTzDmBlVNmz0GUpJyXlMinj8nXj00bn_7beDF9iz3dsEpneRfHFKZc3uD-AiyVpCg |
CitedBy_id | crossref_primary_10_1021_acs_jctc_5b00298 crossref_primary_10_1021_acs_jctc_6b00333 crossref_primary_10_1021_acsomega_3c01177 crossref_primary_10_1039_C6FD00083E crossref_primary_10_1063_1_5085121 crossref_primary_10_1021_acs_jctc_6b01161 crossref_primary_10_1021_acs_jctc_2c01317 crossref_primary_10_1002_jcc_26797 crossref_primary_10_1063_1_4868120 crossref_primary_10_1063_1_4896182 crossref_primary_10_1021_acs_jpclett_1c02039 crossref_primary_10_1080_00268976_2014_1003260 crossref_primary_10_1021_acs_jctc_7b00980 crossref_primary_10_1021_acs_jctc_0c00597 crossref_primary_10_11648_j_ajmp_20241302_11 crossref_primary_10_1063_5_0083340 crossref_primary_10_1021_acs_jctc_0c01015 crossref_primary_10_1021_jacs_6b02176 crossref_primary_10_1021_acs_jctc_0c00502 crossref_primary_10_1063_5_0054227 crossref_primary_10_1021_acs_jpclett_2c00741 crossref_primary_10_1080_00268976_2022_2089605 crossref_primary_10_1039_D0FD00064G |
Cites_doi | 10.1002/(SICI)1097-461X(1996)60:2<667::AID-QUA5>3.0.CO;2-V 10.2138/am.2007.2266 10.1021/jp801738f 10.1016/j.theochem.2009.08.018 10.1103/PhysRevLett.91.146401 10.1063/1.3155082 10.1063/1.1626543 10.1016/S0301-0104(98)00419-4 10.1142/9789812830586_0005 10.1063/1.3092928 10.1063/1.1667913 10.1007/BF01113064 10.1103/PhysRevB.75.115409 10.1002/9781119019572.ch4 10.1063/1.1645787 10.1063/1.448799 10.1063/1.473579 10.1063/1.448800 10.1007/BF01205672 10.1021/ic0110676 10.1103/PhysRevB.13.4274 10.1021/j100096a001 10.1103/RevModPhys.74.601 10.1063/1.1607961 10.1063/1.448975 10.1103/PhysRevA.59.3359 10.1103/PhysRevB.37.785 10.2138/am-2001-8-903 10.1002/0471220655 10.1063/1.1570811 10.1063/1.477483 10.1021/ct100214x 10.1080/00268978600101711 10.1021/ja00247a008 10.1021/ct200485x 10.1063/1.1732840 10.1103/RevModPhys.61.689 10.1021/cr0505627 10.1103/PhysRevA.38.3098 10.1063/1.1412605 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/ct400547n |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 3938 |
ExternalDocumentID | 26592388 10_1021_ct400547n e77437769 |
Genre | Journal Article |
GroupedDBID | 4.4 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 J9A JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F 5VS AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a315t-6985f9c192af1f8ff416a3122a9fcb8b9f2078c0f240f0dd8857184f1ceba0c93 |
IEDL.DBID | ACS |
ISSN | 1549-9618 |
IngestDate | Thu Jul 10 20:35:19 EDT 2025 Thu Jan 02 22:25:21 EST 2025 Thu Apr 24 22:50:08 EDT 2025 Tue Jul 01 00:36:45 EDT 2025 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-6985f9c192af1f8ff416a3122a9fcb8b9f2078c0f240f0dd8857184f1ceba0c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26592388 |
PQID | 1735908198 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1735908198 pubmed_primary_26592388 crossref_citationtrail_10_1021_ct400547n crossref_primary_10_1021_ct400547n acs_journals_10_1021_ct400547n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-10 |
PublicationDateYYYYMMDD | 2013-09-10 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2013 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Hay P. J. (ref39/cit39) 1985; 82 Johansen H. (ref27/cit27) 1986; 58 ref18/cit18 Millam J. M. (ref22/cit22) 1997; 106 Jones R. O. (ref11/cit11) 1989; 61 Onida G. (ref3/cit3) 2002; 74 Liang W. (ref21/cit21) 2010; 6 Staroverov V. N. (ref38/cit38) 2003; 119 Görling A. (ref13/cit13) 1999; 59 Dreuw A. (ref7/cit7) 2005; 105 Li X. (ref23/cit23) 2003; 119 ref5/cit5 Besley N. A. (ref20/cit20) 2009; 130 ref2/cit2 Lee C. (ref34/cit34) 1988; 37 Wadt W. R. (ref41/cit41) 1985; 82 Weakliem H. A. (ref43/cit43) 1962; 36 Dai B. (ref42/cit42) 2003; 118 Gunnarsson O. (ref10/cit10) 1976; 13 Frisch M. J. (ref25/cit25) 2012 Nover J. (ref31/cit31) 1999; 241 Maestre J. M. (ref32/cit32) 2002; 41 Lions P. (ref16/cit16) 1987; 109 Casida M. E. (ref8/cit8) 2009; 914 Taran M. N. (ref45/cit45) 2001; 86 Hipps K. W. (ref28/cit28) 1987; 109 Gilbert A. T. B. (ref15/cit15) 2008; 112 Tao J. (ref35/cit35) 2003; 91 Becke A. D. (ref33/cit33) 1988; 38 Young D. C. (ref19/cit19) 2001 Stanton R. E. (ref17/cit17) 1968; 48 Li X. (ref24/cit24) 2009; 130 Hellman A. (ref12/cit12) 2004; 120 Wilson P. J. (ref37/cit37) 2001; 115 Bosi F. (ref44/cit44) 2007; 92 Stratmann R. E. (ref6/cit6) 1998; 109 Liang W. (ref9/cit9) 2011; 7 Behler J. (ref14/cit14) 2007; 75 Cassam-Chenai P. (ref30/cit30) 1996; 60 ref4/cit4 Lever A. B. P. (ref26/cit26) 1984 Soudackov A. V. (ref29/cit29) 1992; 83 ref1/cit1 Stephens P. J. (ref36/cit36) 1994; 98 Hay P. J. (ref40/cit40) 1985; 82 |
References_xml | – volume: 60 start-page: 667 year: 1996 ident: ref30/cit30 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(1996)60:2<667::AID-QUA5>3.0.CO;2-V – volume: 92 start-page: 27 year: 2007 ident: ref44/cit44 publication-title: Am. Mineral. doi: 10.2138/am.2007.2266 – ident: ref2/cit2 – volume: 112 start-page: 13164 year: 2008 ident: ref15/cit15 publication-title: J. Phys. Chem. A doi: 10.1021/jp801738f – volume: 914 start-page: 3 year: 2009 ident: ref8/cit8 publication-title: J. Mol. Struct.: THEOCHEM doi: 10.1016/j.theochem.2009.08.018 – volume: 91 start-page: 146401 year: 2003 ident: ref35/cit35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.146401 – volume: 130 start-page: 234115 year: 2009 ident: ref24/cit24 publication-title: J. Chem. Phys. doi: 10.1063/1.3155082 – volume: 119 start-page: 12129 year: 2003 ident: ref38/cit38 publication-title: J. Chem. Phys. doi: 10.1063/1.1626543 – volume: 241 start-page: 179 year: 1999 ident: ref31/cit31 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(98)00419-4 – ident: ref4/cit4 doi: 10.1142/9789812830586_0005 – volume: 130 start-page: 124308 year: 2009 ident: ref20/cit20 publication-title: J. Chem. Phys. doi: 10.1063/1.3092928 – volume: 48 start-page: 257 year: 1968 ident: ref17/cit17 publication-title: J. Chem. Phys. doi: 10.1063/1.1667913 – volume: 83 start-page: 389 year: 1992 ident: ref29/cit29 publication-title: Theor. Chim. Acta doi: 10.1007/BF01113064 – volume: 75 start-page: 115409 year: 2007 ident: ref14/cit14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.115409 – ident: ref18/cit18 doi: 10.1002/9781119019572.ch4 – volume: 120 start-page: 4593 year: 2004 ident: ref12/cit12 publication-title: J. Chem. Phys. doi: 10.1063/1.1645787 – volume: 82 start-page: 270 year: 1985 ident: ref39/cit39 publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 106 start-page: 5569 year: 1997 ident: ref22/cit22 publication-title: J. Chem. Phys. doi: 10.1063/1.473579 – volume-title: Gaussian Development Version, Revision H.21 year: 2012 ident: ref25/cit25 – volume: 82 start-page: 284 year: 1985 ident: ref41/cit41 publication-title: J. Chem. Phys. doi: 10.1063/1.448800 – volume: 109 start-page: 33 year: 1987 ident: ref16/cit16 publication-title: Commun. Math. Phys. doi: 10.1007/BF01205672 – volume: 41 start-page: 1883 year: 2002 ident: ref32/cit32 publication-title: Inorg. Chem. doi: 10.1021/ic0110676 – volume: 13 start-page: 4274 year: 1976 ident: ref10/cit10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.4274 – volume: 98 start-page: 11623 year: 1994 ident: ref36/cit36 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – ident: ref1/cit1 – volume: 74 start-page: 601 year: 2002 ident: ref3/cit3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.601 – volume: 119 start-page: 7651 year: 2003 ident: ref23/cit23 publication-title: J. Chem. Phys. doi: 10.1063/1.1607961 – volume-title: Inorganic Electronic Spectroscopy year: 1984 ident: ref26/cit26 – volume: 82 start-page: 299 year: 1985 ident: ref40/cit40 publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 59 start-page: 3359 year: 1999 ident: ref13/cit13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.3359 – volume: 37 start-page: 785 year: 1988 ident: ref34/cit34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 86 start-page: 973 year: 2001 ident: ref45/cit45 publication-title: Am. Mineral. doi: 10.2138/am-2001-8-903 – volume-title: Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems year: 2001 ident: ref19/cit19 doi: 10.1002/0471220655 – volume: 118 start-page: 9608 year: 2003 ident: ref42/cit42 publication-title: J. Chem. Phys. doi: 10.1063/1.1570811 – volume: 109 start-page: 8218 year: 1998 ident: ref6/cit6 publication-title: J. Chem. Phys. doi: 10.1063/1.477483 – volume: 6 start-page: 2034 year: 2010 ident: ref21/cit21 publication-title: J. Chem. Theor. Comput. doi: 10.1021/ct100214x – volume: 58 start-page: 965 year: 1986 ident: ref27/cit27 publication-title: Mol. Phys. doi: 10.1080/00268978600101711 – ident: ref5/cit5 – volume: 109 start-page: 3861 year: 1987 ident: ref28/cit28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00247a008 – volume: 7 start-page: 3540 year: 2011 ident: ref9/cit9 publication-title: J. Chem. Theor. Comput. doi: 10.1021/ct200485x – volume: 36 start-page: 2117 year: 1962 ident: ref43/cit43 publication-title: J. Chem. Phys. doi: 10.1063/1.1732840 – volume: 61 start-page: 689 year: 1989 ident: ref11/cit11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.689 – volume: 105 start-page: 4009 year: 2005 ident: ref7/cit7 publication-title: Chem. Rev. doi: 10.1021/cr0505627 – volume: 38 start-page: 3098 year: 1988 ident: ref33/cit33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 115 start-page: 9233 year: 2001 ident: ref37/cit37 publication-title: J. Chem. Phys. doi: 10.1063/1.1412605 |
SSID | ssj0033423 |
Score | 2.2255347 |
Snippet | A guided self-consistent field (SCF) method is presented in this paper. This method uses the eigenspace update-and-following idea to improve the SCF method for... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3933 |
Title | A Guided Self-Consistent-Field Method for Excited-State Wave Function Optimization: Applications to Ligand-Field Transitions in Transition-Metal Complexes |
URI | http://dx.doi.org/10.1021/ct400547n https://www.ncbi.nlm.nih.gov/pubmed/26592388 https://www.proquest.com/docview/1735908198 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9618 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JT9wwFH6icGgvZek2ZZELHHoxHTvL2NxGA1NUsRwAlVvkeEEjhgzqZBDip_BreXaS0SCWSrlEsR0r37Pf5zz7ewDbRvHYaGuojJmisZMOhxQOvDxNpVBa2zz87zg6Tg_O4z8XycUcbL0Swefsly5jzys6xTtY4KlgfoXV7Z02023kJeyCKGrspSaZaOSDZqt616PHT13PK3wy-JX-Iuw1p3Oq7SRXO5My39H3z8Ua3-ryEnyseSXpVoawDHO2WIH3vSad2yd46JLfk4GxhpzaoaMhUSciXJS07zexkaOQSpoghyX7d9oTURqIKPmrbi3po_vzEJITnGKu67Obu6Q7E_4m5YgcDi5VYeoWgxusdoSRQTFzS_Fd2Fc_FQ3tnR1_hvP-_lnvgNaJGaiKWFJShDFxUiM5VI454RyyOnzCuZJO5yKXjiPz0G2HdMG1jREiQRcYO4bQq7aW0ReYL0aF_QbEK7blhneYNrgQVEYqlmhp8VIpVk9bsIHIZfXAGmchZs5ZNv3ELfjZgJrpWtbcZ9cYvlR0c1r0ptLyeKnQj8YyMkTIh09UYUcTfHUn8gnimRQt-FqZzLQZ7qPTkRDf_9fdVfjAQ0INiQ5wDebLfxO7jrSmzDeCWT8CAAjzmQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLa27gAX2MYYHazzJg67mNX5VZtbVbXrthYObQW3yPEPVNGl05Kiij-Fv5ZnJykFFW1SLlEc58nv2e9LnvN9CB0r4QVKakV4QAUJDDcwpWDiJVHEmZBSJ-57x_As6k-Cn5fhZUmTY_-FASMy6ClzRfwHdgH6TeaBhRet9CV65RhQLAzqjKpV17dMdo4bNbCMk5RVLELrt9oMJLPHGegZWOnSS2-30ClyhrldJdcnizw5kbdPOBv_z_LXaKdEmbhdhMUb9EKnb9FWpxJ320N3bfx9MVVa4ZGeGeJkO8HfaU56dksbHjphaQyIFneX0sJS4mApvhA3GvcgGVqH4nNYcH6Xf3Ke4vZaMRznczyYXolUlT26pFjsD8PTdO2UwLPAVrswzfRSZ-_QpNcdd_qklGkgwqdhTsCpoeESoKIw1DBjAOPBFc8T3MiEJdx4gENk0wB4ME2lGAshIQaGQiCIpuT-Pqql81QfIGz52xLltahU8FooFBc0lFzDISK4PaqjBoxwXE6zLHYVdI_GqyGuo6-Vb2NZkpxbrY3ZpqZfVk3_FMwemxp9rgIkBg_ZYopI9XwBj275Vi6eclZH74vIWXXj2Vq1z9iHf5n7CW31x8NBPPhx9usQbXtOaoNDajxCtfzvQn8EwJMnDRfp97DO_AQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgIu0PJcoK1BHLi4rPNam9tqaSjQB1Kp6C1y_KhWXbIVyaKKn8KvZcabrLZVEUi5RPFj5Bl7PmfsbwBeWx0l1jjLVSI0T7zyOKVw4pVZpqQ2xpXhf8fBYbZ3knw6TU_bjSLdhUEhamypDkF8mtUX1rcMA-KtaRKCGIPqFqylRP1GUGh03K28MbHZBX7UhFgnheyYhJarkhcy9VUv9BdoGVxMfh-OFsKFkyXnO7Om3DG_rvE2_r_063CvRZtsODePDVhx1QO4M-qSvD2E30P2YTa2zrJjN_E8pO9EvVcNz-loGzsICaYZIlu2e2kInvIAT9k3_dOxHJ0iKZYd4cLzvb3R-Y4Nl4LirJmy_fGZrmzbYnCO83NibFwtvXLsC2WlBWriLl39CE7y3a-jPd6ma-A6FmnDUbmpVwYho_bCS-8R6-GXKNLKm1KWykeIR0zfI4jwfWulTNExJl6gQei-UfFjWK2mlXsKjHjcShsNhLG4PdRWaZEa5fDRGVbPerCFo1y0060uQiQ9EsViiHvwptNvYVqyc8q5Mbmp6KtF0Ys5w8dNhV52RlKghiioois3nWHXg5jSxgsle_Bkbj2LZiKKWcdSPvuXuNtw-8v7vNj_ePj5OdyNQsYNhR7yBaw2P2ZuE3FPU24FY_8Dv7_-fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Guided+Self-Consistent-Field+Method+for+Excited-State+Wave+Function+Optimization%3A+Applications+to+Ligand-Field+Transitions+in+Transition-Metal+Complexes&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Peng%2C+Bo&rft.au=Van+Kuiken%2C+Benjamin+E&rft.au=Ding%2C+Feizhi&rft.au=Li%2C+Xiaosong&rft.date=2013-09-10&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=9&rft.issue=9&rft.spage=3933&rft.epage=3938&rft_id=info:doi/10.1021%2Fct400547n&rft.externalDocID=e77437769 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |