Cytotoxic Lipopeptide Muscotoxin A, Isolated from Soil Cyanobacterium Desmonostoc muscorum, Permeabilizes Phospholipid Membranes by Reducing Their Fluidity

There is mounting evidence that cyanobacterial lipopeptides can kill mammalian cells, presenting a hazard to human health. Unfortunately, their mechanism of toxicity is poorly understood. We have isolated new cyclic undeca-lipopeptides muscotoxin A and B containing unique lipophilic residue 3-amino-...

Full description

Saved in:
Bibliographic Details
Published inChemical research in toxicology Vol. 28; no. 2; pp. 216 - 224
Main Authors Tomek, Petr, Hrouzek, Pavel, Kuzma, Marek, Sýkora, Jan, Fišer, Radovan, Černý, Jan, Novák, Petr, Bártová, Simona, Šimek, Petr, Hof, Martin, Kavan, Daniel, Kopecký, Jiří
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 16.02.2015
Amer Chemical Soc
Subjects
Online AccessGet full text
ISSN0893-228X
1520-5010
1520-5010
DOI10.1021/tx500382b

Cover

More Information
Summary:There is mounting evidence that cyanobacterial lipopeptides can kill mammalian cells, presenting a hazard to human health. Unfortunately, their mechanism of toxicity is poorly understood. We have isolated new cyclic undeca-lipopeptides muscotoxin A and B containing unique lipophilic residue 3-amino-2,5-dihydroxydecanoic acid (5-OH Ahdoa). Muscotoxin B was not used for biological studies due to its poor yield. Muscotoxin A was cytotoxic to YAC-1, Sp/2, and HeLa cancer cell lines (LC50 ranged from 9.9 to 13.2 μM after 24 h of exposure), causing membrane damage and influx of calcium ions. Subsequently, we studied this lytic mechanism using synthetic liposomes with encapsulated fluorescent probes. Muscotoxin A permeabilized liposomes composed exclusively of phospholipids, demonstrating that no proteins or carbohydrates present in biomembranes are essential for its activity. Paradoxically, the permeabilization activity of muscotoxin A was mediated by a significant reduction in membrane surface fluidity (stiffening), the opposite of that caused by synthetic detergents and cytolytic lipopeptide puwainaphycin F. At 25 °C, muscotoxin A disrupted liposomes with and without cholesterol/sphingomyelin; however, at 37 °C, it was selective against liposomes with cholesterol/sphingomyelin. It appears that both membrane fluidity and organization can affect the lytic activity of muscotoxin A. Our findings strengthen the evidence that cyanobacterial lipopeptides specifically disrupt mammalian cell membranes and bring new insights into the mechanism of this effect.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-228X
1520-5010
1520-5010
DOI:10.1021/tx500382b