Assessing the Impact of EKF as the Arrival Cost in the Moving Horizon Estimation under Nonlinear Model Predictive Control

In this work, we investigate the performance of nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) in a feedback control system subject to different arrival cost (AC) approximation methods, process uncertainties with non-Gaussian distributions, and plant designs. In partic...

Full description

Saved in:
Bibliographic Details
Published inIndustrial & engineering chemistry research Vol. 60; no. 7; pp. 2994 - 3012
Main Authors Valipour, Mahshad, Ricardez-Sandoval, Luis A
Format Journal Article
LanguageEnglish
Published American Chemical Society 24.02.2021
Subjects
Online AccessGet full text
ISSN0888-5885
1520-5045
1520-5045
DOI10.1021/acs.iecr.0c06095

Cover

Abstract In this work, we investigate the performance of nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) in a feedback control system subject to different arrival cost (AC) approximation methods, process uncertainties with non-Gaussian distributions, and plant designs. In particular, we investigate the performance of an extended Kalman filter (EKF) as an AC estimator for large and complex applications. Considering the significant impact of state estimations as the initial condition of the NMPC problem, together with the importance of the AC approximation in the success of the MHE framework, it is expected that a poor approximation of the AC may lead to poor closed-loop performance. Different arrival cost estimation methods including the traditional EKF and constrained particle filtering were evaluated in this work. The closed-loop framework was tested on two industrial applications: a wastewater treatment plant and a high-impact polystyrene process. Error analysis on the convergence of the EKF-based AC estimator is presented in this work to provide insights into the performance of EKF as an AC estimator under different scenarios. The results show that an appropriate arrival cost estimation method such as EKF is adequate to maintain the operation of large and challenging systems in a closed-loop using an MHE–NMPC framework.
AbstractList In this work, we investigate the performance of nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) in a feedback control system subject to different arrival cost (AC) approximation methods, process uncertainties with non-Gaussian distributions, and plant designs. In particular, we investigate the performance of an extended Kalman filter (EKF) as an AC estimator for large and complex applications. Considering the significant impact of state estimations as the initial condition of the NMPC problem, together with the importance of the AC approximation in the success of the MHE framework, it is expected that a poor approximation of the AC may lead to poor closed-loop performance. Different arrival cost estimation methods including the traditional EKF and constrained particle filtering were evaluated in this work. The closed-loop framework was tested on two industrial applications: a wastewater treatment plant and a high-impact polystyrene process. Error analysis on the convergence of the EKF-based AC estimator is presented in this work to provide insights into the performance of EKF as an AC estimator under different scenarios. The results show that an appropriate arrival cost estimation method such as EKF is adequate to maintain the operation of large and challenging systems in a closed-loop using an MHE–NMPC framework.
Author Valipour, Mahshad
Ricardez-Sandoval, Luis A
AuthorAffiliation Department of Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Mahshad
  surname: Valipour
  fullname: Valipour, Mahshad
– sequence: 2
  givenname: Luis A
  orcidid: 0000-0001-9867-6778
  surname: Ricardez-Sandoval
  fullname: Ricardez-Sandoval, Luis A
  email: laricard@uwaterloo.ca
BookMark eNp9kE1PAjEQhhuDiYDePfbowcV22y67R0JAiJ8HPW-63VktWVpsCwn-ervAyURPM5l5n0nmGaCesQYQuqZkRElK76TyIw3KjYgiGSnEGepTkZJEEC56qE_yPE9EnosLNPB-RQgRgvM-2k-8B--1-cDhE_ByvZEqYNvg2cMcS38YTpzTO9niqfUBa3OYPdldxyys09_W4JkPei2Dju3W1ODwszWtNiBdTNbQ4lcHtVZB7yCeMcHZ9hKdN7L1cHWqQ_Q-n71NF8njy_1yOnlMJKMsJIzVPKVsLOsqA0GrvGKsYDCu6qbiIJqsrvhYCVE0UgKTRc1zFV_mvKgKSIuGDdHN8e7G2a8t-FCutVfQttKA3foyFSlnlJOcxCg5RpWz3jtoyo2Lb7l9SUnZWS6j5bKzXJ4sRyT7hSgdDiKCk7r9D7w9gt1mZbfORAl_x38AlSaWeA
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_07_448
crossref_primary_10_1016_j_apenergy_2021_118302
crossref_primary_10_1016_j_compchemeng_2021_107534
crossref_primary_10_1016_j_compchemeng_2021_107620
crossref_primary_10_1021_acs_iecr_2c02897
crossref_primary_10_1109_ACCESS_2022_3170477
crossref_primary_10_1016_j_compind_2025_104274
crossref_primary_10_1016_j_compchemeng_2023_108183
crossref_primary_10_1016_j_conengprac_2023_105635
crossref_primary_10_1109_TCST_2022_3228442
crossref_primary_10_1016_j_compchemeng_2025_109105
crossref_primary_10_1002_aic_17826
crossref_primary_10_1007_s10291_023_01501_w
crossref_primary_10_3390_pr11041102
crossref_primary_10_1021_acs_iecr_1c02804
crossref_primary_10_1002_aic_17661
crossref_primary_10_1109_TMAG_2024_3511353
crossref_primary_10_1109_TVT_2024_3369027
crossref_primary_10_1016_j_energy_2021_121016
crossref_primary_10_1016_j_jprocont_2024_103268
crossref_primary_10_1002_aic_17545
crossref_primary_10_1016_j_compag_2023_107820
crossref_primary_10_1016_j_compag_2024_108856
crossref_primary_10_1016_j_compchemeng_2022_107815
Cites_doi 10.1080/00207179408921482
10.1002/aic.12346
10.1016/j.compchemeng.2014.01.002
10.1109/CDC.2011.6160378
10.1016/j.automatica.2017.01.033
10.1016/j.compchemeng.2015.07.003
10.1109/MSP.2003.1236770
10.1016/j.compchemeng.2016.04.033
10.1021/acs.iecr.7b03935
10.3182/20090712-4-TR-2008.00156
10.1016/j.compchemeng.2007.12.005
10.1109/LSP.2003.821715
10.1016/j.conengprac.2012.04.003
10.1016/j.automatica.2014.12.002
10.1016/S0959-1524(01)00051-8
10.1021/ie300415d
10.1109/TAC.2002.808470
10.1109/78.978374
10.1016/S0098-1354(98)00263-4
10.1109/TIE.2013.2266086
10.1021/ie049534p
10.1016/j.conengprac.2012.03.009
10.1016/S0009-2509(01)00376-1
10.1021/ie034324i
10.1016/S0098-1354(98)00226-9
10.1021/ie034308l
10.1021/ie900323c
10.1109/JAS.2019.1911372
10.1016/j.conengprac.2012.09.004
10.1016/j.jprocont.2009.08.002
10.3390/app7080813
10.1016/j.jprocont.2011.03.004
10.1016/j.jprocont.2008.04.005
10.1016/j.compchemeng.2013.09.017
10.1016/S0098-1354(02)00116-3
10.1016/j.automatica.2007.02.012
10.1016/j.compchemeng.2006.05.031
10.1109/TIM.2009.2021212
10.1016/j.conengprac.2020.104702
10.1007/978-3-319-08338-4_25
10.1016/S0959-1524(01)00044-0
10.1016/j.compchemeng.2012.05.011
10.1016/j.watres.2013.04.007
10.1016/j.ifacol.2018.11.033
10.1016/j.jprocont.2018.12.017
10.1016/j.ces.2013.02.030
10.1016/j.compchemeng.2010.07.021
10.1016/j.jprocont.2019.09.002
10.1021/ie070824q
10.1002/aic.14833
10.1016/j.jprocont.2009.11.002
10.1109/MED.2012.6265732
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acs.iecr.0c06095
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5045
EndPage 3012
ExternalDocumentID 10_1021_acs_iecr_0c06095
a146252528
GroupedDBID 02
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
4.4
53G
6TJ
AAYXX
ABBLG
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
~02
7S9
L.6
ID FETCH-LOGICAL-a313t-33d42137adb6e51b8b3393e7bdfb4e5f6db47c559faae3a9d48c045449b9e29f3
IEDL.DBID ACS
ISSN 0888-5885
1520-5045
IngestDate Wed Oct 01 14:42:47 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 04:23:44 EDT 2025
Fri Feb 26 08:31:59 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a313t-33d42137adb6e51b8b3393e7bdfb4e5f6db47c559faae3a9d48c045449b9e29f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9867-6778
PQID 2524314080
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_2524314080
crossref_primary_10_1021_acs_iecr_0c06095
crossref_citationtrail_10_1021_acs_iecr_0c06095
acs_journals_10_1021_acs_iecr_0c06095
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-24
PublicationDateYYYYMMDD 2021-02-24
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-24
  day: 24
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Arbuckle J. L. (ref9/cit9) 1996
ref49/cit49
ref13/cit13
Moore T. (ref35/cit35) 2016
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Doucet A. (ref37/cit37) 2009; 12
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
– ident: ref16/cit16
  doi: 10.1080/00207179408921482
– ident: ref3/cit3
  doi: 10.1002/aic.12346
– ident: ref51/cit51
  doi: 10.1016/j.compchemeng.2014.01.002
– ident: ref42/cit42
  doi: 10.1109/CDC.2011.6160378
– ident: ref39/cit39
  doi: 10.1016/j.automatica.2017.01.033
– ident: ref11/cit11
– ident: ref27/cit27
  doi: 10.1016/j.compchemeng.2015.07.003
– ident: ref36/cit36
  doi: 10.1109/MSP.2003.1236770
– ident: ref2/cit2
  doi: 10.1016/j.compchemeng.2016.04.033
– ident: ref52/cit52
  doi: 10.1021/acs.iecr.7b03935
– ident: ref45/cit45
  doi: 10.3182/20090712-4-TR-2008.00156
– ident: ref31/cit31
  doi: 10.1016/j.compchemeng.2007.12.005
– ident: ref50/cit50
  doi: 10.1109/LSP.2003.821715
– ident: ref5/cit5
  doi: 10.1016/j.conengprac.2012.04.003
– ident: ref8/cit8
  doi: 10.1016/j.automatica.2014.12.002
– ident: ref56/cit56
  doi: 10.1016/S0959-1524(01)00051-8
– ident: ref18/cit18
  doi: 10.1021/ie300415d
– ident: ref15/cit15
  doi: 10.1109/TAC.2002.808470
– ident: ref25/cit25
  doi: 10.1109/78.978374
– ident: ref6/cit6
  doi: 10.1016/S0098-1354(98)00263-4
– ident: ref28/cit28
  doi: 10.1109/TIE.2013.2266086
– ident: ref30/cit30
  doi: 10.1021/ie049534p
– ident: ref41/cit41
  doi: 10.1016/j.conengprac.2012.03.009
– ident: ref49/cit49
  doi: 10.1016/S0009-2509(01)00376-1
– ident: ref7/cit7
  doi: 10.1021/ie034324i
– ident: ref21/cit21
  doi: 10.1016/S0098-1354(98)00226-9
– ident: ref19/cit19
  doi: 10.1021/ie034308l
– ident: ref4/cit4
  doi: 10.1021/ie900323c
– ident: ref46/cit46
  doi: 10.1109/JAS.2019.1911372
– ident: ref53/cit53
  doi: 10.1016/j.conengprac.2012.09.004
– ident: ref22/cit22
  doi: 10.1016/j.jprocont.2009.08.002
– ident: ref43/cit43
  doi: 10.3390/app7080813
– ident: ref17/cit17
  doi: 10.1016/j.jprocont.2011.03.004
– ident: ref10/cit10
  doi: 10.1016/j.jprocont.2008.04.005
– volume: 12
  start-page: 3
  volume-title: Handbook of Nonlinear Filtering
  year: 2009
  ident: ref37/cit37
– ident: ref47/cit47
  doi: 10.1016/j.compchemeng.2013.09.017
– ident: ref48/cit48
  doi: 10.1016/S0098-1354(02)00116-3
– ident: ref24/cit24
  doi: 10.1016/j.automatica.2007.02.012
– ident: ref33/cit33
  doi: 10.1016/j.compchemeng.2006.05.031
– ident: ref23/cit23
  doi: 10.1109/TIM.2009.2021212
– ident: ref20/cit20
  doi: 10.1016/j.conengprac.2020.104702
– start-page: 335
  volume-title: Intelligent Autonomous Systems 13
  year: 2016
  ident: ref35/cit35
  doi: 10.1007/978-3-319-08338-4_25
– ident: ref54/cit54
  doi: 10.1016/S0959-1524(01)00044-0
– ident: ref40/cit40
  doi: 10.1016/j.compchemeng.2012.05.011
– ident: ref29/cit29
  doi: 10.1016/j.watres.2013.04.007
– ident: ref12/cit12
  doi: 10.1016/j.ifacol.2018.11.033
– start-page: 243
  volume-title: Advanced structural equation modeling: Issues and techniques
  year: 1996
  ident: ref9/cit9
– ident: ref38/cit38
  doi: 10.1016/j.jprocont.2018.12.017
– ident: ref13/cit13
  doi: 10.1016/j.ces.2013.02.030
– ident: ref44/cit44
  doi: 10.1016/j.compchemeng.2010.07.021
– ident: ref1/cit1
  doi: 10.1016/j.jprocont.2019.09.002
– ident: ref55/cit55
  doi: 10.1021/ie070824q
– ident: ref32/cit32
  doi: 10.1002/aic.14833
– ident: ref34/cit34
  doi: 10.1016/j.jprocont.2009.11.002
– ident: ref26/cit26
  doi: 10.1109/MED.2012.6265732
SSID ssj0005544
Score 2.473359
Snippet In this work, we investigate the performance of nonlinear model predictive control (NMPC) and moving horizon estimation (MHE) in a feedback control system...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2994
SubjectTerms chemistry
nonlinear models
polystyrenes
process design
Process Systems Engineering
wastewater treatment
Title Assessing the Impact of EKF as the Arrival Cost in the Moving Horizon Estimation under Nonlinear Model Predictive Control
URI http://dx.doi.org/10.1021/acs.iecr.0c06095
https://www.proquest.com/docview/2524314080
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5045
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005544
  issn: 0888-5885
  databaseCode: ACS
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66XvTgW3wTQQ8eum6T9HVcll1WRRFU8FbyKixKK2334P56Z9L6FvFWQqeEZGbypTPzDSHHMRMAYjPh9UwCF5RACS9hse8pgKahAi1QPlYjX12H43tx8RA8fNDkfI_gM_9M6qo7AQjV7ekesqPNkwUWRhGm7_UHtx_pHIFr3ApGg5VEcdCGJH_7Ah5Euvp6EH31w-5wGa00XYoqx0mIOSWP3Wmtunr2k7HxH_NeJcstxqT9RinWyJzN18nSJ-bBDfLSBHvhmQICpOeuVpIWGR1ejqis3GC_LCegh3RQVDWd5G7syv2AoOOinMyKnA7BQTS1jxSL0Up63TBvyJJik7UnelNiIAhdKh00SfGb5H40vBuMvbYLgye5z2uPcyOYzyNpVGhh72LFecJtpEymhA2y0CgRabiYZFJaLhMjYo28fiJRiWVJxrdIJy9yu02oNiCsQ7jiaV_I2KoozIzkUSCZyVjc2yEnsGppa0VV6gLkzE9xEJcybZdyh5y9bV2qWypz7Kjx9IfE6bvEc0Pj8ce7R2_akIKtYQBF5raYVikLGOAtASB7958z3SOLDJNgsAZe7JNOXU7tAaCYWh069X0F5ejt0g
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VcgAOvCtKCywSHDg4zT78OkZRopQ2EYJW6s3al6WIyka2c6C_npm101KEKrhZI6812p3d_cYz8w3Ah0woBLGlisYuRwclNirKRcYjg9A0MWgFhlM18nKVLM7V54v4Ygf4thYGlWjxS20I4t-wC_Ajkq0RSY3GdkwkaffgfpwoTv7WZPrtJqsjDv1bce9QQVEWD5HJv32B7iPb3r6Pbh_H4Y6ZP4Gv19qF1JLvo01nRvbqD-LG_1L_KTweECeb9CbyDHZ89Rwe_cZD-AJ-9qFffGaIB9lxqJxkdclmJ3Om2yCcNM0arZJN67Zj6yrIluF3BFvUzfqqrtgMj4u-EpJRaVrDVj0Ph24YtVy7ZF8aCgvRAcumfYr8Szifz86mi2joyRBpyWUXSemU4DLVziQeVzIzUubSp8aVRvm4TJxRqUU3pdTaS507lVli-VO5yb3IS7kHu1Vd-VfArMPBNkGHz3KlM2_SpHRaprEWrhTZeB8-4qwVw55qixAuF7wgIU1lMUzlPhxtV7CwA7E59de4vGPEp-sRP3pSjzvefb81igJ3HoVTdOXrTVuIWCD6Ugi5X_-jpu_gweJseVqcHq9ODuChoPQYqo5Xh7DbNRv_BvFNZ94Gi_4Fx1z2NA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYolapyAPpA5VlXag89ZNn4kccRLbtaSlkhtVTcIj-lVVGCkuwBfj0zTpZChVB7i0ax5dgz9ufMzDeEfM6YABDrRTS0OVxQpBZRzrI40gBNEw1aoGPMRj6bJdML8e1SXq4QucyFgUE00FMTnPho1dfW9wwD8SHK54CmBkMzRKK0F-SlTMDSERGNfvyJ7JChhivYDyYVZbL3Tj7VA55Jpnl8Jj3eksM5M9kgv-5HGMJLfg8WrR6Y27_IG__7EzbJeo886VGnKm_IiivfkrUHfITvyE3nAoZnCriQnoQMSlp5Oj6dUNUE4VFdz0E76ahqWjovg-ws_Jag06qe31YlHcO20WVEUkxRq-ms4-NQNcXSa1f0vEb3EG60dNSFyr8nF5Pxz9E06mszRIrHvI04t4LFPFVWJw5WNNOc59yl2notnPSJ1SI1cF3xSjmucisyg2x_Ite5Y7nnW2S1rEr3gVBjobFJ4OJnYqEyp9PEW8VTqZj1LBtuky8wa0VvW00R3OYsLlCIU1n0U7lNDperWJie4BzrbFw90-LrfYvrjtzjmXc_LRWjAAtEt4oqXbVoCiYZoDAB0HvnH0f6kbw6P54U309mp7vkNcMoGUySF3tkta0Xbh9gTqsPglLfAbub-Lc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Impact+of+EKF+as+the+Arrival+Cost+in+the+Moving+Horizon+Estimation+under+Nonlinear+Model+Predictive+Control&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Valipour%2C+Mahshad&rft.au=Ricardez-Sandoval%2C+Luis+A.&rft.date=2021-02-24&rft.issn=1520-5045&rft.volume=60&rft.issue=7+p.2994-3012&rft.spage=2994&rft.epage=3012&rft_id=info:doi/10.1021%2Facs.iecr.0c06095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon