Allocator implementations for network-on-chip routers

The present contribution explores the design space for virtual channel (VC) and switch allocators in network-on-chip (NoC) routers. Based on detailed RTL-level implementations, we evaluate representative allocator architectures in terms of matching quality, delay, area and power and investigate the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Conference on High Performance Computing Networking, Storage and Analysis pp. 1 - 12
Main Authors Becker, Daniel U., Dally, William J.
Format Conference Proceeding
LanguageEnglish
Published New York, NY, USA ACM 14.11.2009
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN1605587443
9781605587448
ISSN2167-4329
DOI10.1145/1654059.1654112

Cover

More Information
Summary:The present contribution explores the design space for virtual channel (VC) and switch allocators in network-on-chip (NoC) routers. Based on detailed RTL-level implementations, we evaluate representative allocator architectures in terms of matching quality, delay, area and power and investigate the sensitivity of these properties to key network parameters. We introduce a scheme for sparse VC allocation that limits transitions between groups of VCs based on the function they perform, and reduces the VC allocator's delay, area and power by up to 41%, 90% and 83%, respectively. Furthermore, we propose a pessimistic mechanism for speculative switch allocation that reduces switch allocator delay by up to 23% compared to a conventional implementation without increasing the router's zero-load latency. Finally, we quantify the effects of the various design choices discussed in the paper on overall network performance by presenting simulation results for two exemplary 64-node NoC topologies.
ISBN:1605587443
9781605587448
ISSN:2167-4329
DOI:10.1145/1654059.1654112