Photoassisted High-Performance Lithium Anode Enabled by Oriented Crystal Planes
Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on t...
Saved in:
Published in | ACS nano Vol. 16; no. 10; pp. 17454 - 17465 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X 1936-086X |
DOI | 10.1021/acsnano.2c08684 |
Cover
Abstract | Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on the tailored plane deposition and photoassisted synergistic current collectors are currently the subject of research; however, there are few related studies. To suppress the growth of Li dendrites and achieve dense Li deposition, we design a low-cost customized-facet/photoassisted synergistic dendrite-free anode. The tailored (002) plane endows it with a nanorod array/microsphere composite structure and exhibits a strong affinity for Li, which effectively reduces the Li+ nucleation overpotential and promotes uniform Li deposition. Notably, during the photoassisted Li deposition/stripping process, due to electron–hole separation, a weakly charged layer is formed on the (002) surface and local charge carrier changes are induced, reducing the overpotential by 8.3 mV, enhancing the reaction kinetics, and resulting in a high CE of ∼99.3% for the 300th cycle at 2 mA cm–2. This work is of great significance for the field of next-generation photoassisted Li metal anodes. |
---|---|
AbstractList | Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on the tailored plane deposition and photoassisted synergistic current collectors are currently the subject of research; however, there are few related studies. To suppress the growth of Li dendrites and achieve dense Li deposition, we design a low-cost customized-facet/photoassisted synergistic dendrite-free anode. The tailored (002) plane endows it with a nanorod array/microsphere composite structure and exhibits a strong affinity for Li, which effectively reduces the Li+ nucleation overpotential and promotes uniform Li deposition. Notably, during the photoassisted Li deposition/stripping process, due to electron–hole separation, a weakly charged layer is formed on the (002) surface and local charge carrier changes are induced, reducing the overpotential by 8.3 mV, enhancing the reaction kinetics, and resulting in a high CE of ∼99.3% for the 300th cycle at 2 mA cm–2. This work is of great significance for the field of next-generation photoassisted Li metal anodes. Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on the tailored plane deposition and photoassisted synergistic current collectors are currently the subject of research; however, there are few related studies. To suppress the growth of Li dendrites and achieve dense Li deposition, we design a low-cost customized-facet/photoassisted synergistic dendrite-free anode. The tailored (002) plane endows it with a nanorod array/microsphere composite structure and exhibits a strong affinity for Li, which effectively reduces the Li+ nucleation overpotential and promotes uniform Li deposition. Notably, during the photoassisted Li deposition/stripping process, due to electron-hole separation, a weakly charged layer is formed on the (002) surface and local charge carrier changes are induced, reducing the overpotential by 8.3 mV, enhancing the reaction kinetics, and resulting in a high CE of ∼99.3% for the 300th cycle at 2 mA cm-2. This work is of great significance for the field of next-generation photoassisted Li metal anodes.Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads to safety issues and a low Coulombic efficiency (CE), which hinders the commercialization of Li metal batteries. Stable Li anodes based on the tailored plane deposition and photoassisted synergistic current collectors are currently the subject of research; however, there are few related studies. To suppress the growth of Li dendrites and achieve dense Li deposition, we design a low-cost customized-facet/photoassisted synergistic dendrite-free anode. The tailored (002) plane endows it with a nanorod array/microsphere composite structure and exhibits a strong affinity for Li, which effectively reduces the Li+ nucleation overpotential and promotes uniform Li deposition. Notably, during the photoassisted Li deposition/stripping process, due to electron-hole separation, a weakly charged layer is formed on the (002) surface and local charge carrier changes are induced, reducing the overpotential by 8.3 mV, enhancing the reaction kinetics, and resulting in a high CE of ∼99.3% for the 300th cycle at 2 mA cm-2. This work is of great significance for the field of next-generation photoassisted Li metal anodes. |
Author | Bao, Weizhai Qian, Chengfei Sun, Kaiwen Wang, Ronghao Li, Muhan Liu, He Yu, Feng Li, Jingfa Guo, Cong |
AuthorAffiliation | Department of Materials Physics, School of Chemistry and Materials Science Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering Nanjing University of Information Science and Technology |
AuthorAffiliation_xml | – name: Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering – name: Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science – name: Department of Materials Physics, School of Chemistry and Materials Science – name: Nanjing University of Information Science and Technology |
Author_xml | – sequence: 1 givenname: Weizhai orcidid: 0000-0002-8779-643X surname: Bao fullname: Bao, Weizhai email: weizhai.bao@nuist.edu.cn organization: Nanjing University of Information Science and Technology – sequence: 2 givenname: Ronghao surname: Wang fullname: Wang, Ronghao organization: Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science – sequence: 3 givenname: Chengfei surname: Qian fullname: Qian, Chengfei organization: Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science – sequence: 4 givenname: Muhan surname: Li fullname: Li, Muhan organization: Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science – sequence: 5 givenname: Kaiwen orcidid: 0000-0001-5589-226X surname: Sun fullname: Sun, Kaiwen organization: Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering – sequence: 6 givenname: Feng surname: Yu fullname: Yu, Feng organization: Nanjing University of Information Science and Technology – sequence: 7 givenname: He surname: Liu fullname: Liu, He organization: Nanjing University of Information Science and Technology – sequence: 8 givenname: Cong surname: Guo fullname: Guo, Cong organization: Nanjing University of Information Science and Technology – sequence: 9 givenname: Jingfa surname: Li fullname: Li, Jingfa email: aplijf@nuist.edu.cn organization: Nanjing University of Information Science and Technology |
BookMark | eNp9kE1LAzEQhoMo2FbPXvcoyLbJpvnYYynVCoX2oOAtZNNZm7Kb1CQ99N-7S4sHQU8zwzzPMLxDdO28A4QeCB4TXJCJNtFp58eFwZLL6RUakJLyvBs-rn96Rm7RMMY9xkxIwQdovdn55HWMNibYZkv7ucs3EGofWu0MZCubdvbYZjPnt5AtnK6aDqtO2TpYcL0yD6eYdJNtGu0g3qGbWjcR7i91hN6fF2_zZb5av7zOZ6tcU4JTXslKFlSUBcPCMM4Zp4b1VeK6BAMw5YQaumWalqUksiSgCwFAWKVLKCkdocfz3UPwX0eISbU2Gmj6J_wxqkIQwSWlAnfo5Iya4GMMUKtDsK0OJ0Ww6qNTl-jUJbrOYL8MY5NO1rsUtG3-8Z7OXrdQe38MrovgT_obL4-Few |
CitedBy_id | crossref_primary_10_3390_cryst12101405 crossref_primary_10_3390_batteries9030188 crossref_primary_10_1002_smll_202406908 crossref_primary_10_1002_smll_202307179 crossref_primary_10_1016_j_cej_2023_141542 crossref_primary_10_1016_j_jpowsour_2024_235530 crossref_primary_10_1039_D4NR04560B crossref_primary_10_1021_acs_nanolett_4c04357 crossref_primary_10_3390_ma16041430 crossref_primary_10_1002_smll_202303745 crossref_primary_10_1021_acs_nanolett_3c03639 crossref_primary_10_1039_D4TA04156A crossref_primary_10_1002_aenm_202302091 crossref_primary_10_1016_j_jpowsour_2023_233019 crossref_primary_10_1002_smll_202304045 crossref_primary_10_1002_aenm_202301143 crossref_primary_10_1039_D3TA03974A |
Cites_doi | 10.1002/adfm.202006950 10.1038/ncomms14643 10.1002/adfm.201905940 10.1002/aenm.201901604 10.1021/acsenergylett.8b02527 10.1039/C7TA00371D 10.1002/adma.200601455 10.1016/j.cej.2019.122243 10.1002/aenm.202200469 10.1038/s41560-021-00787-9 10.1039/C9CS00636B 10.1002/aenm.202003709 10.1002/adma.202006247 10.1016/j.ensm.2021.01.028 10.1002/adfm.201606422 10.1021/acsami.0c21747 10.1039/C9CS00838A 10.1016/j.apcatb.2014.11.058 10.1002/aenm.201903930 10.1002/admi.201701097 10.1038/s41598-021-02222-1 10.1016/j.jcis.2022.04.075 10.1016/j.nanoen.2020.104867 10.1016/j.nanoen.2017.05.015 10.1002/adfm.201402827 10.1002/eem2.12182 10.1038/s41563-020-0729-1 10.1002/anie.201812523 10.1038/s41467-021-26143-9 10.1039/C7EE03165C 10.1039/D1TA05394A 10.1038/s41467-021-25848-1 10.1007/s12274-015-0954-0 10.1038/nnano.2017.16 10.1002/smll.202203014 10.1021/acsnano.0c08691 10.1016/j.nanoen.2020.105507 10.1039/C3NR04558G 10.1038/s41586-019-1481-z 10.1002/adfm.202202771 10.1016/j.nanoen.2020.105308 10.1002/aenm.201703152 10.1002/aenm.201970010 10.1016/j.mattod.2020.10.021 10.1021/acsami.2c08278 10.1126/sciadv.abq3445 10.1002/aenm.201702296 10.1002/anie.201704344 10.1002/aenm.202001257 10.1038/s41467-019-12938-4 10.1002/eem2.12412 10.1016/j.cej.2021.133665 10.1007/s12274-017-1461-2 10.1016/j.jpowsour.2018.03.047 10.1038/s41565-019-0427-9 10.1021/acsnano.0c07907 10.1038/ncomms6111 10.1002/smll.201903520 10.1038/s41565-020-00845-5 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1021/acsnano.2c08684 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 17465 |
ExternalDocumentID | 10_1021_acsnano_2c08684 a547574461 |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA ADHGD BAANH CITATION CUPRZ 7X8 |
ID | FETCH-LOGICAL-a310t-b8b823792507c566563c5566580f9ecee4613c3d5a39981891ea27ee15ba9e933 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:08:29 EDT 2025 Tue Jul 01 03:37:29 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 Thu Oct 27 05:08:52 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | dual-function morphology regulation lithium metal anodes crystal plane orientation photoassisted dendrite-free |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a310t-b8b823792507c566563c5566580f9ecee4613c3d5a39981891ea27ee15ba9e933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8779-643X 0000-0001-5589-226X |
PQID | 2717683370 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2717683370 crossref_primary_10_1021_acsnano_2c08684 crossref_citationtrail_10_1021_acsnano_2c08684 acs_journals_10_1021_acsnano_2c08684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221025 2022-10-25 |
PublicationDateYYYYMMDD | 2022-10-25 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221025 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1002/adfm.202006950 – ident: ref29/cit29 doi: 10.1038/ncomms14643 – ident: ref58/cit58 doi: 10.1002/adfm.201905940 – ident: ref38/cit38 doi: 10.1002/aenm.201901604 – ident: ref11/cit11 doi: 10.1021/acsenergylett.8b02527 – ident: ref55/cit55 doi: 10.1039/C7TA00371D – ident: ref46/cit46 doi: 10.1002/adma.200601455 – ident: ref49/cit49 doi: 10.1016/j.cej.2019.122243 – ident: ref25/cit25 doi: 10.1002/aenm.202200469 – ident: ref4/cit4 doi: 10.1038/s41560-021-00787-9 – ident: ref1/cit1 doi: 10.1039/C9CS00636B – ident: ref15/cit15 doi: 10.1002/aenm.202003709 – ident: ref18/cit18 doi: 10.1002/adma.202006247 – ident: ref54/cit54 doi: 10.1016/j.ensm.2021.01.028 – ident: ref9/cit9 doi: 10.1002/adfm.201606422 – ident: ref40/cit40 doi: 10.1021/acsami.0c21747 – ident: ref10/cit10 doi: 10.1039/C9CS00838A – ident: ref45/cit45 doi: 10.1016/j.apcatb.2014.11.058 – ident: ref28/cit28 doi: 10.1002/aenm.201903930 – ident: ref34/cit34 doi: 10.1002/admi.201701097 – ident: ref59/cit59 doi: 10.1038/s41598-021-02222-1 – ident: ref16/cit16 doi: 10.1016/j.jcis.2022.04.075 – ident: ref37/cit37 doi: 10.1016/j.nanoen.2020.104867 – ident: ref53/cit53 doi: 10.1016/j.nanoen.2017.05.015 – ident: ref41/cit41 doi: 10.1002/adfm.201402827 – ident: ref27/cit27 doi: 10.1002/eem2.12182 – ident: ref24/cit24 doi: 10.1038/s41563-020-0729-1 – ident: ref48/cit48 doi: 10.1002/anie.201812523 – ident: ref32/cit32 doi: 10.1038/s41467-021-26143-9 – ident: ref31/cit31 doi: 10.1039/C7EE03165C – ident: ref5/cit5 doi: 10.1039/D1TA05394A – ident: ref14/cit14 doi: 10.1038/s41467-021-25848-1 – ident: ref50/cit50 doi: 10.1007/s12274-015-0954-0 – ident: ref2/cit2 doi: 10.1038/nnano.2017.16 – ident: ref26/cit26 doi: 10.1002/smll.202203014 – ident: ref7/cit7 doi: 10.1021/acsnano.0c08691 – ident: ref19/cit19 doi: 10.1016/j.nanoen.2020.105507 – ident: ref44/cit44 doi: 10.1039/C3NR04558G – ident: ref56/cit56 doi: 10.1038/s41586-019-1481-z – ident: ref23/cit23 doi: 10.1002/adfm.202202771 – ident: ref22/cit22 doi: 10.1016/j.nanoen.2020.105308 – ident: ref8/cit8 doi: 10.1002/aenm.201703152 – ident: ref51/cit51 doi: 10.1002/aenm.201970010 – ident: ref3/cit3 doi: 10.1016/j.mattod.2020.10.021 – ident: ref21/cit21 doi: 10.1021/acsami.2c08278 – ident: ref35/cit35 doi: 10.1126/sciadv.abq3445 – ident: ref57/cit57 doi: 10.1002/aenm.201702296 – ident: ref52/cit52 doi: 10.1002/anie.201704344 – ident: ref13/cit13 doi: 10.1002/aenm.202001257 – ident: ref36/cit36 doi: 10.1038/s41467-019-12938-4 – ident: ref47/cit47 doi: 10.1002/eem2.12412 – ident: ref43/cit43 doi: 10.1016/j.cej.2021.133665 – ident: ref33/cit33 doi: 10.1007/s12274-017-1461-2 – ident: ref42/cit42 doi: 10.1016/j.jpowsour.2018.03.047 – ident: ref17/cit17 doi: 10.1038/s41565-019-0427-9 – ident: ref6/cit6 doi: 10.1021/acsnano.0c07907 – ident: ref30/cit30 doi: 10.1038/ncomms6111 – ident: ref39/cit39 doi: 10.1002/smll.201903520 – ident: ref12/cit12 doi: 10.1038/s41565-020-00845-5 |
SSID | ssj0057876 |
Score | 2.4983122 |
Snippet | Lithium (Li) metal anodes are candidates for the next-generation high-performance lithium-ion batteries (LIBs). However, uncontrolable Li dendrite growth leads... |
SourceID | proquest crossref acs |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17454 |
Title | Photoassisted High-Performance Lithium Anode Enabled by Oriented Crystal Planes |
URI | http://dx.doi.org/10.1021/acsnano.2c08684 https://www.proquest.com/docview/2717683370 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UL3rwtxF_pSYcvGyydh3dkRAIMSokSsJt6doSiLgZth3wr_d1GyASo6dd1qZ5fX3f9_JevyJUo8DieUipxZTrWa4ijgWu7FvCAW9mefHPVHSfnr3uwH0YsuFKLPpnBZ8490ImkYhim0hg39zdRjvE447Js5qtl0XQNX7nFQVkSJCBRSxVfDYmMDAkk3UYWo_CObR0DoqmrCRXJDQdJW92loa2_NzUa_x71YdovySYuFl4xBHa0tEx2vsmO3iCev1xnMbAms0WK2xaPaz-6gIBfpyk40n2jptRrDRu57erFA7nuGdEkc2Q1mwOrHKKzZNHOjlFg077tdW1yocVLAFsLrVCHhqNGh_oT0MCn2Melcx8eX3ka4BNF0BeUsUE0BdAdN_RgjS0dlgofO1TeoYqURzpc4SF0ibHUfWRC-GAuzwUntJ1xtVIedKhVVQDUwTlwUiCvOZNnKC0T1Dap4rsxXYEshQnN29kTH8fcLcc8FHocvz-6-1ifwM4O6YgAraJsyQgkMt6nNJG_eJ_y7xEu8RcfwDsIuwKVdJZpq-BlKThTe6OX6Iu200 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9BPKgHv434WRMOXobbuo7tSAgElS8jJNyWbS2BiJth2wH_el_HANGQ6GlJszYvr6_9_ZrX9ytAkSKLtzxKFcYNUzG4rikYyrbiahjNLE3-yYxuq202-sbTgA1yoC5qYdCICEeK0iT-Sl1Ae8C2wA3Cku4jCbeMLdhOdVAkGaq-LvZeGX7mPI-M52QkE0sxn18DSDTyo3U0Wt-MU4SpH8DL0rb0YslbKYm9kv_5Q7bxP8Yfwn5GN0llHh9HkBPBMex9EyE8gU53FMYhcmg54ZzIix9Kd1VOQJrjeDRO3kklCLkgtbTWihNvRjpSIll2qU5nyDEnRD6AJKJT6NdrvWpDyZ5ZUFzkdrHiWZ5UrLGRDJV9ZHfMpD6TX0sd2gJB1EDI9ylnLpIZxHdbE65eFkJjnmsLm9IzyAdhIM6BuFzIEw9XhwZuDpZhea7JhcosPuSmr9ECFNEVTrZMIifNgOuak_nHyfxTgNJiVhw_kyqXL2ZMNne4X3b4mKt0bP71bjHNDq4kmR5B34RJ5Oh4sjUtSsvqxd_MvIWdRq_VdJqP7edL2NVlYQSims6uIB9PE3GNdCX2btII_QKtqOO4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UE6MHfxvxZ004eNnc1nVsR4IQVAQSJfG2bGsXiLgRth3wr_e9MVA0JHpasuw13etrv695fV8JqTBg8bbPmMKFaSmmMHQFQtlRPB2imefJP8zoPnWsVt98eOWvRVEY1sJAJxJoKcmT-DirxyIsFAb0W3gfeVGsGgEQcdtcJxscBeCQENWf5-svhqA1yyXDXhkIxULQ51cDiEhBsoxIywtyjjLNXdJf9C8_XPKmZqmvBh8_pBv_-wN7ZKegnbQ2i5N9siajA7L9TYzwkHR7gziNgUvjwAuKB0CU3ldZAW0P08Ewe6e1KBaSNvKaK0H9Ke2iVDKa1CdT4JojihchyeSI9JuNl3pLKa5bUDzgeKni2z4q1zhAiqoBsDxusYDj09ZCRwKYmgD9ARPcA1IDOO_o0jOqUurc9xzpMHZMSlEcyRNCPSFx5yO00IRFwjZt37OE1LgtQmEFOiuTCrjCLaZL4uaZcEN3C_-4hX_KRJ2PjBsUkuV4c8ZotcHNwmA8U-tY_en1fKhdmFGYJgHfxFniGrDDtWzGqtrp37p5RTZ7d023fd95PCNbBtZHALgZ_JyU0kkmL4C1pP5lHqSfDXjmMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoassisted+High-Performance+Lithium+Anode+Enabled+by+Oriented+Crystal+Planes&rft.jtitle=ACS+nano&rft.au=Bao%2C+Weizhai&rft.au=Wang%2C+Ronghao&rft.au=Qian%2C+Chengfei&rft.au=Li%2C+Muhan&rft.date=2022-10-25&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=16&rft.issue=10&rft.spage=17454&rft.epage=17465&rft_id=info:doi/10.1021%2Facsnano.2c08684&rft.externalDocID=a547574461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |