Nanoassembly of Dipolar Imidazoanthraquinone Derivatives Leading to Enhanced Hole Mobility

Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 122; no. 45; pp. 25804 - 25812
Main Authors Siddiqui, Qamar T, Bhui, Prabhjyot, Muneer, Mohammad, Chandrakumar, K. R. S, Bose, Sangita, Agarwal, Neeraj
Format Journal Article
LanguageEnglish
Published American Chemical Society 15.11.2018
Subjects
Online AccessGet full text
ISSN1932-7447
1932-7455
1932-7455
DOI10.1021/acs.jpcc.8b07224

Cover

Abstract Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–4 cm2/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices.
AbstractList Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–4 cm2/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices.
Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–⁴ cm²/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices.
Author Bhui, Prabhjyot
Bose, Sangita
Chandrakumar, K. R. S
Agarwal, Neeraj
Siddiqui, Qamar T
Muneer, Mohammad
AuthorAffiliation Department of Chemistry
School of Chemical Sciences
School of Physical Sciences
Theoretical Chemistry Section
AuthorAffiliation_xml – name: School of Chemical Sciences
– name: School of Physical Sciences
– name: Department of Chemistry
– name: Theoretical Chemistry Section
Author_xml – sequence: 1
  givenname: Qamar T
  surname: Siddiqui
  fullname: Siddiqui, Qamar T
  organization: Department of Chemistry
– sequence: 2
  givenname: Prabhjyot
  surname: Bhui
  fullname: Bhui, Prabhjyot
– sequence: 3
  givenname: Mohammad
  surname: Muneer
  fullname: Muneer, Mohammad
  organization: Department of Chemistry
– sequence: 4
  givenname: K. R. S
  orcidid: 0000-0002-0121-3556
  surname: Chandrakumar
  fullname: Chandrakumar, K. R. S
  organization: Theoretical Chemistry Section
– sequence: 5
  givenname: Sangita
  surname: Bose
  fullname: Bose, Sangita
  email: sangita@cbs.ac.in
– sequence: 6
  givenname: Neeraj
  orcidid: 0000-0003-2853-2730
  surname: Agarwal
  fullname: Agarwal, Neeraj
  email: na@cbs.ac.in
BookMark eNp9kD1PwzAQhi1UJNrCzuiRgRTb-XAyorbQSgUWWFiii-NQV46d2kml8utJacWABNOddM97d3pGaGCskQhdUzKhhNE7EH6yaYSYpAXhjEVnaEizkAU8iuPBTx_xCzTyfkNIHBIaDtH7MxgL3su60HtsKzxTjdXg8LJWJXxaMO3awbZTh3N4Jp3aQat20uOVhFKZD9xaPDdrMEKWeGG1xE-2UFq1-0t0XoH28upUx-jtYf46XQSrl8fl9H4VQEjDNpBJkvbvZITyUsZxlqRFFcl-uYg4j3gZ8xSqMs1CUdCyiKlIRMWyhLIoZIxkZThGN8e9jbPbTvo2r5UXUmsw0nY-Zz2WZimhpEfJERXOeu9klTdO1eD2OSX5QWPea8wPGvOTxj6S_IoI1fYKrGkdKP1f8PYY_J7Yzplewt_4F9MAi3g
CitedBy_id crossref_primary_10_1007_s12039_019_1667_9
crossref_primary_10_1016_j_jphotochem_2021_113710
crossref_primary_10_1039_D1NJ02134F
crossref_primary_10_1021_acsomega_3c10373
Cites_doi 10.1039/b813786m
10.1016/s1369-7021(11)70300-5
10.1016/j.dyepig.2014.12.003
10.1016/j.orgel.2018.03.005
10.1021/cm020414m
10.1016/j.solmat.2007.01.004
10.1021/acs.chemmater.6b02264
10.1039/c7cc01786c
10.1016/j.orgel.2015.03.013
10.1002/adma.201401725
10.1021/jz400374p
10.1021/acsami.7b01348
10.1351/pac198456040461
10.1103/physrevb.55.r656
10.1039/c4mh00042k
10.1021/ja068429z
10.1063/1.116583
10.1021/acs.jpcc.5b08581
10.1016/j.tsf.2011.11.017
10.1002/chem.201001153
10.1021/am402744k
10.1016/S1452-3981(23)15298-9
10.1016/j.synthmet.2016.07.015
10.1021/am508855s
10.1002/aenm.201600594
10.1021/jacs.5b01108
10.1002/anie.201105133
10.1063/1.465640
10.1246/bcsj.29.465
10.1063/1.454033
10.1021/ja020168f
10.1021/ar900099h
10.1039/a903535d
10.1063/1.4881080
10.1039/c3cc41803k
10.1021/ja208642b
10.1002/polb.23366
10.1002/cphc.200700575
10.1007/978-0-387-46312-4
10.1039/c7tc00893g
10.1021/jo201290a
10.1021/cr400353v
10.1002/wcms.81
10.1002/1521-3773(20000602)39:11<1978::aid-anie1978>3.0.co;2-0
10.1038/nmat1500
10.1002/adfm.200500211
10.1002/aenm.201200911
10.1103/physrevb.33.8822
10.1021/ol101492q
10.1016/s1010-6030(00)00360-9
10.1002/adma.201304373
10.1039/c6ta01533f
10.1038/ncomms9242
10.1002/adfm.200900357
10.1002/ejoc.201700769
10.1021/cm302312a
10.1021/nn501133y
10.1103/physreva.51.712
10.1039/b512373a
10.1039/c7cp03128a
10.1007/s12039-016-1134-9
10.1021/ja202977r
10.1038/nchem.2232
10.1021/nl5025326
10.1016/j.orgel.2009.06.018
10.1103/physrevb.86.165203
10.1038/srep16854
10.1002/adma.201302052
10.1002/anie.201508249
10.1021/jp026062o
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.jpcc.8b07224
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 25812
ExternalDocumentID 10_1021_acs_jpcc_8b07224
b423597151
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
7S9
L.6
ID FETCH-LOGICAL-a313t-e6680059017de55968bf4eeadc47747d578afd893cb1db51c6cf29612432209d3
IEDL.DBID ACS
ISSN 1932-7447
1932-7455
IngestDate Fri Jul 11 05:18:54 EDT 2025
Thu Apr 24 23:10:29 EDT 2025
Tue Jul 01 02:17:21 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-e6680059017de55968bf4eeadc47747d578afd893cb1db51c6cf29612432209d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2853-2730
0000-0002-0121-3556
PQID 2220898010
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_2220898010
crossref_primary_10_1021_acs_jpcc_8b07224
crossref_citationtrail_10_1021_acs_jpcc_8b07224
acs_journals_10_1021_acs_jpcc_8b07224
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
Lakowicz J. R. (ref46/cit46) 2006
ref3/cit3
ref27/cit27
ref63/cit63
Lippert E. (ref42/cit42) 1957; 61
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Ajloo D. (ref51/cit51) 2010; 5
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1039/b813786m
– ident: ref1/cit1
  doi: 10.1016/s1369-7021(11)70300-5
– ident: ref25/cit25
  doi: 10.1016/j.dyepig.2014.12.003
– ident: ref69/cit69
  doi: 10.1016/j.orgel.2018.03.005
– ident: ref40/cit40
  doi: 10.1021/cm020414m
– ident: ref50/cit50
  doi: 10.1016/j.solmat.2007.01.004
– ident: ref59/cit59
  doi: 10.1021/acs.chemmater.6b02264
– ident: ref41/cit41
  doi: 10.1039/c7cc01786c
– ident: ref65/cit65
  doi: 10.1016/j.orgel.2015.03.013
– ident: ref67/cit67
  doi: 10.1002/adma.201401725
– ident: ref5/cit5
  doi: 10.1021/jz400374p
– ident: ref7/cit7
  doi: 10.1021/acsami.7b01348
– ident: ref52/cit52
  doi: 10.1351/pac198456040461
– ident: ref68/cit68
  doi: 10.1103/physrevb.55.r656
– ident: ref32/cit32
  doi: 10.1039/c4mh00042k
– ident: ref13/cit13
  doi: 10.1021/ja068429z
– ident: ref70/cit70
  doi: 10.1063/1.116583
– ident: ref10/cit10
  doi: 10.1021/acs.jpcc.5b08581
– ident: ref48/cit48
  doi: 10.1016/j.tsf.2011.11.017
– ident: ref16/cit16
  doi: 10.1002/chem.201001153
– ident: ref6/cit6
  doi: 10.1021/am402744k
– volume: 61
  start-page: 962
  year: 1957
  ident: ref42/cit42
  publication-title: Z. Elektrochem.
– volume: 5
  start-page: 459
  year: 2010
  ident: ref51/cit51
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15298-9
– ident: ref29/cit29
  doi: 10.1016/j.synthmet.2016.07.015
– ident: ref27/cit27
  doi: 10.1021/am508855s
– ident: ref21/cit21
  doi: 10.1002/aenm.201600594
– ident: ref12/cit12
  doi: 10.1021/jacs.5b01108
– ident: ref19/cit19
  doi: 10.1002/anie.201105133
– ident: ref14/cit14
  doi: 10.1063/1.465640
– ident: ref43/cit43
  doi: 10.1246/bcsj.29.465
– ident: ref53/cit53
  doi: 10.1063/1.454033
– ident: ref18/cit18
  doi: 10.1021/ja020168f
– ident: ref49/cit49
  doi: 10.1021/ar900099h
– ident: ref3/cit3
  doi: 10.1039/a903535d
– ident: ref11/cit11
  doi: 10.1063/1.4881080
– ident: ref35/cit35
  doi: 10.1039/c3cc41803k
– ident: ref9/cit9
  doi: 10.1021/ja208642b
– ident: ref20/cit20
  doi: 10.1002/polb.23366
– ident: ref15/cit15
  doi: 10.1002/cphc.200700575
– volume-title: Principle of Fluorescence Spectroscopy
  year: 2006
  ident: ref46/cit46
  doi: 10.1007/978-0-387-46312-4
– ident: ref8/cit8
  doi: 10.1039/c7tc00893g
– ident: ref37/cit37
  doi: 10.1021/jo201290a
– ident: ref57/cit57
  doi: 10.1021/cr400353v
– ident: ref54/cit54
  doi: 10.1002/wcms.81
– ident: ref17/cit17
  doi: 10.1002/1521-3773(20000602)39:11<1978::aid-anie1978>3.0.co;2-0
– ident: ref47/cit47
  doi: 10.1038/nmat1500
– ident: ref64/cit64
  doi: 10.1002/adfm.200500211
– ident: ref31/cit31
  doi: 10.1002/aenm.201200911
– ident: ref55/cit55
  doi: 10.1103/physrevb.33.8822
– ident: ref36/cit36
  doi: 10.1021/ol101492q
– ident: ref45/cit45
  doi: 10.1016/s1010-6030(00)00360-9
– ident: ref66/cit66
  doi: 10.1002/adma.201304373
– ident: ref28/cit28
  doi: 10.1039/c6ta01533f
– ident: ref34/cit34
  doi: 10.1038/ncomms9242
– ident: ref39/cit39
  doi: 10.1002/adfm.200900357
– ident: ref38/cit38
  doi: 10.1002/ejoc.201700769
– ident: ref62/cit62
  doi: 10.1021/cm302312a
– ident: ref26/cit26
  doi: 10.1021/nn501133y
– ident: ref2/cit2
  doi: 10.1103/physreva.51.712
– ident: ref30/cit30
  doi: 10.1039/b512373a
– ident: ref4/cit4
  doi: 10.1039/c7cp03128a
– ident: ref44/cit44
  doi: 10.1007/s12039-016-1134-9
– ident: ref58/cit58
  doi: 10.1021/ja202977r
– ident: ref22/cit22
  doi: 10.1038/nchem.2232
– ident: ref60/cit60
  doi: 10.1021/nl5025326
– ident: ref61/cit61
  doi: 10.1016/j.orgel.2009.06.018
– ident: ref71/cit71
  doi: 10.1103/physrevb.86.165203
– ident: ref63/cit63
  doi: 10.1038/srep16854
– ident: ref24/cit24
  doi: 10.1002/adma.201302052
– ident: ref23/cit23
  doi: 10.1002/anie.201508249
– ident: ref56/cit56
  doi: 10.1021/jp026062o
SSID ssj0053013
Score 2.3067675
Snippet Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25804
SubjectTerms density functional theory
fluorescence
hydrogen bonding
hydroxyl radicals
quinones
solar cells
solvents
Title Nanoassembly of Dipolar Imidazoanthraquinone Derivatives Leading to Enhanced Hole Mobility
URI http://dx.doi.org/10.1021/acs.jpcc.8b07224
https://www.proquest.com/docview/2220898010
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1932-7455
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053013
  issn: 1932-7447
  databaseCode: ACS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeChIcOHRr-u5x2kMDAReYNHGp0iQVg60dtEXafj1O2oIGCO1aNZHlOPZn2fmM0AUgYJsJw9IMM3Q0iMeeRonuaxCcCGUeYAKq2D7vnf7Auhnaw2-anJ8VfIM0KUsbL1PGGl6ouxBwVtGa4XhEJlqt9kPldW0wVLOoIANitCy3LEn-tYMMRCxdDESLflgFl95WMaUoVZyEsqfktZFnYYPNfzM2LiH3NtosMSZuFUaxg1ZEvIvW29Votz30BD41AdQsJuF4hpMId0ZTmeLi68mI03lC5fQE-paP4iQWuANG-qH4wVN8W_Tc4yzB3fhZdQ_gfjIW-C5RXbazfTTodR_bfa0csqBRk5iZJhzHK16gulxAeuF4YWQJ2IxZgAxdDjeaRhxQDQsJD23CHBYZPuAiC1yB7nPzANWkMIcIU8q4SR3IoDgkWYxTyA0ZtV2dRKYleFRHl6CUoLwkaaDq3wYJ1EfQVFBqqo6a1ckErGQqlwMzxv-suPpaMS1YOv7597w67ADULusjNBZJngYAlXTPh5CtHy0p6THaAADlybeJxD5Btew9F6cAUrLwTFnnJ6Rx4iM
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHMaFN-JNkODAoaNZnzuibWjA4MBDQlyqNEnFYLSDdkjbr8dJW9AQmuAatZHlOPZn2fkMcIgI2OGybht1K3QNjMe-wajZMDA4UcZ9xARMs31eu517--LBeZgBWr6FQSFS3CnVRfxvdgF6otaeB5zX_ND0MO7MwpwmQlFoqHlbOl8H7dXKC8kIHG3bKyqTv-2g4hFPJ-PRpDvWMeZsEW6-pNOtJS-1YRbW-PgHceO_xF-ChQJxktPcRJZhRsYrUG2Wg95W4RE9bIIYWr6G_RFJItLqDVTCS85fe4KNE6ZmKbC3YS9OYklaaLIfmi08Jd28A59kCWnHT7qXgHSSviRXie65Ha3B_Vn7rtkxipELBrOolRnSdf38PaonJCYbrh9GtsTNuI040RN4v1kkEOPwkIrQodzlUb2BKMlGx2A2hLUOFSXMBhDGuLCYi_mUwJSLC4aZImeOZ9LIsqWINuEIlRIUVyYNdDW8TgO9iJoKCk1twkl5QAEveMvV-Iz-lD-Ov_4Y5JwdU749KM88QLWragmLZTJMAwROpt_AAG5u_VHSfah27q66Qff8-nIb5hFa-erVInV2oJK9D-Uuwpcs3NMG-wlcEuqO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB5qBfXFW7xdQR98SM02Zx-lB_VE0Ir4Eja7G6y2STWpoL_e2U0iKFL0dckuk9nZmW-YC-AAEbDDZd026lboGmiPfYNRs2GgcaKM-4gJmO72eeV2e_bZvXNfAaeshUEiUjwp1UF89apHIio6DNBjtf404rzmh6aHtmcKph3VAU4houZNqYAdlFkrDyYjeLRtr4hO_naCskk8_W6TvqtkbWc6C3D3RaFOL3mujbOwxj9-NG_89y8swnyBPMlJLipLUJHxMsw2y4FvK_CAmjZBLC2H4eCdJBFp9UfK8SWnw75gHwlTMxXYy7gfJ7EkLRTdN901PCUXeSY-yRLSjh91TgHpJgNJLhOde_u-Cr1O-7bZNYrRCwazqJUZ0nX9vC7VExKdDtcPI1viYdxGvOgJfOcsEoh1eEhF6FDu8qjeQLRko4IwG8Jag6oiZh0IY1xYzEW_SqDrxQVDj5EzxzNpZNlSRBtwiEwJiqeTBjoqXqeBXkROBQWnNuC4vKSAF_3L1RiNwYQdR187Rnnvjgnf7pf3HiDbVdSExTIZpwECKNNvoCE3N_9I6R7MXLc6wcXp1fkWzCHC8lXxInW2oZq9juUOopgs3NUy-wnj-O0I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoassembly+of+Dipolar+Imidazoanthraquinone+Derivatives+Leading+to+Enhanced+Hole+Mobility&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Siddiqui%2C+Qamar+T&rft.au=Bhui%2C+Prabhjyot&rft.au=Muneer%2C+Mohammad&rft.au=Chandrakumar%2C+K.+R.+S&rft.date=2018-11-15&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=122&rft.issue=45&rft.spage=25804&rft.epage=25812&rft_id=info:doi/10.1021%2Facs.jpcc.8b07224&rft.externalDocID=b423597151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon