Nanoassembly of Dipolar Imidazoanthraquinone Derivatives Leading to Enhanced Hole Mobility
Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor...
Saved in:
Published in | Journal of physical chemistry. C Vol. 122; no. 45; pp. 25804 - 25812 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
15.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-7447 1932-7455 1932-7455 |
DOI | 10.1021/acs.jpcc.8b07224 |
Cover
Abstract | Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–4 cm2/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices. |
---|---|
AbstractList | Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–4 cm2/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices. Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested the polar nature of the ground state for these materials. In addition, fluorescence quenching experiments with the commonly used electron donor poly-3-hexylthiophene (P3HT) in bulk heterojunction (BHJ) solar cells ascertained the electron acceptor properties of these molecules. Theoretical calculations based on density functional theory (DFT) gave insight on the dipolar nature, H-bonding, and π–π interaction in different types of supramolecular assemblies of AQ01 and AQ02. Calculations predicted that the π–π interaction via antiparallel orientation and H-bonding with the OH···OH interaction is favored energetically in AQ01. Morphological studies on thermally evaporated thin films indicated interconnected nanoassemblies in AQ01 while random aggregates in AQ02. Charge transport properties of these molecules were estimated for AQ01/AQ02 and their blends with P3HT. Hole mobility in the AQ01-based device was found to be as high as 2.4 × 10–⁴ cm²/V s. Favorable morphology in the AQ01 thin film correlates well with the observed high hole mobility. Our results indicate that the dipolar molecule AQ01 has the potential to be used as a nonfullerene-based electron acceptor in BHJ solar cell devices. |
Author | Bhui, Prabhjyot Bose, Sangita Chandrakumar, K. R. S Agarwal, Neeraj Siddiqui, Qamar T Muneer, Mohammad |
AuthorAffiliation | Department of Chemistry School of Chemical Sciences School of Physical Sciences Theoretical Chemistry Section |
AuthorAffiliation_xml | – name: School of Chemical Sciences – name: School of Physical Sciences – name: Department of Chemistry – name: Theoretical Chemistry Section |
Author_xml | – sequence: 1 givenname: Qamar T surname: Siddiqui fullname: Siddiqui, Qamar T organization: Department of Chemistry – sequence: 2 givenname: Prabhjyot surname: Bhui fullname: Bhui, Prabhjyot – sequence: 3 givenname: Mohammad surname: Muneer fullname: Muneer, Mohammad organization: Department of Chemistry – sequence: 4 givenname: K. R. S orcidid: 0000-0002-0121-3556 surname: Chandrakumar fullname: Chandrakumar, K. R. S organization: Theoretical Chemistry Section – sequence: 5 givenname: Sangita surname: Bose fullname: Bose, Sangita email: sangita@cbs.ac.in – sequence: 6 givenname: Neeraj orcidid: 0000-0003-2853-2730 surname: Agarwal fullname: Agarwal, Neeraj email: na@cbs.ac.in |
BookMark | eNp9kD1PwzAQhi1UJNrCzuiRgRTb-XAyorbQSgUWWFiii-NQV46d2kml8utJacWABNOddM97d3pGaGCskQhdUzKhhNE7EH6yaYSYpAXhjEVnaEizkAU8iuPBTx_xCzTyfkNIHBIaDtH7MxgL3su60HtsKzxTjdXg8LJWJXxaMO3awbZTh3N4Jp3aQat20uOVhFKZD9xaPDdrMEKWeGG1xE-2UFq1-0t0XoH28upUx-jtYf46XQSrl8fl9H4VQEjDNpBJkvbvZITyUsZxlqRFFcl-uYg4j3gZ8xSqMs1CUdCyiKlIRMWyhLIoZIxkZThGN8e9jbPbTvo2r5UXUmsw0nY-Zz2WZimhpEfJERXOeu9klTdO1eD2OSX5QWPea8wPGvOTxj6S_IoI1fYKrGkdKP1f8PYY_J7Yzplewt_4F9MAi3g |
CitedBy_id | crossref_primary_10_1007_s12039_019_1667_9 crossref_primary_10_1016_j_jphotochem_2021_113710 crossref_primary_10_1039_D1NJ02134F crossref_primary_10_1021_acsomega_3c10373 |
Cites_doi | 10.1039/b813786m 10.1016/s1369-7021(11)70300-5 10.1016/j.dyepig.2014.12.003 10.1016/j.orgel.2018.03.005 10.1021/cm020414m 10.1016/j.solmat.2007.01.004 10.1021/acs.chemmater.6b02264 10.1039/c7cc01786c 10.1016/j.orgel.2015.03.013 10.1002/adma.201401725 10.1021/jz400374p 10.1021/acsami.7b01348 10.1351/pac198456040461 10.1103/physrevb.55.r656 10.1039/c4mh00042k 10.1021/ja068429z 10.1063/1.116583 10.1021/acs.jpcc.5b08581 10.1016/j.tsf.2011.11.017 10.1002/chem.201001153 10.1021/am402744k 10.1016/S1452-3981(23)15298-9 10.1016/j.synthmet.2016.07.015 10.1021/am508855s 10.1002/aenm.201600594 10.1021/jacs.5b01108 10.1002/anie.201105133 10.1063/1.465640 10.1246/bcsj.29.465 10.1063/1.454033 10.1021/ja020168f 10.1021/ar900099h 10.1039/a903535d 10.1063/1.4881080 10.1039/c3cc41803k 10.1021/ja208642b 10.1002/polb.23366 10.1002/cphc.200700575 10.1007/978-0-387-46312-4 10.1039/c7tc00893g 10.1021/jo201290a 10.1021/cr400353v 10.1002/wcms.81 10.1002/1521-3773(20000602)39:11<1978::aid-anie1978>3.0.co;2-0 10.1038/nmat1500 10.1002/adfm.200500211 10.1002/aenm.201200911 10.1103/physrevb.33.8822 10.1021/ol101492q 10.1016/s1010-6030(00)00360-9 10.1002/adma.201304373 10.1039/c6ta01533f 10.1038/ncomms9242 10.1002/adfm.200900357 10.1002/ejoc.201700769 10.1021/cm302312a 10.1021/nn501133y 10.1103/physreva.51.712 10.1039/b512373a 10.1039/c7cp03128a 10.1007/s12039-016-1134-9 10.1021/ja202977r 10.1038/nchem.2232 10.1021/nl5025326 10.1016/j.orgel.2009.06.018 10.1103/physrevb.86.165203 10.1038/srep16854 10.1002/adma.201302052 10.1002/anie.201508249 10.1021/jp026062o |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acs.jpcc.8b07224 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 25812 |
ExternalDocumentID | 10_1021_acs_jpcc_8b07224 b423597151 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK 7S9 L.6 |
ID | FETCH-LOGICAL-a313t-e6680059017de55968bf4eeadc47747d578afd893cb1db51c6cf29612432209d3 |
IEDL.DBID | ACS |
ISSN | 1932-7447 1932-7455 |
IngestDate | Fri Jul 11 05:18:54 EDT 2025 Thu Apr 24 23:10:29 EDT 2025 Tue Jul 01 02:17:21 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a313t-e6680059017de55968bf4eeadc47747d578afd893cb1db51c6cf29612432209d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2853-2730 0000-0002-0121-3556 |
PQID | 2220898010 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2220898010 crossref_primary_10_1021_acs_jpcc_8b07224 crossref_citationtrail_10_1021_acs_jpcc_8b07224 acs_journals_10_1021_acs_jpcc_8b07224 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-15 |
PublicationDateYYYYMMDD | 2018-11-15 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 Lakowicz J. R. (ref46/cit46) 2006 ref3/cit3 ref27/cit27 ref63/cit63 Lippert E. (ref42/cit42) 1957; 61 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Ajloo D. (ref51/cit51) 2010; 5 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1039/b813786m – ident: ref1/cit1 doi: 10.1016/s1369-7021(11)70300-5 – ident: ref25/cit25 doi: 10.1016/j.dyepig.2014.12.003 – ident: ref69/cit69 doi: 10.1016/j.orgel.2018.03.005 – ident: ref40/cit40 doi: 10.1021/cm020414m – ident: ref50/cit50 doi: 10.1016/j.solmat.2007.01.004 – ident: ref59/cit59 doi: 10.1021/acs.chemmater.6b02264 – ident: ref41/cit41 doi: 10.1039/c7cc01786c – ident: ref65/cit65 doi: 10.1016/j.orgel.2015.03.013 – ident: ref67/cit67 doi: 10.1002/adma.201401725 – ident: ref5/cit5 doi: 10.1021/jz400374p – ident: ref7/cit7 doi: 10.1021/acsami.7b01348 – ident: ref52/cit52 doi: 10.1351/pac198456040461 – ident: ref68/cit68 doi: 10.1103/physrevb.55.r656 – ident: ref32/cit32 doi: 10.1039/c4mh00042k – ident: ref13/cit13 doi: 10.1021/ja068429z – ident: ref70/cit70 doi: 10.1063/1.116583 – ident: ref10/cit10 doi: 10.1021/acs.jpcc.5b08581 – ident: ref48/cit48 doi: 10.1016/j.tsf.2011.11.017 – ident: ref16/cit16 doi: 10.1002/chem.201001153 – ident: ref6/cit6 doi: 10.1021/am402744k – volume: 61 start-page: 962 year: 1957 ident: ref42/cit42 publication-title: Z. Elektrochem. – volume: 5 start-page: 459 year: 2010 ident: ref51/cit51 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15298-9 – ident: ref29/cit29 doi: 10.1016/j.synthmet.2016.07.015 – ident: ref27/cit27 doi: 10.1021/am508855s – ident: ref21/cit21 doi: 10.1002/aenm.201600594 – ident: ref12/cit12 doi: 10.1021/jacs.5b01108 – ident: ref19/cit19 doi: 10.1002/anie.201105133 – ident: ref14/cit14 doi: 10.1063/1.465640 – ident: ref43/cit43 doi: 10.1246/bcsj.29.465 – ident: ref53/cit53 doi: 10.1063/1.454033 – ident: ref18/cit18 doi: 10.1021/ja020168f – ident: ref49/cit49 doi: 10.1021/ar900099h – ident: ref3/cit3 doi: 10.1039/a903535d – ident: ref11/cit11 doi: 10.1063/1.4881080 – ident: ref35/cit35 doi: 10.1039/c3cc41803k – ident: ref9/cit9 doi: 10.1021/ja208642b – ident: ref20/cit20 doi: 10.1002/polb.23366 – ident: ref15/cit15 doi: 10.1002/cphc.200700575 – volume-title: Principle of Fluorescence Spectroscopy year: 2006 ident: ref46/cit46 doi: 10.1007/978-0-387-46312-4 – ident: ref8/cit8 doi: 10.1039/c7tc00893g – ident: ref37/cit37 doi: 10.1021/jo201290a – ident: ref57/cit57 doi: 10.1021/cr400353v – ident: ref54/cit54 doi: 10.1002/wcms.81 – ident: ref17/cit17 doi: 10.1002/1521-3773(20000602)39:11<1978::aid-anie1978>3.0.co;2-0 – ident: ref47/cit47 doi: 10.1038/nmat1500 – ident: ref64/cit64 doi: 10.1002/adfm.200500211 – ident: ref31/cit31 doi: 10.1002/aenm.201200911 – ident: ref55/cit55 doi: 10.1103/physrevb.33.8822 – ident: ref36/cit36 doi: 10.1021/ol101492q – ident: ref45/cit45 doi: 10.1016/s1010-6030(00)00360-9 – ident: ref66/cit66 doi: 10.1002/adma.201304373 – ident: ref28/cit28 doi: 10.1039/c6ta01533f – ident: ref34/cit34 doi: 10.1038/ncomms9242 – ident: ref39/cit39 doi: 10.1002/adfm.200900357 – ident: ref38/cit38 doi: 10.1002/ejoc.201700769 – ident: ref62/cit62 doi: 10.1021/cm302312a – ident: ref26/cit26 doi: 10.1021/nn501133y – ident: ref2/cit2 doi: 10.1103/physreva.51.712 – ident: ref30/cit30 doi: 10.1039/b512373a – ident: ref4/cit4 doi: 10.1039/c7cp03128a – ident: ref44/cit44 doi: 10.1007/s12039-016-1134-9 – ident: ref58/cit58 doi: 10.1021/ja202977r – ident: ref22/cit22 doi: 10.1038/nchem.2232 – ident: ref60/cit60 doi: 10.1021/nl5025326 – ident: ref61/cit61 doi: 10.1016/j.orgel.2009.06.018 – ident: ref71/cit71 doi: 10.1103/physrevb.86.165203 – ident: ref63/cit63 doi: 10.1038/srep16854 – ident: ref24/cit24 doi: 10.1002/adma.201302052 – ident: ref23/cit23 doi: 10.1002/anie.201508249 – ident: ref56/cit56 doi: 10.1021/jp026062o |
SSID | ssj0053013 |
Score | 2.3067675 |
Snippet | Imidazoanthraquinone-based high dipolar molecules (AQ01 and AQ02) were synthesized and characterized. Photophysical properties in various solvents suggested... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25804 |
SubjectTerms | density functional theory fluorescence hydrogen bonding hydroxyl radicals quinones solar cells solvents |
Title | Nanoassembly of Dipolar Imidazoanthraquinone Derivatives Leading to Enhanced Hole Mobility |
URI | http://dx.doi.org/10.1021/acs.jpcc.8b07224 https://www.proquest.com/docview/2220898010 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1932-7455 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053013 issn: 1932-7447 databaseCode: ACS dateStart: 20070101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeChIcOHRr-u5x2kMDAReYNHGp0iQVg60dtEXafj1O2oIGCO1aNZHlOPZn2fmM0AUgYJsJw9IMM3Q0iMeeRonuaxCcCGUeYAKq2D7vnf7Auhnaw2-anJ8VfIM0KUsbL1PGGl6ouxBwVtGa4XhEJlqt9kPldW0wVLOoIANitCy3LEn-tYMMRCxdDESLflgFl95WMaUoVZyEsqfktZFnYYPNfzM2LiH3NtosMSZuFUaxg1ZEvIvW29Votz30BD41AdQsJuF4hpMId0ZTmeLi68mI03lC5fQE-paP4iQWuANG-qH4wVN8W_Tc4yzB3fhZdQ_gfjIW-C5RXbazfTTodR_bfa0csqBRk5iZJhzHK16gulxAeuF4YWQJ2IxZgAxdDjeaRhxQDQsJD23CHBYZPuAiC1yB7nPzANWkMIcIU8q4SR3IoDgkWYxTyA0ZtV2dRKYleFRHl6CUoLwkaaDq3wYJ1EfQVFBqqo6a1ckErGQqlwMzxv-suPpaMS1YOv7597w67ADULusjNBZJngYAlXTPh5CtHy0p6THaAADlybeJxD5Btew9F6cAUrLwTFnnJ6Rx4iM |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHMaFN-JNkODAoaNZnzuibWjA4MBDQlyqNEnFYLSDdkjbr8dJW9AQmuAatZHlOPZn2fkMcIgI2OGybht1K3QNjMe-wajZMDA4UcZ9xARMs31eu517--LBeZgBWr6FQSFS3CnVRfxvdgF6otaeB5zX_ND0MO7MwpwmQlFoqHlbOl8H7dXKC8kIHG3bKyqTv-2g4hFPJ-PRpDvWMeZsEW6-pNOtJS-1YRbW-PgHceO_xF-ChQJxktPcRJZhRsYrUG2Wg95W4RE9bIIYWr6G_RFJItLqDVTCS85fe4KNE6ZmKbC3YS9OYklaaLIfmi08Jd28A59kCWnHT7qXgHSSviRXie65Ha3B_Vn7rtkxipELBrOolRnSdf38PaonJCYbrh9GtsTNuI040RN4v1kkEOPwkIrQodzlUb2BKMlGx2A2hLUOFSXMBhDGuLCYi_mUwJSLC4aZImeOZ9LIsqWINuEIlRIUVyYNdDW8TgO9iJoKCk1twkl5QAEveMvV-Iz-lD-Ov_4Y5JwdU749KM88QLWragmLZTJMAwROpt_AAG5u_VHSfah27q66Qff8-nIb5hFa-erVInV2oJK9D-Uuwpcs3NMG-wlcEuqO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB5qBfXFW7xdQR98SM02Zx-lB_VE0Ir4Eja7G6y2STWpoL_e2U0iKFL0dckuk9nZmW-YC-AAEbDDZd026lboGmiPfYNRs2GgcaKM-4gJmO72eeV2e_bZvXNfAaeshUEiUjwp1UF89apHIio6DNBjtf404rzmh6aHtmcKph3VAU4houZNqYAdlFkrDyYjeLRtr4hO_naCskk8_W6TvqtkbWc6C3D3RaFOL3mujbOwxj9-NG_89y8swnyBPMlJLipLUJHxMsw2y4FvK_CAmjZBLC2H4eCdJBFp9UfK8SWnw75gHwlTMxXYy7gfJ7EkLRTdN901PCUXeSY-yRLSjh91TgHpJgNJLhOde_u-Cr1O-7bZNYrRCwazqJUZ0nX9vC7VExKdDtcPI1viYdxGvOgJfOcsEoh1eEhF6FDu8qjeQLRko4IwG8Jag6oiZh0IY1xYzEW_SqDrxQVDj5EzxzNpZNlSRBtwiEwJiqeTBjoqXqeBXkROBQWnNuC4vKSAF_3L1RiNwYQdR187Rnnvjgnf7pf3HiDbVdSExTIZpwECKNNvoCE3N_9I6R7MXLc6wcXp1fkWzCHC8lXxInW2oZq9juUOopgs3NUy-wnj-O0I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoassembly+of+Dipolar+Imidazoanthraquinone+Derivatives+Leading+to+Enhanced+Hole+Mobility&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Siddiqui%2C+Qamar+T&rft.au=Bhui%2C+Prabhjyot&rft.au=Muneer%2C+Mohammad&rft.au=Chandrakumar%2C+K.+R.+S&rft.date=2018-11-15&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=122&rft.issue=45&rft.spage=25804&rft.epage=25812&rft_id=info:doi/10.1021%2Facs.jpcc.8b07224&rft.externalDocID=b423597151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |