Diffuse Algorithms for Neural and Neuro-Fuzzy Networks With Applications in Control Engineering and Signal Processing

This title presents new approaches to training neural and neuro-fuzzy networks. The book is divided into six chapters. Chapter 1 consists of plants models reviews, problems statements, and known results that are relevant to the subject matter of this book. Chapter 2 considers the RLS behaviour on a...

Full description

Saved in:
Bibliographic Details
Main Author Skorohod, Boris. A
Format eBook
LanguageEnglish
Published Chantilly Elsevier Science & Technology 2017
Butterworth-Heinemann
Edition1
Subjects
Online AccessGet full text
ISBN0128126094
9780128126097

Cover

Abstract This title presents new approaches to training neural and neuro-fuzzy networks. The book is divided into six chapters. Chapter 1 consists of plants models reviews, problems statements, and known results that are relevant to the subject matter of this book. Chapter 2 considers the RLS behaviour on a finite interval. Properties of the bias, the matrix of second-order moments and the normalized average squared error of the RLS algorithm on a finite time interval are studied in Chapter 3. Chapter 4 deals with the problem of multilayer neural and neuro-fuzzy networks training with simultaneous estimation of the hidden and output layers parameters. Chapter 5 considers the estimation problem of the state and the parameters of the discrete dynamic plants in the absence of a priori statistical information about initial conditions or its incompletion.
AbstractList This title presents new approaches to training neural and neuro-fuzzy networks. The book is divided into six chapters. Chapter 1 consists of plants models reviews, problems statements, and known results that are relevant to the subject matter of this book. Chapter 2 considers the RLS behaviour on a finite interval. Properties of the bias, the matrix of second-order moments and the normalized average squared error of the RLS algorithm on a finite time interval are studied in Chapter 3. Chapter 4 deals with the problem of multilayer neural and neuro-fuzzy networks training with simultaneous estimation of the hidden and output layers parameters. Chapter 5 considers the estimation problem of the state and the parameters of the discrete dynamic plants in the absence of a priori statistical information about initial conditions or its incompletion.
Author Skorohod, Boris. A
Author_xml – sequence: 1
  fullname: Skorohod, Boris. A
BookMark eNo9j8lOwzAURY0YRFv6D9khFpGe_RwPy1JaQKpgg9hGTmzTkhBDnFC1X0_Uoq7uoKMr3TG5aELjzsgYKFOUCQrq_BRA8ysy0hIVZlLDNZnG-AkAjCouJBsR8bDxvo8umdUfod1066-Y-NAmL65vTZ2Yxh5sSJf9fr8bfLcNbRVvyKU3dXTTf52Q9-Xibf6Url4fn-ezVWoQpFYpN6iEN0IWZWE9FwXXFgVSD1YKre3QGMwK7rRnPtOKCoO8ZB4gs8IZhRNydxw2sXLbuA51F_Pf2hUhVDHXUp1e48DeHtnvNvz0Lnb5AStd0w1f8sX9nCvgA4t_NtBWcg
ContentType eBook
DEWEY 006.32
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 0128126108
9780128126103
Edition 1
ExternalDocumentID 9780128126103
EBC4804261
GroupedDBID -VX
20A
38.
AAAAS
AABBV
AAJFB
AAJIE
AAKZG
AALRI
AAORS
AAXUO
AAZNM
ABARN
ABGWT
ABLXK
ABMAC
ABMRC
ABMSR
ABQPQ
ABQQC
ACKCA
ACLGV
ADCEY
ADRYN
ADVEM
AEIUV
AEPKO
AERYV
AFOJC
AGAMA
AHWGJ
AJFER
AJMPQ
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BECES
BGHEG
BIOBC
BIQZX
BLMTO
CZZ
DUGUG
EBSCA
ECOWB
GEOUK
HGY
JJU
MYL
SDK
XI1
ID FETCH-LOGICAL-a30798-4a386fa67bcbdf46b49d3631f0d7699d46ba35b4e9f2f59816a34c2f005d6ea83
ISBN 0128126094
9780128126097
IngestDate Fri Nov 08 05:47:05 EST 2024
Wed Oct 29 00:09:55 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA9.58.S567 2017
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a30798-4a386fa67bcbdf46b49d3631f0d7699d46ba35b4e9f2f59816a34c2f005d6ea83
OCLC 973835790
PQID EBC4804261
PageCount 222
ParticipantIDs askewsholts_vlebooks_9780128126103
proquest_ebookcentral_EBC4804261
PublicationCentury 2000
PublicationDate 2017
2017-02-10
PublicationDateYYYYMMDD 2017-01-01
2017-02-10
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationYear 2017
Publisher Elsevier Science & Technology
Butterworth-Heinemann
Publisher_xml – name: Elsevier Science & Technology
– name: Butterworth-Heinemann
SSID ssj0002184672
Score 2.0650172
Snippet This title presents new approaches to training neural and neuro-fuzzy networks. The book is divided into six chapters. Chapter 1 consists of plants models...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Automatic control
Fuzzy systems
Neural networks (Computer science)
Signal processing
Subtitle With Applications in Control Engineering and Signal Processing
TableOfContents Front Cover -- Diffuse Algorithms for Neural and Neuro-Fuzzy Networks -- Copyright Page -- Contents -- List of Figures -- List of Tables -- Preface -- 1 Introduction -- 1.1 Separable Models of Plants and Training Problems Associated With Them -- 1.1.1 Separable Least Squares Method -- 1.1.2 Perceptron With One Hidden Layer -- 1.1.3 Radial Basis Neural Network -- 1.1.4 Neuro-Fuzzy Network -- 1.1.5 Plant Models With Time Delays -- 1.1.6 Systems With Partly Unknown Dynamics -- 1.1.7 Recurrent Neural Network -- 1.1.8 Neurocontrol -- 1.2 The Recursive Least Squares Algorithm With Diffuse and Soft Initializations -- 1.3 Diffuse Initialization of the Kalman Filter -- 2 Diffuse Algorithms for Estimating Parameters of Linear Regression -- 2.1 Problem Statement -- 2.2 Soft and Diffuse Initializations -- 2.3 Examples of Application -- 2.3.1 Identification of Nonlinear Dynamic Plants -- 2.3.2 Supervisory Control -- 2.3.3 Estimation With a Sliding Window -- 3 Statistical Analysis of Fluctuations of Least Squares Algorithm on Finite Time Interval -- 3.1 Problem Statement -- 3.2 Properties of Normalized Root Mean Square Estimation Error -- 3.3 Fluctuations of Estimates under Soft Initialization with Large Parameters -- 3.4 Fluctuations Under Diffuse Initialization -- 3.5 Fluctuations with Random Inputs -- 4 Diffuse Neural and Neuro-Fuzzy Networks Training Algorithms -- 4.1 Problem Statement -- 4.2 Training With the Use of Soft and Diffuse Initializations -- 4.3 Training in the Absence of a Priori Information About Parameters of the Output Layer -- 4.4 Convergence of Diffuse Training Algorithms -- 4.4.1 Finite Training Set -- 4.4.2 Infinite Training Set -- 4.5 Iterative Versions of Diffuse Training Algorithms -- 4.6 Diffuse Training Algorithm of Recurrent Neural Network -- 4.7 Analysis of Training Algorithms With Small Noise Measurements
4.8 Examples of Application -- 4.8.1 Identification of Nonlinear Static Plants -- 4.8.2 Identification of Nonlinear Dynamic Plants -- 4.8.3 Example of Classification Task -- 5 Diffuse Kalman Filter -- 5.1 Problem Statement -- 5.2 Estimation With Diffuse Initialization -- 5.3 Estimation in the Absence or Incomplete a Priori Information About Initial Conditions -- 5.4 Systems State Recovery in a Finite Number of Steps -- 5.5 Filtering With the Sliding Window -- 5.6 Diffuse Analog of the Extended Kalman Filter -- 5.7 Recurrent Neural Network Training -- 5.8 Systems With Partly Unknown Dynamics -- 6 Applications of Diffuse Algorithms -- 6.1 Identification of the Mobile Robot Dynamics -- 6.2 Modeling of Hysteretic Deformation by Neural Networks -- 6.3 Harmonics Tracking of Electric Power Networks -- Glossary -- Notations -- Abbreviations -- References -- Index -- Back Cover
Title Diffuse Algorithms for Neural and Neuro-Fuzzy Networks
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4804261
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128126103&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYYXODCYEMrG8hCuyGjpnYchxtUZdUkOLGpnCo7sQGtS1CbVqK_fs8vSZN2O2w7JEoc6UX6XvTs53zfe4R8DiIrbGAci2Exz0TY00xJLRkcxoRcpAb7kN3eyeE38XUUjpruraguKcxFsvyjruR_vApj4Fevkv0Hz66MwgBcg3_hDB6G88bid3VbVDwW5-Yze64njzlk909lVYVzX5yy0v5jnUrm5svlK1wj1RvJb6WW7WWdRl7z1W1TnBCNeHKHV2qVYoJ6ksOWXfk0fyrJOte51wxctbcPYEryzUy6zR4ZtsNGOiIbWnjHT51lazkm_muDrKek0W4Up26eB77k6pso8lFm-OVhtc_lU0gZYUJcGxJV4aOV4T2yp2c_IKhDwC9mv82KONXfvyU71us_DsiWzQ7Jft31glZB8B1ZVODTBnwK4NMSfAq40Rb4tAb_knroaRt6-pzRCnragh5NlNDTBvr35PvN4L4_ZFX3CqYhbsaKCc2VdFpGJjGpE9KIOOWSB66bRjKOUxjRPDTCxq7nwlgFUnOR9BzExVRarfgR2c7yzH4g1AklVMLTOBC-v1iiuib1leZ4KKKesFGHnLUAHC8m-Kd9Nl5zT4fQGtcxPq_ov-PBdV8ozKWP_8bOR7LbfEifyHYxndsTWJkV5hRd_wuqED_S
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Diffuse+algorithms+for+neural+and+neuro-fuzzy+networks%3A+with+applications+in+control+engineering+and+signal+processing&rft.au=Skorohod%2C+Boris.A&rft.date=2017-02-10&rft.pub=Butterworth-Heinemann&rft.isbn=9780128126097&rft.externalDocID=9780128126103
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128126103.jpg