Comparison of Statistical Approaches for the Analysis of Proteome Expression Data of Differentiating Neural Stem Cells

Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approa...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 4; no. 1; pp. 96 - 100
Main Authors Maurer, Martin H, Feldmann, Robert E, Brömme, Jens O, Kalenka, Armin
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.01.2005
Subjects
Online AccessGet full text
ISSN1535-3893
1535-3907
DOI10.1021/pr049841l

Cover

Abstract Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approach. To find potential differences produced by different data processing, we compared the results of (1) Student's t-test using a spreadsheet program, (2) the intrinsic algorithms implemented in the Phoretix 2D gel analysis software, and (3) the SAM algorithm originally developed for microarray analysis. We applied the algorithms to proteome data of undifferentiated neural stem cells versus in vitro differentiated neural stem cells. We found (1) 367 spots differentially expressed using Student's t-test, (2) 203 spots using the algorithms in Phoretix 2D, and (3) 119 spots using the algorithms in SAM, respectively, with an overlap of 42 spots detected by all three algorithms. Applying different statistical approaches on the same dataset resulted in divergent set of protein spots labeled as statistically “significant”. Currently, there is no agreement on statistical data processing of 2DE datasets, but the statistical tests applied in 2DE studies should be documented. Tools for the statistical analysis of proteome data should be implemented and documented in the existing 2DE software. Keywords: two-dimensional gel electrophoresis • proteomics • Phoretix • t-test
AbstractList Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approach. To find potential differences produced by different data processing, we compared the results of (1) Student's t-test using a spreadsheet program, (2) the intrinsic algorithms implemented in the Phoretix 2D gel analysis software, and (3) the SAM algorithm originally developed for microarray analysis. We applied the algorithms to proteome data of undifferentiated neural stem cells versus in vitro differentiated neural stem cells. We found (1) 367 spots differentially expressed using Student's t-test, (2) 203 spots using the algorithms in Phoretix 2D, and (3) 119 spots using the algorithms in SAM, respectively, with an overlap of 42 spots detected by all three algorithms. Applying different statistical approaches on the same dataset resulted in divergent set of protein spots labeled as statistically "significant". Currently, there is no agreement on statistical data processing of 2DE datasets, but the statistical tests applied in 2DE studies should be documented. Tools for the statistical analysis of proteome data should be implemented and documented in the existing 2DE software.
Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approach. To find potential differences produced by different data processing, we compared the results of (1) Student's t-test using a spreadsheet program, (2) the intrinsic algorithms implemented in the Phoretix 2D gel analysis software, and (3) the SAM algorithm originally developed for microarray analysis. We applied the algorithms to proteome data of undifferentiated neural stem cells versus in vitro differentiated neural stem cells. We found (1) 367 spots differentially expressed using Student's t-test, (2) 203 spots using the algorithms in Phoretix 2D, and (3) 119 spots using the algorithms in SAM, respectively, with an overlap of 42 spots detected by all three algorithms. Applying different statistical approaches on the same dataset resulted in divergent set of protein spots labeled as statistically "significant". Currently, there is no agreement on statistical data processing of 2DE datasets, but the statistical tests applied in 2DE studies should be documented. Tools for the statistical analysis of proteome data should be implemented and documented in the existing 2DE software.Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approach. To find potential differences produced by different data processing, we compared the results of (1) Student's t-test using a spreadsheet program, (2) the intrinsic algorithms implemented in the Phoretix 2D gel analysis software, and (3) the SAM algorithm originally developed for microarray analysis. We applied the algorithms to proteome data of undifferentiated neural stem cells versus in vitro differentiated neural stem cells. We found (1) 367 spots differentially expressed using Student's t-test, (2) 203 spots using the algorithms in Phoretix 2D, and (3) 119 spots using the algorithms in SAM, respectively, with an overlap of 42 spots detected by all three algorithms. Applying different statistical approaches on the same dataset resulted in divergent set of protein spots labeled as statistically "significant". Currently, there is no agreement on statistical data processing of 2DE datasets, but the statistical tests applied in 2DE studies should be documented. Tools for the statistical analysis of proteome data should be implemented and documented in the existing 2DE software.
Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis gels. As these programs include only limited capabilities for statistical analysis, many studies do not further describe their statistical approach. To find potential differences produced by different data processing, we compared the results of (1) Student's t-test using a spreadsheet program, (2) the intrinsic algorithms implemented in the Phoretix 2D gel analysis software, and (3) the SAM algorithm originally developed for microarray analysis. We applied the algorithms to proteome data of undifferentiated neural stem cells versus in vitro differentiated neural stem cells. We found (1) 367 spots differentially expressed using Student's t-test, (2) 203 spots using the algorithms in Phoretix 2D, and (3) 119 spots using the algorithms in SAM, respectively, with an overlap of 42 spots detected by all three algorithms. Applying different statistical approaches on the same dataset resulted in divergent set of protein spots labeled as statistically “significant”. Currently, there is no agreement on statistical data processing of 2DE datasets, but the statistical tests applied in 2DE studies should be documented. Tools for the statistical analysis of proteome data should be implemented and documented in the existing 2DE software. Keywords: two-dimensional gel electrophoresis • proteomics • Phoretix • t-test
Author Feldmann, Robert E
Maurer, Martin H
Kalenka, Armin
Brömme, Jens O
Author_xml – sequence: 1
  givenname: Martin H
  surname: Maurer
  fullname: Maurer, Martin H
– sequence: 2
  givenname: Robert E
  surname: Feldmann
  fullname: Feldmann, Robert E
– sequence: 3
  givenname: Jens O
  surname: Brömme
  fullname: Brömme, Jens O
– sequence: 4
  givenname: Armin
  surname: Kalenka
  fullname: Kalenka, Armin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15707363$$D View this record in MEDLINE/PubMed
BookMark eNptkU1P3DAQhq2Kqny0h_4B5Esrcdjir3WS42qBFgm1leBu2ckYjJI49TgI_n0dLXBAnMbSPPNo_M4h2RvjCIR85ewHZ4KfTomppla8_0AO-FquV7Jh1d7Lu27kPjlEvGeMrysmP5H9pVZSywPysI3DZFPAONLo6XW2OWAOre3pZppStO0dIPUx0XwHdDPa_gkDLujfFDPEAej545QAMRTDmc126Z0F7yHBmEPRjbf0N8ypGK8zDHQLfY-fyUdve4Qvz_WI3Fyc32x_ra7-_Lzcbq5WVnKZV50DIZWoG9dYbXlrvWaNrrkAWWmnXaed10rVTnRegPBeWeUUVFLUvnNeHpHvO235yb8ZMJshYFsWsCPEGY2ulFhLLgp4_AzOboDOTCkMNj2Zl6AKcLoD2hQRE3jThiWrOOZkQ284M8spzOspysTJm4lX6Tvstx1rWzT3cU4lZ3yH-w86DZcP
CitedBy_id crossref_primary_10_1038_sj_jcbfm_9600466
crossref_primary_10_1002_pmic_200800214
crossref_primary_10_1089_neu_2006_0229
crossref_primary_10_1002_cfg_425
crossref_primary_10_1016_j_exphem_2006_01_002
crossref_primary_10_1111_j_1471_4159_2006_03934_x
crossref_primary_10_1021_pr800424c
crossref_primary_10_1089_scd_2006_00100
crossref_primary_10_1016_j_cbd_2011_07_001
crossref_primary_10_1016_j_meatsci_2007_03_018
crossref_primary_10_1016_j_bcmd_2011_09_010
crossref_primary_10_1002_elps_200700388
crossref_primary_10_1016_j_neurobiolaging_2005_05_005
crossref_primary_10_1016_j_cca_2006_12_016
crossref_primary_10_1186_1471_2202_9_7
crossref_primary_10_1002_elps_200600414
crossref_primary_10_1111_j_1582_4934_2008_00465_x
crossref_primary_10_1002_prca_200780058
crossref_primary_10_1021_pr070114a
crossref_primary_10_1007_s00101_008_1488_6
crossref_primary_10_1016_j_nbd_2005_10_004
crossref_primary_10_3892_mmr_2017_7274
crossref_primary_10_1586_14789450_3_4_427
crossref_primary_10_1021_pr0605825
crossref_primary_10_1016_j_freeradbiomed_2006_08_006
crossref_primary_10_1002_jnr_20876
crossref_primary_10_1007_s00726_011_0873_7
crossref_primary_10_1016_j_nbd_2005_11_002
crossref_primary_10_1021_pr0501261
crossref_primary_10_1089_scd_2007_16_ft_2
crossref_primary_10_1186_s40246_015_0050_2
crossref_primary_10_1002_jnr_21275
crossref_primary_10_1016_j_brainres_2009_04_009
crossref_primary_10_1016_j_neurobiolaging_2005_05_014
crossref_primary_10_1002_jnr_21130
crossref_primary_10_1016_j_neurobiolaging_2006_09_012
crossref_primary_10_1016_j_neurobiolaging_2005_07_001
crossref_primary_10_1186_1471_2105_10_43
Cites_doi 10.1186/1477-5956-1-4
10.1002/(SICI)1522-2683(19991201)20:18<3492::AID-ELPS3492>3.0.CO;2-V
10.1073/pnas.091062498
10.1073/pnas.1530509100
10.1038/nature01515
10.1023/B:NERE.0000023600.25994.11
10.1255/ejms.600
10.1002/1522-2683(200207)23:14<2194::AID-ELPS2194>3.0.CO;2-#
10.1002/pmic.200300544
10.1016/S0014-5793(00)01772-5
ContentType Journal Article
Copyright Copyright © 2005 American Chemical Society
Copyright_xml – notice: Copyright © 2005 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/pr049841l
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1535-3907
EndPage 100
ExternalDocumentID 15707363
10_1021_pr049841l
b576279959
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID -
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ZA5
---
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a313t-dbe234289b9a6a1caf6096812e376b6bd6bf6448b2df2e2ff4a4b4e7328fdbf3
IEDL.DBID ACS
ISSN 1535-3893
IngestDate Fri Jul 11 11:51:11 EDT 2025
Sat Sep 28 07:52:44 EDT 2024
Tue Jul 01 01:36:06 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Thu Aug 27 13:42:23 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-dbe234289b9a6a1caf6096812e376b6bd6bf6448b2df2e2ff4a4b4e7328fdbf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 15707363
PQID 67425312
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_67425312
pubmed_primary_15707363
crossref_citationtrail_10_1021_pr049841l
crossref_primary_10_1021_pr049841l
acs_journals_10_1021_pr049841l
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-01-01
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of proteome research
PublicationTitleAlternate J. Proteome Res
PublicationYear 2005
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Dunsmore J. (pr049841lb00014/pr049841lb00014_1) 2004
Rabilloud T (pr049841lb00001/pr049841lb00001_1) 2002; 2
Brazma A. (pr049841lb00010/pr049841lb00010_1) 2000; 480
Lemkin P. F. (pr049841lb00004/pr049841lb00004_1) 1999; 20
Aebersold R. (pr049841lb00002/pr049841lb00002_1) 2003; 422
Rosengren A. T. (pr049841lb00016/pr049841lb00016_1) 2003; 3
Tusher V. G. (pr049841lb00008/pr049841lb00008_1) 2001; 98
Raman B. (pr049841lb00015/pr049841lb00015_1) 2002; 23
Maurer M. H. (pr049841lb00005/pr049841lb00005_1) 2003; 1
Gossett W. S (pr049841lb00007/pr049841lb00007_1) 1908; 6
Smyth G. K. (pr049841lb00011/pr049841lb00011_1) 2003; 224
Storey J. D. (pr049841lb00012/pr049841lb00012_1) 2003; 100
Righetti P. G. (pr049841lb00003/pr049841lb00003_1) 2004; 10
Maurer M. H. (pr049841lb00006/pr049841lb00006_1) 2004; 29
Dudoit S. (pr049841lb00009/pr049841lb00009_1) 2002; 12
Boguski M. S. (pr049841lb00013/pr049841lb00013_1) 2003; 422
References_xml – volume: 2
  start-page: 10
  year: 2002
  ident: pr049841lb00001/pr049841lb00001_1
  publication-title: Proteomics
– volume-title: DeltaStat for 2D gel Analysis v0.4
  year: 2004
  ident: pr049841lb00014/pr049841lb00014_1
– volume: 6
  start-page: 25
  year: 1908
  ident: pr049841lb00007/pr049841lb00007_1
  publication-title: Biometrika
– volume: 12
  start-page: 139
  year: 2002
  ident: pr049841lb00009/pr049841lb00009_1
  publication-title: Statistica Sinica
– volume: 1
  start-page: 4
  year: 2003
  ident: pr049841lb00005/pr049841lb00005_1
  publication-title: Proteome Sci.
  doi: 10.1186/1477-5956-1-4
– volume: 20
  start-page: 3507
  year: 1999
  ident: pr049841lb00004/pr049841lb00004_1
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3492::AID-ELPS3492>3.0.CO;2-V
– volume: 422
  start-page: 207
  year: 2003
  ident: pr049841lb00002/pr049841lb00002_1
  publication-title: Nature
– volume: 98
  start-page: 5121
  year: 2001
  ident: pr049841lb00008/pr049841lb00008_1
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.091062498
– volume: 100
  start-page: 9445
  year: 2003
  ident: pr049841lb00012/pr049841lb00012_1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1530509100
– volume: 422
  start-page: 237
  year: 2003
  ident: pr049841lb00013/pr049841lb00013_1
  publication-title: Nature
  doi: 10.1038/nature01515
– volume: 224
  start-page: 136
  year: 2003
  ident: pr049841lb00011/pr049841lb00011_1
  publication-title: Methods Mol. Biol.
– volume: 29
  start-page: 1144
  year: 2004
  ident: pr049841lb00006/pr049841lb00006_1
  publication-title: Neurochem. Res.
  doi: 10.1023/B:NERE.0000023600.25994.11
– volume: 10
  start-page: 348
  year: 2004
  ident: pr049841lb00003/pr049841lb00003_1
  publication-title: Eur. J. Mass Spectrom. (Chichester, Eng)
  doi: 10.1255/ejms.600
– volume: 23
  start-page: 2202
  year: 2002
  ident: pr049841lb00015/pr049841lb00015_1
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200207)23:14<2194::AID-ELPS2194>3.0.CO;2-#
– volume: 3
  start-page: 1946
  year: 2003
  ident: pr049841lb00016/pr049841lb00016_1
  publication-title: Proteomics
  doi: 10.1002/pmic.200300544
– volume: 480
  start-page: 24
  year: 2000
  ident: pr049841lb00010/pr049841lb00010_1
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(00)01772-5
SSID ssj0015703
Score 1.9818153
Snippet Comparative proteomic studies often use statistical tests included in the software for the analysis of digitized images of two-dimensional electrophoresis...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Animals
Cell Differentiation
Electrophoresis, Gel, Two-Dimensional
Hippocampus - cytology
Humans
Models, Statistical
Neurons - chemistry
Neurons - cytology
Neurons - physiology
Proteins - analysis
Proteome
Proteomics - methods
Stem Cells - chemistry
Stem Cells - cytology
Stem Cells - physiology
Title Comparison of Statistical Approaches for the Analysis of Proteome Expression Data of Differentiating Neural Stem Cells
URI http://dx.doi.org/10.1021/pr049841l
https://www.ncbi.nlm.nih.gov/pubmed/15707363
https://www.proquest.com/docview/67425312
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1535-3907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015703
  issn: 1535-3893
  databaseCode: ACS
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT-QwDLZ4HODC8mZ2F4iAA5eymzSTzBxRB4SQQEiAxK1KmoQDQwfRDkL8-rX7GBbxOteJotiJP9fOZ4A9bUOPG8WJCtFHUmX9qOf6PELs4Rzef2jY9N757FydXMvTm-7NFOx-ksEX_M_DI4LYnuTDaZgVSmuq2ztMLiepAqKQqklRuxF535Y-6P-h5Hqy4q3r-QRPVn7l-AcM2tc5dTnJ3cG4tAfZy3uyxq-WvAgLDa5kh7UhLMGUz5dhLmnbua3AUzLpOMhGgRHIrDiaaVDDK-4LhhCWISRkLVcJiV4QlcPo3rOj56ZqNmcDUxr6Nmj6q5Sk4fyWEdcHznhZ-nuW-OGwWIWr46Or5CRqmi5EJuZxGTnrRYwxSd_2jTI8M0FhlIMwwONVZJV1ygaK6axwQXgRgjTSSk-cP8HZEK_BTD7K_QYwKzF4tNqIEEspMmO0ztxfp3veC-1FtwNbqJS0OTNFWqXDBU8nu9eB_VZfadYwllPjjOFHojsT0YeapuMjoe1W6SluPmVGTO5H4yJVGq-umIsOrNe28DoJmpeOVfzzu8X-gvmK1bX6O_MbZsrHsd9EvFLarcpe_wGOLeWp
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3JTsMwEIYtlgNc2JeyWogDlwB2XKc9ogAqq5AoErfIjm0OtCkiKUI8PTNOUhaB4BzHGtkTzz-x_Q0hu5F2LaYkQxSiDYRM20HLtFkA2sMYWP_AsfG-89W17NyJ8_vmfYXJwbswYEQOPeV-E_-DLsAOnp5By7YE642TyaYUDBOto_h2tGOAJKmSjdoMMAjXFKHPr2IESvOvEegXWenDy-lsWafIG-ZPlTzuDwu9n759Yzb-z_I5MlOpTHpUusU8GbPZApmK6-Jui-QlHtUfpANHUXJ6YjO-VFHGbU5B0FIQiLQml2DTGwQ7DPqWnrxWZ2gzeqwKhc-Oq2orBc539kCR_AE93ha2T2Pb6-VLpHt60o07QVWCIVAhC4vAaMtDyFDauq2kYqlyEnIeEAUWFiYttZHaYYanuXHccueEElpYJAA5o124TCayQWZXCdUCUkkdKe5CIXiqVBSl5tBELWt5ZHmzQbZg8JLqC8oTvznOWTIavQbZq6ctSSt-OZbR6P3UdGfU9KmEdvzUaLue-wQGH_dJVGYHwzyRESxkIeMNslK6xEcn4GVRKMO1v4zdJlOd7tVlcnl2fbFOpj3v1f-32SATxfPQboKSKfSWd-F3mhPuCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xkIALpbSFpTws1EMvAex4nd1jlWVFW0qRoBK3yI7tHliyK5JFVX89M1knFAQq54xHI3vs-SZjfwPwKTG-x7XiRIXoIqnyftSzfR4h9rAWzz90bHrv_ONMnfyS3666VyFRpLcwaESJmsq6iE-7emJ9YBjgh5NbxLM9yUfzsNhVuMUJCqUXbdWA2KRm_KjdiAJxwyT071CKQnn5OAq9AC3rEDN8Az9b4-qbJdcH08oc5H-f8Da-3vo1WA1ok32ZucdbmHPFOiynTZO3d3CXtn0I2dgzgp41czMNCmzjrmQIbBkCRdYwmJDoORE8jG8cO_4T7tIWbKArTd8GoetKRete_GbEAIIaLyp3w1I3GpXv4XJ4fJmeRKEVQ6RjHleRNU7EmKn0TV8rzXPtFeY-CA4cHlBGGauMp0zPCOuFE95LLY10xATkrfHxB1goxoXbBGYkppQm0cLHUopc6yTJ7ZFNes6JxIluB3ZxArOwk8qsLpILnrWz14HPzdJleeAxp3Yao-dE91vRyYy84zmhvWb9M5x8qpfowo2nZaYSPNBiLjqwMXOLByXoaUms4q3_GbsHS-eDYXb69ez7R1ipaV_r3zfbsFDdTt0OAprK7NZefA9ZZfCO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+statistical+approaches+for+the+analysis+of+proteome+expression+data+of+differentiating+neural+stem+cells&rft.jtitle=Journal+of+proteome+research&rft.au=Maurer%2C+Martin+H&rft.au=Feldmann%2C+Jr%2C+Robert+E&rft.au=Br%C3%B6mme%2C+Jens+O&rft.au=Kalenka%2C+Armin&rft.date=2005-01-01&rft.issn=1535-3893&rft.volume=4&rft.issue=1&rft.spage=96&rft_id=info:doi/10.1021%2Fpr049841l&rft_id=info%3Apmid%2F15707363&rft.externalDocID=15707363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-3893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-3893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-3893&client=summon