Photodissolution of Ferrihydrite in the Presence of Oxalic Acid: An In Situ ATR-FTIR/DFT Study

The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution proc...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 26; no. 21; pp. 16246 - 16253
Main Authors Bhandari, Narayan, Hausner, Douglas B, Kubicki, James D, Strongin, Daniel R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.11.2010
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/la101357y

Cover

Abstract The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.
AbstractList The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.
The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.
Author Kubicki, James D
Hausner, Douglas B
Strongin, Daniel R
Bhandari, Narayan
Author_xml – sequence: 1
  givenname: Narayan
  surname: Bhandari
  fullname: Bhandari, Narayan
– sequence: 2
  givenname: Douglas B
  surname: Hausner
  fullname: Hausner, Douglas B
– sequence: 3
  givenname: James D
  surname: Kubicki
  fullname: Kubicki, James D
– sequence: 4
  givenname: Daniel R
  surname: Strongin
  fullname: Strongin, Daniel R
  email: dstrongi@temple.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20973577$$D View this record in MEDLINE/PubMed
BookMark eNpt0DFPAyEUwHFiNLZWB7-AYTHG4SwcB_TcGrXaxERj6yqh3LsUcwUFLrHf3mtaHYwsb-D33vA_QvvOO0DolJIrSnI6bDQllHG53kN9ynOS8VEu91GfyIJlshCsh45ifCeElKwoD1EvJ6XsvOyjt-elT76yMfqmTdY77Gs8gRDscl0FmwBbh9MS8HOACM7A5v_pSzfW4LGx1TUeOzx1eGZTi8fzl2wyn74MbydzPEtttT5GB7VuIpzs5gC9Tu7mNw_Z49P99Gb8mGlGi5TVQJiohDQiz-uCVCPNuJCiXsgRlQwKbiipdfcEZ0ToBSu5Lgug9YibogTOBuhie_cj-M8WYlIrGw00jXbg26ikIJTzrlEnz3ayXaygUh_BrnRYq58kHRhugQk-xgC1MjbpTZoUtG0UJWoTXf1G7zYu_2z8HP3Pnm-tNlG9-za4Lss_7huUxItG
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_155835
crossref_primary_10_1016_j_jcis_2013_01_047
crossref_primary_10_1016_j_scitotenv_2024_172333
crossref_primary_10_1021_acsestwater_1c00183
crossref_primary_10_1016_j_chemgeo_2020_119862
crossref_primary_10_1149_2_0711412jes
crossref_primary_10_1016_j_apcatb_2020_119645
crossref_primary_10_1016_j_serj_2018_07_003
crossref_primary_10_3390_nano9081143
crossref_primary_10_1016_j_jhazmat_2019_121444
crossref_primary_10_1016_j_chemgeo_2021_120453
crossref_primary_10_1021_es300988p
crossref_primary_10_1021_acs_est_5b05450
crossref_primary_10_1016_j_jcis_2012_03_020
crossref_primary_10_4491_KSEE_2017_39_7_426
crossref_primary_10_1016_j_susc_2011_04_021
crossref_primary_10_1021_es103793y
crossref_primary_10_1016_j_gca_2018_01_024
crossref_primary_10_1021_acs_langmuir_3c01739
crossref_primary_10_1021_cr2002068
crossref_primary_10_1016_j_watres_2019_04_055
crossref_primary_10_1016_j_apcatb_2020_119578
crossref_primary_10_1016_j_seppur_2021_118915
crossref_primary_10_1016_j_jcis_2013_10_030
crossref_primary_10_1021_jp2058707
crossref_primary_10_1016_j_cej_2018_10_184
crossref_primary_10_1039_D2EN01053D
crossref_primary_10_1039_C7RA04587E
crossref_primary_10_1016_j_gca_2022_05_018
crossref_primary_10_1016_j_molstruc_2021_131065
crossref_primary_10_1021_acsearthspacechem_1c00334
crossref_primary_10_1039_D2EN00874B
crossref_primary_10_1016_j_scitotenv_2019_134220
crossref_primary_10_1038_s41598_018_20401_5
crossref_primary_10_1186_s12932_016_0037_5
crossref_primary_10_1021_acsearthspacechem_0c00203
crossref_primary_10_1021_es505666w
crossref_primary_10_1016_j_atmosenv_2023_119749
crossref_primary_10_1021_acsami_5b06098
crossref_primary_10_1016_j_saa_2014_06_062
crossref_primary_10_1016_j_seppur_2022_122017
crossref_primary_10_1016_j_chemosphere_2023_139790
crossref_primary_10_1016_j_scitotenv_2024_175635
crossref_primary_10_1016_j_apsusc_2022_153375
crossref_primary_10_1016_j_chemgeo_2021_120481
crossref_primary_10_1016_j_scitotenv_2023_169811
crossref_primary_10_1021_acs_est_3c03369
crossref_primary_10_1002_aoc_7748
crossref_primary_10_1039_D2CC03273B
crossref_primary_10_1021_acs_jpca_6b09160
crossref_primary_10_1016_j_scitotenv_2023_165533
crossref_primary_10_1016_j_cej_2013_07_092
crossref_primary_10_1016_j_jhazmat_2018_10_070
crossref_primary_10_1016_j_chemgeo_2024_122569
Cites_doi 10.1016/j.elspec.2005.05.006
10.1016/S0016-7037(01)00696-2
10.1021/es801352k
10.1021/la00022a036
10.1016/0371-1951(63)80244-1
10.1016/j.gca.2009.05.048
10.1016/S1386-1425(02)00287-1
10.1016/S0016-7037(01)00750-5
10.1021/es040388o
10.1021/jp807336t
10.1016/j.gca.2009.04.003
10.1006/jcis.2000.7341
10.1016/j.gca.2004.04.025
10.2307/1551347
10.1016/0009-2614(96)00483-6
10.1016/j.jcis.2009.05.069
10.1021/cr970105t
10.1021/ac60289a016
10.1002/jcc.1058
10.1126/science.240.4852.637
10.1021/es010130n
10.1103/PhysRevB.79.035108
10.1103/PhysRevB.37.785
10.1021/j100303a039
10.1063/1.464913
10.1016/S0375-6742(98)00027-2
10.1016/S0016-7037(98)00036-2
10.1016/j.jcis.2005.07.013
10.1016/j.jcis.2009.09.035
10.1021/la00056a014
10.1016/S0009-2614(99)00848-9
10.1016/j.gca.2004.08.002
10.1126/science.1154833
10.1021/jp051868k
10.1126/science.1142525
10.1063/1.464304
10.1366/0003702981944355
10.1021/es00129a010
10.1016/0304-4203(95)00030-U
10.1016/j.gca.2005.01.023
10.1002/3527602097
10.1021/la0602214
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/la101357y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 16253
ExternalDocumentID 20973577
10_1021_la101357y
d028390791
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a314t-fe036d67c622f40d8a35676fb78173e45c10faaaa65306ab395a94e1f85c49e53
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 11:47:35 EDT 2025
Mon Jul 21 05:32:51 EDT 2025
Tue Jul 01 03:43:23 EDT 2025
Thu Apr 24 23:12:11 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a314t-fe036d67c622f40d8a35676fb78173e45c10faaaa65306ab395a94e1f85c49e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20973577
PQID 760155135
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_760155135
pubmed_primary_20973577
crossref_citationtrail_10_1021_la101357y
crossref_primary_10_1021_la101357y
acs_journals_10_1021_la101357y
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101102
2010-11-02
2010-Nov-02
PublicationDateYYYYMMDD 2010-11-02
PublicationDate_xml – month: 11
  year: 2010
  text: 20101102
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References McKnight D. M. (ref6/cit6) 1988; 20
Cheng T. (ref40/cit40) 2004; 38
Hausner D. B. (ref13/cit13) 2009; 337
Axe K. (ref14/cit14) 2006; 294
Appelo C. A. J. (ref41/cit41) 2002; 36
Leland J. K. (ref9/cit9) 1987; 91
Sherman D. M. (ref8/cit8) 2005; 69
Bargar J. R. (ref38/cit38) 2005; 69
Frisch M. J. (ref26/cit26) 2004
Yanina S. V. (ref42/cit42) 2008; 320
Villalobos M. (ref12/cit12) 2001; 235
Borda M. J. (ref19/cit19) 2003; 59
Ganor J. (ref10/cit10) 1998; 62
Becke A. D. (ref28/cit28) 1993; 98
Cornell R. M. (ref22/cit22) 2003
Degenhardt J. (ref17/cit17) 1999; 311
McKnight D. M. (ref4/cit4) 1988; 240
Michel F. M. (ref23/cit23) 2007; 316
Waite T. D. (ref2/cit2) 1984; 18
Borer P. (ref3/cit3) 2009; 43
Becke A. D. (ref27/cit27) 1993; 98
Debnath S. (ref32/cit32) 2009; 341
Baltrusaitis J. (ref11/cit11) 2005; 109
Yoon T. H. (ref18/cit18) 2004; 68
Gilbert B. (ref43/cit43) 2009; 79
Siffert C. (ref1/cit1) 1991; 7
Liu G. (ref31/cit31) 2006; 22
Cwiertny D. M. (ref39/cit39) 2009; 113
Stookey L. L. (ref24/cit24) 1970; 42
Lee C. (ref29/cit29) 1988; 37
Hug S. J. (ref20/cit20) 1994; 10
Begun G. M. (ref35/cit35) 1963; 19
Duckworth O. W. (ref37/cit37) 2001; 65
Rassolov V. A. (ref30/cit30) 2001; 22
Wong M. W. (ref33/cit33) 1996; 256
Sulzberger B. (ref7/cit7) 1995; 50
Axe K. (ref15/cit15) 2001; 65
Hao J. (ref25/cit25) 2009; 73
Hind A. R. (ref34/cit34) 1998; 52
Hug S. J. (ref36/cit36) 2006; 150
Sullivan A. B. (ref5/cit5) 1998; 64
Jambor J. L. (ref21/cit21) 1998; 98
Borer P. (ref16/cit16) 2009; 73
References_xml – volume: 150
  start-page: 208
  issue: 2
  year: 2006
  ident: ref36/cit36
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2005.05.006
– volume: 65
  start-page: 4289
  issue: 23
  year: 2001
  ident: ref37/cit37
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00696-2
– volume: 43
  start-page: 1864
  issue: 6
  year: 2009
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801352k
– volume: 10
  start-page: 3587
  issue: 10
  year: 1994
  ident: ref20/cit20
  publication-title: Langmuir
  doi: 10.1021/la00022a036
– volume: 19
  start-page: 1343
  issue: 8
  year: 1963
  ident: ref35/cit35
  publication-title: Spectrochim. Acta
  doi: 10.1016/0371-1951(63)80244-1
– volume: 73
  start-page: 4661
  issue: 16
  year: 2009
  ident: ref16/cit16
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.05.048
– volume: 59
  start-page: 1103
  issue: 5
  year: 2003
  ident: ref19/cit19
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(02)00287-1
– volume: 65
  start-page: 4481
  issue: 24
  year: 2001
  ident: ref15/cit15
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(01)00750-5
– volume: 38
  start-page: 6059
  year: 2004
  ident: ref40/cit40
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es040388o
– volume: 113
  start-page: 2175
  issue: 6
  year: 2009
  ident: ref39/cit39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp807336t
– volume: 73
  start-page: 4111
  issue: 14
  year: 2009
  ident: ref25/cit25
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.04.003
– volume: 235
  start-page: 15
  issue: 1
  year: 2001
  ident: ref12/cit12
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7341
– volume: 68
  start-page: 4505
  issue: 22
  year: 2004
  ident: ref18/cit18
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.04.025
– volume: 20
  start-page: 492
  issue: 4
  year: 1988
  ident: ref6/cit6
  publication-title: Arct. Alp. Res.
  doi: 10.2307/1551347
– volume: 256
  start-page: 391
  issue: 4
  year: 1996
  ident: ref33/cit33
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(96)00483-6
– volume: 337
  start-page: 492
  issue: 2
  year: 2009
  ident: ref13/cit13
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.05.069
– volume: 98
  start-page: 2549
  issue: 7
  year: 1998
  ident: ref21/cit21
  publication-title: Chem. Rev.
  doi: 10.1021/cr970105t
– volume: 42
  start-page: 779
  issue: 7
  year: 1970
  ident: ref24/cit24
  publication-title: Anal. Chem.
  doi: 10.1021/ac60289a016
– volume: 22
  start-page: 976
  issue: 9
  year: 2001
  ident: ref30/cit30
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1058
– volume: 240
  start-page: 637
  issue: 4852
  year: 1988
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.240.4852.637
– volume: 36
  start-page: 3096
  issue: 14
  year: 2002
  ident: ref41/cit41
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010130n
– volume: 79
  start-page: 035108-7
  issue: 3
  year: 2009
  ident: ref43/cit43
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.79.035108
– volume: 37
  start-page: 785
  issue: 2
  year: 1988
  ident: ref29/cit29
  publication-title: Phys. Rev. B: Condens. Matter
  doi: 10.1103/PhysRevB.37.785
– volume: 91
  start-page: 5076
  issue: 19
  year: 1987
  ident: ref9/cit9
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100303a039
– volume: 98
  start-page: 5648
  issue: 7
  year: 1993
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 64
  start-page: 141
  issue: 1
  year: 1998
  ident: ref5/cit5
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(98)00027-2
– volume: 62
  start-page: 1295
  issue: 8
  year: 1998
  ident: ref10/cit10
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(98)00036-2
– volume: 294
  start-page: 31
  issue: 1
  year: 2006
  ident: ref14/cit14
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.07.013
– volume: 341
  start-page: 215
  issue: 2
  year: 2009
  ident: ref32/cit32
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.09.035
– volume: 7
  start-page: 1627
  issue: 8
  year: 1991
  ident: ref1/cit1
  publication-title: Langmuir
  doi: 10.1021/la00056a014
– volume: 311
  start-page: 179
  issue: 3
  year: 1999
  ident: ref17/cit17
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00848-9
– volume: 69
  start-page: 1527
  issue: 6
  year: 2005
  ident: ref38/cit38
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.08.002
– volume: 320
  start-page: 218
  issue: 5873
  year: 2008
  ident: ref42/cit42
  publication-title: Science
  doi: 10.1126/science.1154833
– volume: 109
  start-page: 12227
  issue: 25
  year: 2005
  ident: ref11/cit11
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051868k
– volume: 316
  start-page: 1726
  issue: 5832
  year: 2007
  ident: ref23/cit23
  publication-title: Science
  doi: 10.1126/science.1142525
– volume-title: Gaussian 03
  year: 2004
  ident: ref26/cit26
– volume: 98
  start-page: 1372
  issue: 2
  year: 1993
  ident: ref28/cit28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
– volume: 52
  start-page: 683
  issue: 5
  year: 1998
  ident: ref34/cit34
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702981944355
– volume: 18
  start-page: 860
  issue: 11
  year: 1984
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00129a010
– volume: 50
  start-page: 103
  issue: 1
  year: 1995
  ident: ref7/cit7
  publication-title: Mar. Chem.
  doi: 10.1016/0304-4203(95)00030-U
– volume: 69
  start-page: 3249
  issue: 13
  year: 2005
  ident: ref8/cit8
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2005.01.023
– volume-title: The Iron Oxides: Structure, Properties, Reactions, Occurerences and Uses
  year: 2003
  ident: ref22/cit22
  doi: 10.1002/3527602097
– volume: 22
  start-page: 9313
  issue: 22
  year: 2006
  ident: ref31/cit31
  publication-title: Langmuir
  doi: 10.1021/la0602214
SSID ssj0009349
Score 2.2468936
Snippet The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16246
SubjectTerms Adsorption
Ferric Compounds - chemistry
Interfaces: Adsorption, Reactions, Films, Forces
Oxalic Acid - chemistry
Photochemistry
Quantum Theory
Spectroscopy, Fourier Transform Infrared
Surface Properties
Vibration
Title Photodissolution of Ferrihydrite in the Presence of Oxalic Acid: An In Situ ATR-FTIR/DFT Study
URI http://dx.doi.org/10.1021/la101357y
https://www.ncbi.nlm.nih.gov/pubmed/20973577
https://www.proquest.com/docview/760155135
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3JTsMwEB1BOcCFfSmbLODAJdDEW8KtKkSAxCIoEicix7FFBUpQm0qUr8fOUkBsuWYSWTMTvefM-A3AnpC-0gaWHV8FgUMSzh2hsHJcwaVPCI55MQzm4pKd3pHze3o_Abu_VPA99_BZmKzBlI8mYcpjBl8s_-ncfijr4pLjWq1NThiu5YM-P2qhRw6-Qs8vfLLAlXAOjuvTOWU7ydPBMI8P5Nt3sca_ljwPsxWvRO0yERZgQqWLMN2px7ktwcP1Y5ZntvxeJRvKNAqtLuPjKOkb4ol6KTJsEF0XB5KksvevXg1Nl6gte8kRaqfoLEW3vXyI2t0bJ-ye3Rweh11kWxFHy3AXnnQ7p041XMER2CW5o5XBroRxyTxPk1biC0wZZzrmvsuxIlS6LS3MxajZVYgYB1QERLnap5IEiuIVaKRZqtYASZYEmCYqYcTwG-0Ls00xRAC7TPPYEKwmbBvvR9XHMYiKurfnRmM3NWG_DkwkK2lyOyHj-SfTnbHpS6nH8ZMRqqMbGS_bEohIVTYcRLYDyI60oU1YLaM-fotnhYso5-v_rXYDZooWAvtv2duERt4fqi3DTPJ4u8jMd0bi2X4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKPcCFj0LbpRSsqgcuARJ_Jb1FW6JdChRBkDgROY4tVqAEkazE9td37GSXgkAl19jWyDPRPGfG7yH0XapQG0jLXqijyKOFEJ7URHu-FCqklOTCicEcn_DBBT28ZJcdTY69CwNG1LBS7Yr4j-wC_t6thOAhTEzm0HvGKbcyDXH__JFgl7RQ11JuCsrJlEXo36k2A6n6aQZ6BVa69JIstzpFzjDXVXKzO27yXfXnGWfj2yxfQUsdysRxGxar6J0uP6CF_lTcbQ1dnV5XTWWL8V3o4crgxLI0Xk-Ke4CheFRiwIb41F1PUtq-__0AoF3hWI2KHzgu8bDE56NmjOP0zEvS4dnezyTFtjFxso4ukoO0P_A6qQVPEp82ntGQyQouFA8CQ_eLUBLGBTe5CH1BNGXK3zcSHs7gjCFzEjEZUe2bkCkaaUY-ovmyKvVnhBUvIsIKXYCTKDGhhEMLwALicyNygFs9tAW7lHWfSp25KnjgZ7Nt6qGdqX8y1RGVW72M25eGfpsNvWvZOV4ahKdOzmCXbUFElroa15ntB7ICN6yHPrXOn60SWBojJsTG_6zdRguD9PgoOxqe_PqCFl1zgf3rHGyi-eZ-rL8CZmnyLResfwFPQOHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BkYBLedNQKCvEgYvbrvdl92altRoebdSmUk9Y632oEZVd1Y5E-PXMOk4KqAh89Xg1mp3VfOOZ_QbgvTaJ8xiWo8SlacStUpF2zEVUK5NwzkrVDYP5ciQPz_jHc3HeJ4rhLgwq0eBKTVfED6f6yvqeYYDuXGp0ICbU_C7cQyBCw6iGbHh6Q7LLFnA30G4qLtmSSejXT0MUMs3vUegv0LILMfkjOF4p13WWfNueteW2-fEHb-P_a_8Y1nu0SbKFezyBO656Cg-GyyFvz-Dr-KJu61CU712Q1J7kga3xYm6vEY6SaUUQI5Jxd03JuPD--DuCd0MyM7V7JKvIqCKn03ZGsslJlE9GJzv7-YSEBsX5czjLDybDw6gfuRBpRnkbeYcRzUplZBx7vmsTzYRU0pcqoYo5Lgzd9RofKTDX0CVLhU65oz4RhqdOsBewVtWV2wBipE2ZsM5KjqjHJxqTF4QHjEqvSoRdA9hCSxX9kWmKrhoe02JlpgF8WO5RYXrC8jA34_I20Xcr0asFS8dtQmS50QVaORRGdOXqWVOEvqAw6EYM4OXCAVarxIHOSCj16l_avoX74_28-Dw6-rQJD7seg_DzOX4Na-31zL1B6NKWW52__gTG4-Ra
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photodissolution+of+Ferrihydrite+in+the+Presence+of+Oxalic+Acid%3A+An+In+Situ+ATR-FTIR%2FDFT+Study&rft.jtitle=Langmuir&rft.au=Bhandari%2C+Narayan&rft.au=Hausner%2C+Douglas+B&rft.au=Kubicki%2C+James+D&rft.au=Strongin%2C+Daniel+R&rft.date=2010-11-02&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=26&rft.issue=21&rft.spage=16246&rft.epage=16253&rft_id=info:doi/10.1021%2Fla101357y&rft.externalDocID=d028390791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon