A Survey on Game-Theoretic Approaches for Intrusion Detection and Response Optimization

Intrusion Detection Systems (IDS) are key components for securing critical infrastructures, capable of detecting malicious activities on networks or hosts. However, the efficiency of an IDS depends primarily on both its configuration and its precision. The large amount of network traffic that needs...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 51; no. 5; pp. 1 - 31
Main Authors Kiennert, Christophe, Ismail, Ziad, Debar, Herve, Leneutre, Jean
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 22.08.2018
Association for Computing Machinery
Subjects
Online AccessGet full text
ISSN0360-0300
1557-7341
DOI10.1145/3232848

Cover

Abstract Intrusion Detection Systems (IDS) are key components for securing critical infrastructures, capable of detecting malicious activities on networks or hosts. However, the efficiency of an IDS depends primarily on both its configuration and its precision. The large amount of network traffic that needs to be analyzed, in addition to the increase in attacks’ sophistication, renders the optimization of intrusion detection an important requirement for infrastructure security, and a very active research subject. In the state of the art, a number of approaches have been proposed to improve the efficiency of intrusion detection and response systems. In this article, we review the works relying on decision-making techniques focused on game theory and Markov decision processes to analyze the interactions between the attacker and the defender, and classify them according to the type of the optimization problem they address. While these works provide valuable insights for decision-making, we discuss the limitations of these solutions as a whole, in particular regarding the hypotheses in the models and the validation methods. We also propose future research directions to improve the integration of game-theoretic approaches into IDS optimization techniques.
AbstractList Intrusion Detection Systems (IDS) are key components for securing critical infrastructures, capable of detecting malicious activities on networks or hosts. However, the efficiency of an IDS depends primarily on both its configuration and its precision. The large amount of network traffic that needs to be analyzed, in addition to the increase in attacks’ sophistication, renders the optimization of intrusion detection an important requirement for infrastructure security, and a very active research subject. In the state of the art, a number of approaches have been proposed to improve the efficiency of intrusion detection and response systems. In this article, we review the works relying on decision-making techniques focused on game theory and Markov decision processes to analyze the interactions between the attacker and the defender, and classify them according to the type of the optimization problem they address. While these works provide valuable insights for decision-making, we discuss the limitations of these solutions as a whole, in particular regarding the hypotheses in the models and the validation methods. We also propose future research directions to improve the integration of game-theoretic approaches into IDS optimization techniques.
Intrusion Detection Systems (IDS) are key components for securing critical infrastructures, capable of detecting malicious activities on networks or hosts. However, the efficiency of an IDS depends primarily on both its configuration and its precision. The large amount of network traffic that needs to be analyzed, in addition to the increase in attacks' sophistication, renders the optimization of intrusion detection an important requirement for infrastructure security, and a very active research subject. In the state of the art, a number of approaches have been proposed to improve the efficiency of intrusion detection and response systems. In this article, we review the works relying on decision-making techniques focused on game theory and Markov decision processes to analyze the interactions between the attacker and the defender, and classify them according to the type of the optimization problem they address. While these works provide valuable insights for decision-making, we discuss the limitations of these solutions as a whole, in particular regarding the hypotheses in the models and the validation methods. We also propose future research directions to improve the integration of game-theoretic approaches into IDS optimization techniques
ArticleNumber 90
Author Ismail, Ziad
Debar, Herve
Kiennert, Christophe
Leneutre, Jean
Author_xml – sequence: 1
  givenname: Christophe
  surname: Kiennert
  fullname: Kiennert, Christophe
  email: christophe.kiennert@telecom-sudparis.eu
  organization: Télécom SudParis, Évry, France
– sequence: 2
  givenname: Ziad
  orcidid: 0000-0002-9421-5242
  surname: Ismail
  fullname: Ismail, Ziad
  email: ismail.ziad@telecom-paristech.fr
  organization: Télécom ParisTech, Paris, France
– sequence: 3
  givenname: Herve
  surname: Debar
  fullname: Debar, Herve
  email: herve.debar@telecom-sudparis.eu
  organization: Télécom SudParis, Évry, France
– sequence: 4
  givenname: Jean
  surname: Leneutre
  fullname: Leneutre, Jean
  email: jean.leneutre@telecom-paristech.fr
  organization: Télécom ParisTech, Paris, France
BackLink https://hal.science/hal-02009646$$DView record in HAL
BookMark eNpl0E1Lw0AQBuBFKthW8e4p4EE8RGez-TyWqq1QKGjB4zLZTmhKm42720L99Sam9aCnWWYelpl3wHqVroixaw4PnIfRowhEkIbpGevzKEr8RIS8x_ogYvBBAFywgbVrAAhCHvfZx8h735k9HTxdeRPckr9YkTbkSuWN6tpoVCuyXqGN91o5s7Nl457IkXLtC6ul90a21pUlb167clt-YTu5ZOcFbixdHeuQLV6eF-OpP5tPXsejmY8CYufznAsRZ4nASGGWEKc0USki5TmKiBehIgghIUTFaRmmIk8QAxVglhWASgzZffftCjeyNuUWzUFqLOV0NJNtDwKALA7jPW_sbWebqz53ZJ1c652pmu1kwJOoCS2Ko0b5nVJGW2uokKp0Pyc5g-VGcpBtzPIYc-Pv_vjTGv_lTSdRbX_RafgNcRCFhg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3321082
crossref_primary_10_1049_iet_com_2019_1372
crossref_primary_10_1109_ACCESS_2019_2943056
crossref_primary_10_1109_TIFS_2024_3515834
crossref_primary_10_1016_j_cie_2019_01_005
crossref_primary_10_1145_3635030
crossref_primary_10_1016_j_pmcj_2021_101385
crossref_primary_10_7717_peerj_cs_791
crossref_primary_10_1016_j_ress_2020_106878
crossref_primary_10_3390_s23010317
crossref_primary_10_1016_j_sysarc_2022_102722
crossref_primary_10_1109_ACCESS_2022_3213711
crossref_primary_10_1145_3652953
crossref_primary_10_1007_s11235_019_00616_1
crossref_primary_10_1109_TIFS_2020_3016842
crossref_primary_10_1016_j_procs_2019_08_098
crossref_primary_10_1002_cpe_7826
crossref_primary_10_1016_j_cie_2020_106584
crossref_primary_10_1016_j_eswa_2023_120386
crossref_primary_10_1109_ACCESS_2024_3381998
crossref_primary_10_1007_s11277_023_10773_x
crossref_primary_10_1109_TIFS_2023_3284564
crossref_primary_10_1109_TAC_2024_3384834
crossref_primary_10_1016_j_cose_2022_102984
crossref_primary_10_3390_info13110544
crossref_primary_10_1007_s11277_021_08270_0
crossref_primary_10_1109_TIFS_2022_3191491
crossref_primary_10_1016_j_iot_2021_100462
crossref_primary_10_1145_3409959
crossref_primary_10_3389_fenrg_2024_1413576
Cites_doi 10.1109/SURV.2012.062612.00056
10.1016/j.comcom.2007.12.028
10.1006/game.1995.1023
10.1016/j.jnca.2015.12.006
10.1287/mnsc.27.4.479
10.2307/2938166
10.1016/j.compeleceng.2012.05.013
10.2307/3007957
10.1016/j.cose.2010.06.002
10.1016/j.cose.2014.04.009
10.5555/1620163.1620192
10.1609/aimag.v33i4.2401
10.5555/1689499.1689587
10.1007/BF01448847
10.2307/2171725
10.5555/2693068.2693077
10.1002/sec.730
10.1016/j.cose.2008.08.003
10.5555/1620270.1620401
10.1109/COMST.2015.2494502
10.5555/1748111.1748149
10.5555/784592.784788
10.1007/s10207-004-0060-x
10.5555/517430
10.1016/j.ins.2011.03.014
10.1007/978-3-642-10844-0_29
10.1109/SURV.2013.050113.00191
10.1016/j.patrec.2005.10.010
10.5555/1039834.1039864
10.5555/248676
10.5555/1689499.1689548
10.1145/357830.357849
10.4304/jnw.6.3.521-532
10.5555/1793974.1794083
10.5555/1025126.1025973
10.2307/1969529
10.1109/TPDS.2013.211
10.1109/TIFS.2009.2019154
10.1145/382912.382923
10.1145/2038916.2038945
10.1109/TSE.1987.232894
10.1109/TIFS.2014.2332816
10.1016/j.comcom.2007.10.024
10.1007/978-1-4614-5416-8_2
10.5555/1951874
10.1109/TPWRS.2014.2326403
10.5555/324119.324126
10.1007/978-3-642-33704-8_14
10.1016/j.cose.2011.08.009
10.1016/j.asoc.2012.01.009
10.5555/1076314
10.1145/2808691
10.1145/3057268
10.5555/501093
10.1504/IJICS.2007.012248
10.5555/517959
10.1007/978-1-4612-4146-1
10.1145/2480741.2480742
10.1111/j.1539-6924.1999.tb00399.x
ContentType Journal Article
Copyright ACM
Copyright Association for Computing Machinery Jan 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: ACM
– notice: Copyright Association for Computing Machinery Jan 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1145/3232848
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-7341
EndPage 31
ExternalDocumentID oai_HAL_hal_02009646v1
10_1145_3232848
3232848
GroupedDBID --Z
-DZ
-~X
.4S
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AEGXH
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
EBE
EBR
EBS
EBU
EDO
EJD
EMK
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TAF
TH9
U5U
UKR
UPT
VQA
W7O
WH7
X6Y
XH6
XSW
XZL
YXB
Z5M
ZCA
ZL0
AAYXX
ADXHL
AEFXT
AEJOY
AETEA
AKRVB
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
77I
ID FETCH-LOGICAL-a306t-1b1336973a5ca97e1e87c8aaebba351f4ce0407eaac1ed483b7aa2c2a99f0ac3
ISSN 0360-0300
IngestDate Sat Sep 27 06:20:28 EDT 2025
Mon Jun 30 13:02:54 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Thu Jul 03 08:14:11 EDT 2025
Fri Feb 21 01:11:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords MDP
IDS
Intrusion detection and response
optimization
game theory
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a306t-1b1336973a5ca97e1e87c8aaebba351f4ce0407eaac1ed483b7aa2c2a99f0ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9421-5242
0000-0003-1943-1583
0000-0002-1344-4167
0000-0003-1819-3341
PQID 2175284565
PQPubID 47570
PageCount 31
ParticipantIDs hal_primary_oai_HAL_hal_02009646v1
proquest_journals_2175284565
crossref_citationtrail_10_1145_3232848
crossref_primary_10_1145_3232848
acm_primary_3232848
PublicationCentury 2000
PublicationDate 2018-08-22
PublicationDateYYYYMMDD 2018-08-22
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-22
  day: 22
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
– name: Baltimore
PublicationTitle ACM computing surveys
PublicationTitleAbbrev ACM CSUR
PublicationYear 2018
Publisher ACM
Association for Computing Machinery
Publisher_xml – name: ACM
– name: Association for Computing Machinery
References A. L. Buczak and E. Guven. 2016. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys Tutorials 18, 2 (2016), 1153--1176.
K. Lye and M. J. Wing. 2005. Game strategies in network security. International Journal of Information Security 4, 1 (2005), 71--86. 10.1007/s10207-004-0060-x
E. Altman. 1999. Constrained Markov Decision Processes. CRC Press.
R. Aumann and A. Brandenburger. 1995. Epistemic conditions for Nash equilibrium. Econometrica 63, 5 (1995), 1161--1180.
S. Axelsson. 2000a. The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security 3, 3 (2000), 186--205. 10.1145/357830.357849
P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers and Security 28, 1--2 (2009), 18--28. 10.1016/j.cose.2008.08.003
J. Huang, I. Liao, Y. Chung, and K. Chen. 2013. Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining. Information Sciences 231 (2013), 32--44. 10.1016/j.ins.2011.03.014
S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley. 2014. RRE: A game-theoretic intrusion response and recovery engine. IEEE Transactions on Parallel and Distributed Systems 25, 2 (2014), 395--406. 10.1109/TPDS.2013.211
J. Rosenhead, M. Elton, and S. K. Gupta. 1972. Robustness and optimality as criteria for strategic decisions. Operational Research Quarterly (1970--1977) 23, 4 (1972), 413--431.
G. S. Fishman. 2001. Discrete-Event Simulation. Springer-Verlag.
Z. Ismail, C. Kiennert, J. Leneutre, and L. Chen. 2017. A game theoretical model for optimal distribution of network security resources. In Proceedings of the 8th Conference on Decision and Game Theory for Security (GameSec’17).
J. deMeer and A. Rennoch. 2011. The ETSI TVRA Security-Measurement Methodology by Means of TTCN-3 Notation. ETSI.
T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874. 10.1016/j.patrec.2005.10.010
N. Stakhanova, S. Basu, and J. Wong. 2007. A taxonomy of intrusion response systems. International Journal of Information and Computer Security 1, 1/2 (2007), 169--184. 10.1504/IJICS.2007.012248
I. Kantzavelou and S. Katsikas. 2010. A game-based intrusion detection mechanism to confront internal attackers. Computers 8 Security 29, 8 (2010), 859--874. 10.1016/j.cose.2010.06.002
H. Moosavi and F. M. Bui. 2014a. A discounted stochastic game approach to intrusion detection in wireless ad hoc networks. In Proceedings of the 5th International Conference on Communications and Electronics.
H. Otrok, N. Mohammed, L. Wang, M. Debbabi, and P. Bhattacharya. 2008b. A Game-theoretic intrusion detection model for mobile ad hoc networks. Computer Communications 31, 4 (2008), 708--721. 10.1016/j.comcom.2007.10.024
D. Shen, G. Chen, J. B. Cruz, Jr., L. Haynes, M. Kruger, and E. Blasch. 2007. A Markov game theoretic data fusion approach for cyber situational awareness. In Proceedings of SPIE, Vol. 6571.
R. T. Clemen and R. L. Winkler. 1999. Combining probability distributions from experts in risk analysis. Risk Analysis 19, 2 (1999), 187--203.
A. H. Farooqi and F. A. Khan. 2009. Intrusion detection systems for wireless sensor networks: A survey. Communication and Networking. Springer, Berlin, 234--241.
J. Nash. 1951. Non-cooperative games. Annals of Mathematics 54, 2 (1951), 286--295.
J. v Neumann. 1928. Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 1 (1928), 295--320.
B. Schneier. 2000. Secrets 8 Lies: Digital Security in a Networked World (1st ed.). John Wiley 8 Sons, Inc.
S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. 2010. A survey of game theory as applied to network security. In Proceedings of the 43rd Hawaii International Conference on System Sciences.
A. Fielder, E. Panaousis, P. Malacaria, C. Hankin, and F. Smeraldi. 2015. Comparing decision support approaches for cyber security investment. CoRR abs/1502.05532 (2015).
I. Butun, S. D. Morgera, and R. Sankar. 2014. A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys Tutorials 16, 1 (2014), 266--282.
S. Axelsson. 2000b. Intrusion Detection Systems: A Survey and Taxonomy. Technical Report 99-15, Department of Computer Engineering, Chalmers University of Technology, Sweden.
B. Liebald, D. Roth, N. Shah, and V. Srikumar. 2008. Proactive intrusion detection. In Proceedings of the 23rd National Conference on Artificial Intelligence.
MATLAB. 2010. Version 7.10.0 (R2010a). The MathWorks Inc.
FIRST 2015. Common Vulnerability Scoring System v3.0: Specification Document. FIRST.
K. Sallhammar, B. E. Helvik, and S. J. Knapskog. 2005. Incorporating attacker behavior in stochastic models of security. In Proceedings of the 2005 International Conference on Security and Management.
Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri. 2014. A fictitious play-based response strategy for multistage intrusion defense systems. Security and Communication Networks 7, 3 (2014), 473--491. 10.1002/sec.730
Y. Chen and R. Sion. 2011. To cloud or not to cloud?: Musings on costs and viability. In Proceedings of the 2nd ACM Symposium on Cloud Computing. 10.1145/2038916.2038945
A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne. 2015. Evaluating computer intrusion detection systems: A survey of common practices. ACM Computing Surveys 48, 1 (2015). 10.1145/2808691
J. Filar and K. Vrieze. 1996. Competitive Markov Decision Processes. Springer-Verlag, New York.
R. D. McKelvey and T. R. Palfrey. 1995. Quantal response equilibria for normal form games. Games and Economic Behavior 10, 1 (1995), 6--38.
H. Moosavi and F. M. Bui. 2014b. A game-theoretic framework for robust optimal intrusion detection in wireless sensor networks. IEEE Transactions on Information Forensics and Security 9, 9 (2014), 1367--1379. 10.1109/TIFS.2014.2332816
T. Alpcan and T. Basar. 2010. Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press.
R. L. Winkler. 1981. Combining probability distributions from dependent information sources. Management Science 27, 4 (1981), 479--488. 10.1287/mnsc.27.4.479
M. Willem. 1996. Minimax Theorems. Birkhäuser.
N. Bao and J. Musacchio. 2009. Optimizing the decision to expel attackers from an information system. In Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing.
C. A. Catania and C. G. Garino. 2012. Automatic network intrusion detection: Current techniques and open issues. Computers and Electrical Engineering 38, 5 (2012), 1062--1072. 10.1016/j.compeleceng.2012.05.013
R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman. 2000. Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In Proceedings of the DARPA Information Survivability Conference and Exposition.
S. Shen, G. Yue, Q. Cao, and F. Yu. 2011. A survey of game theory in wireless sensor networks security. Journal of Networks 6, 3 (2011).
Q. Zhu and T. Basar. 2009. Dynamic policy-based IDS configuration. In Proceedings of the 48th IEEE Conference on Decision and Control.
A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj. 2014. Taxonomy of intrusion risk assessment and response system. Computers and Security 45 (2014), 1--16. 10.1016/j.cose.2014.04.009
F. M. Delle Fave, A. X. Jiang, Z. Yin, C. M. Zhang, M. Tambe, S. Kraus, and J. P. Sullivan. 2014. Game-theoretic security patrolling with dynamic execution uncertainty and a case study on a real transit system. Journal of Artificial Intelligence Research 50 (2014), 321--367.
H. Otrok, M. Mehrandish, C. Assi, M. Debbabi, and P. Bhattacharya. 2008a. Game theoretic models for detecting network intrusions. Computer Communications 31, 10 (2008), 1934--1944. 10.1016/j.comcom.2007.12.028
R. J. Aumann. 1997. Rationality and Bounded Rationality. Springer, Berlin, 219--231.
A. Agah, S. K. Das, K. Basu, and M. Asadi. 2004. Intrusion detection in sensor networks: A non-cooperative game approach. In Proceedings of the 3rd IEEE International Symposium on Network Computing and Applications.
M. Ghorbani and M. R. Hashemi. 2015. Networked IDS configuration in heterogeneous networks—A game theory approach. In Proceedings of the 23rd Iranian Conference on Electrical Engineering.
Y. W. Law, T. Alpcan, and M. Palaniswami. 2015. Security games for risk minimization in automatic generation control. IEEE Transactions on Power Systems 30, 1 (2015), 223--232.
A. Rubinstein. 1991. Comments on the interpretation of game theory. Econometrica 59, 4 (1991), 909--924.
L. Chen and J. Leneutre. 2009. A game theoretical framework on intrusion detection in heterogeneous networks. IEEE Transactions on Information Forensics and Security 4, 2 (2009), 165--178. 10.1109/TIFS.2009.2019154
C. Kolias, G. Kambourakis, and M. Maragoudakis. 2011. Swarm intelligence in intrusion detection: A survey. Computers and Security 30, 8 (2011), 625--642. 10.1016/j.cose.2011.08.009
J. McHugh. 2000. Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln laboratory. ACM Transactions on Information and System Security 3, 4 (2000), 262--294. 10.1145/382912.382923
T. Alpcan and T. Basar. 2003. A game theoretic approach to decision and analysis in network intrusion detection. In Proceedings of the 42nd IEEE Conference on Decision and Control.
Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri. 2009. A game theory based risk and impact analysis method for intrusion defense systems. In Proceedings of the International Conference on Computer Systems and Applications.
D. E. Denning. 1987. An intrusion-detection model. IEEE Transactions on Software Engineering 13, 2 (1987), 222--232. 10.1109/TSE.1987.232894
R. Bellman. 1957. A Markovian decision process. Journal
ETSI (e_1_2_1_25_1)
Alpcan T. (e_1_2_1_3_1)
e_1_2_1_60_1
Zhu Q. (e_1_2_1_88_1)
Paramasivan B. (e_1_2_1_67_1) 2011; 5
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_87_1
e_1_2_1_68_1
e_1_2_1_89_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_83_1
e_1_2_1_22_1
e_1_2_1_64_1
e_1_2_1_85_1
e_1_2_1_28_1
e_1_2_1_26_1
e_1_2_1_47_1
Lippmann R. P. (e_1_2_1_49_1)
Alpcan T. (e_1_2_1_4_1)
Sallhammar K. (e_1_2_1_73_1)
Ghorbani M. (e_1_2_1_35_1)
Howard R. (e_1_2_1_37_1)
Spaan M. T. J. (e_1_2_1_80_1)
e_1_2_1_71_1
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_12_1
e_1_2_1_10_1
e_1_2_1_52_1
e_1_2_1_75_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_18_1
Miura-Ko R. A. (e_1_2_1_58_1)
Zhu Q. (e_1_2_1_86_1)
Fudenberg D. (e_1_2_1_33_1)
e_1_2_1_82_1
Aumann R. J. (e_1_2_1_9_1)
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_84_1
Alexander C. (e_1_2_1_2_1)
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_63_1
e_1_2_1_27_1
Kodialam M. (e_1_2_1_43_1)
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
Sonnenreich W. (e_1_2_1_79_1) 2006; 38
Ismail Z. (e_1_2_1_40_1)
e_1_2_1_70_1
Shen D. (e_1_2_1_76_1); 6571
Altman E. (e_1_2_1_6_1)
Bellman R. (e_1_2_1_13_1) 1957; 6
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_34_1
Luo Y. (e_1_2_1_50_1)
e_1_2_1_51_1
e_1_2_1_72_1
e_1_2_1_1_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_38_1
Srinivasan V. (e_1_2_1_81_1)
e_1_2_1_15_1
e_1_2_1_36_1
Moosavi H. (e_1_2_1_59_1)
e_1_2_1_19_1
References_xml – reference: K. Lye and M. J. Wing. 2005. Game strategies in network security. International Journal of Information Security 4, 1 (2005), 71--86. 10.1007/s10207-004-0060-x
– reference: T. Alpcan and T. Basar. 2010. Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press.
– reference: A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj. 2014. Taxonomy of intrusion risk assessment and response system. Computers and Security 45 (2014), 1--16. 10.1016/j.cose.2014.04.009
– reference: ETSI 2015. Information Security Indicators (ISI); Indicators (INC); Part 1: A Full Set of Operational Indicators for Organizations to Use to Benchmark Their Security Posture. ETSI.
– reference: G. S. Fishman. 2001. Discrete-Event Simulation. Springer-Verlag.
– reference: E. Altman. 1999. Constrained Markov Decision Processes. CRC Press.
– reference: V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao. 2003. Cooperation in wireless ad hoc networks. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03).
– reference: D. Shen, G. Chen, J. B. Cruz, Jr., L. Haynes, M. Kruger, and E. Blasch. 2007. A Markov game theoretic data fusion approach for cyber situational awareness. In Proceedings of SPIE, Vol. 6571.
– reference: B. Schneier. 2000. Secrets 8 Lies: Digital Security in a Networked World (1st ed.). John Wiley 8 Sons, Inc.
– reference: S. Axelsson. 2000b. Intrusion Detection Systems: A Survey and Taxonomy. Technical Report 99-15, Department of Computer Engineering, Chalmers University of Technology, Sweden.
– reference: H. Moosavi and F. M. Bui. 2014a. A discounted stochastic game approach to intrusion detection in wireless ad hoc networks. In Proceedings of the 5th International Conference on Communications and Electronics.
– reference: J. Rosenhead, M. Elton, and S. K. Gupta. 1972. Robustness and optimality as criteria for strategic decisions. Operational Research Quarterly (1970--1977) 23, 4 (1972), 413--431.
– reference: M. J. Osborne and A. Rubinstein. 1994. A Course in Game Theory. MIT Press.
– reference: R. L. Winkler. 1981. Combining probability distributions from dependent information sources. Management Science 27, 4 (1981), 479--488. 10.1287/mnsc.27.4.479
– reference: J. Huang, I. Liao, Y. Chung, and K. Chen. 2013. Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining. Information Sciences 231 (2013), 32--44. 10.1016/j.ins.2011.03.014
– reference: R. A. Miura-Ko, B. Yolken, N. Bambos, and J. Mitchell. 2008. Security investment games of interdependent organizations. In Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing.
– reference: J. Nash. 1951. Non-cooperative games. Annals of Mathematics 54, 2 (1951), 286--295.
– reference: Q. Zhu, C. Fung, R. Boutaba, and T. Basar. 2009. A game-theoretical approach to incentive design in collaborative intrusion detection networks. In Proceedings of the International Conference on Game Theory for Networks (GameNets’09).
– reference: S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. 2010. A survey of game theory as applied to network security. In Proceedings of the 43rd Hawaii International Conference on System Sciences.
– reference: R. Howard. 1960. Dynamic Programming and Markov Processes. MIT Press.
– reference: R. T. Clemen and R. L. Winkler. 1999. Combining probability distributions from experts in risk analysis. Risk Analysis 19, 2 (1999), 187--203.
– reference: T. Alpcan and T. Basar. 2006. An intrusion detection game with limited observations. In Proceedings of the 12th International Symposium on Dynamic Games and Applications.
– reference: M. Willem. 1996. Minimax Theorems. Birkhäuser.
– reference: R. D. McKelvey and T. R. Palfrey. 1995. Quantal response equilibria for normal form games. Games and Economic Behavior 10, 1 (1995), 6--38.
– reference: R. Bellman. 1957. A Markovian decision process. Journal of Mathematics and Mechanics 6 (1957), 679--684.
– reference: J. deMeer and A. Rennoch. 2011. The ETSI TVRA Security-Measurement Methodology by Means of TTCN-3 Notation. ETSI.
– reference: F. M. Delle Fave, A. X. Jiang, Z. Yin, C. M. Zhang, M. Tambe, S. Kraus, and J. P. Sullivan. 2014. Game-theoretic security patrolling with dynamic execution uncertainty and a case study on a real transit system. Journal of Artificial Intelligence Research 50 (2014), 321--367.
– reference: Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar. 2016. Intrusion response systems: Foundations, design, and challenges. Journal of Network and Computer Applications 62 (2016), 53--74. 10.1016/j.jnca.2015.12.006
– reference: B. Liebald, D. Roth, N. Shah, and V. Srikumar. 2008. Proactive intrusion detection. In Proceedings of the 23rd National Conference on Artificial Intelligence.
– reference: Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri. 2009. A game theory based risk and impact analysis method for intrusion defense systems. In Proceedings of the International Conference on Computer Systems and Applications.
– reference: I. Butun, S. D. Morgera, and R. Sankar. 2014. A survey of intrusion detection systems in wireless sensor networks. IEEE Communications Surveys Tutorials 16, 1 (2014), 266--282.
– reference: R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman. 2000. Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In Proceedings of the DARPA Information Survivability Conference and Exposition.
– reference: M. Ghorbani and M. R. Hashemi. 2015. Networked IDS configuration in heterogeneous networks—A game theory approach. In Proceedings of the 23rd Iranian Conference on Electrical Engineering.
– reference: M. H. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J. P. Hubaux. 2013. Game theory meets network security and privacy. ACM Computing Surveys 45, 3 (2013). 10.1145/2480741.2480742
– reference: C. Kolias, G. Kambourakis, and M. Maragoudakis. 2011. Swarm intelligence in intrusion detection: A survey. Computers and Security 30, 8 (2011), 625--642. 10.1016/j.cose.2011.08.009
– reference: P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems and challenges. Computers and Security 28, 1--2 (2009), 18--28. 10.1016/j.cose.2008.08.003
– reference: T. Toth and C. Kruegel. 2002. Evaluating the impact of automated intrusion response mechanisms. In Proceedings of the 18th Annual Computer Security Applications Conference.
– reference: J. Filar and K. Vrieze. 1996. Competitive Markov Decision Processes. Springer-Verlag, New York.
– reference: M. Kodialam and T. V. Lakshman. 2003. Detecting network intrusions via sampling: A game theoretic approach. In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03).
– reference: Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri. 2014. A fictitious play-based response strategy for multistage intrusion defense systems. Security and Communication Networks 7, 3 (2014), 473--491. 10.1002/sec.730
– reference: N. Bao and J. Musacchio. 2009. Optimizing the decision to expel attackers from an information system. In Proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing.
– reference: D. P. Bertsekas. 2000. Dynamic Programming and Optimal Control (2nd ed.). Athena Scientific.
– reference: I. Kantzavelou and S. Katsikas. 2010. A game-based intrusion detection mechanism to confront internal attackers. Computers 8 Security 29, 8 (2010), 859--874. 10.1016/j.cose.2010.06.002
– reference: T. Alpcan and T. Basar. 2003. A game theoretic approach to decision and analysis in network intrusion detection. In Proceedings of the 42nd IEEE Conference on Decision and Control.
– reference: M. Jain, B. An, and M. Tambe. 2013. Security games applied to real-world: Research contributions and challenges. Moving Target Defense II.
– reference: Q. Zhu and T. Basar. 2009. Dynamic policy-based IDS configuration. In Proceedings of the 48th IEEE Conference on Decision and Control.
– reference: T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874. 10.1016/j.patrec.2005.10.010
– reference: A. Agah, S. K. Das, K. Basu, and M. Asadi. 2004. Intrusion detection in sensor networks: A non-cooperative game approach. In Proceedings of the 3rd IEEE International Symposium on Network Computing and Applications.
– reference: H. Debar, M. Dacier, and A. Wespi. 1999. Towards a taxonomy of intrusion-detection systems. Computer Networks 31, 9 (1999), 805--822.
– reference: M. Roesch. 1999. Snort—Lightweight intrusion detection for networks. In Proceedings of the 13th USENIX Conference on System Administration.
– reference: S. Shen, G. Yue, Q. Cao, and F. Yu. 2011. A survey of game theory in wireless sensor networks security. Journal of Networks 6, 3 (2011).
– reference: D. E. Denning. 1987. An intrusion-detection model. IEEE Transactions on Software Engineering 13, 2 (1987), 222--232. 10.1109/TSE.1987.232894
– reference: C. T. Do, N. H. Tran, C. Hong, C. A. Kamhoua, K. A. Kwiat, E. Blasch, S. Ren, N. Pissinou, and S. S. Iyengar. 2017. Game theory for cyber security and privacy. ACM Computing Surveys 50, 2 (2017). 10.1145/3057268
– reference: A. Lazarevic, V. Kumar, and J. Srivastava. 2005. Managing Cyber Threats: Issues, Approaches, and Challenges. Springer US, Chapter Intrusion Detection: A Survey, 19--78.
– reference: J. Pita, M. Jain, F. Ordóñez, C. Portway, M. Tambe, C. Western, P. Paruchuri, and S. Kraus. 2008. ARMOR security for Los Angeles International Airport. In Proceedings of the 23rd National Conference on Artificial Intelligence.
– reference: M. T. J. Spaan. 2012. Partially Observable Markov Decision Processes. Springer, Berlin, 387--414.
– reference: B. Paramasivan and K. Mohaideen Pitchai. 2011. Comprehensive survey on game theory based intrusion detection system for mobile adhoc networks. IJCA Special Issue on Network Security and Cryptography NSC, 5 (2011), 23--29.
– reference: R. J. Aumann. 1997. Rationality and Bounded Rationality. Springer, Berlin, 219--231.
– reference: K. Sallhammar, B. E. Helvik, and S. J. Knapskog. 2005. Incorporating attacker behavior in stochastic models of security. In Proceedings of the 2005 International Conference on Security and Management.
– reference: A. Rubinstein. 1991. Comments on the interpretation of game theory. Econometrica 59, 4 (1991), 909--924.
– reference: H. Otrok, N. Mohammed, L. Wang, M. Debbabi, and P. Bhattacharya. 2008b. A Game-theoretic intrusion detection model for mobile ad hoc networks. Computer Communications 31, 4 (2008), 708--721. 10.1016/j.comcom.2007.10.024
– reference: R. Aumann and A. Brandenburger. 1995. Epistemic conditions for Nash equilibrium. Econometrica 63, 5 (1995), 1161--1180.
– reference: C. A. Catania and C. G. Garino. 2012. Automatic network intrusion detection: Current techniques and open issues. Computers and Electrical Engineering 38, 5 (2012), 1062--1072. 10.1016/j.compeleceng.2012.05.013
– reference: J. McHugh. 2000. Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln laboratory. ACM Transactions on Information and System Security 3, 4 (2000), 262--294. 10.1145/382912.382923
– reference: A. H. Farooqi and F. A. Khan. 2009. Intrusion detection systems for wireless sensor networks: A survey. Communication and Networking. Springer, Berlin, 234--241.
– reference: L. Chen and J. Leneutre. 2009. A game theoretical framework on intrusion detection in heterogeneous networks. IEEE Transactions on Information Forensics and Security 4, 2 (2009), 165--178. 10.1109/TIFS.2009.2019154
– reference: Z. Ismail, C. Kiennert, J. Leneutre, and L. Chen. 2017. A game theoretical model for optimal distribution of network security resources. In Proceedings of the 8th Conference on Decision and Game Theory for Security (GameSec’17).
– reference: Y. W. Law, T. Alpcan, and M. Palaniswami. 2015. Security games for risk minimization in automatic generation control. IEEE Transactions on Power Systems 30, 1 (2015), 223--232.
– reference: D. Fudenberg. 1998. The Theory of Learning in Games. MIT Press.
– reference: A. L. Buczak and E. Guven. 2016. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications Surveys Tutorials 18, 2 (2016), 1153--1176.
– reference: Y. Chen and R. Sion. 2011. To cloud or not to cloud?: Musings on costs and viability. In Proceedings of the 2nd ACM Symposium on Cloud Computing. 10.1145/2038916.2038945
– reference: B. An, E. Shieh, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, and G. Meyer. 2012. PROTECT—A deployed game-theoretic system for strategic security allocation for the United States Coast Guard. AI Magazine 33 (2012), 96--110.
– reference: A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne. 2015. Evaluating computer intrusion detection systems: A survey of common practices. ACM Computing Surveys 48, 1 (2015). 10.1145/2808691
– reference: S. Shen, R. Han, L. Guo, W. Li, and Q. Cao. 2012. Survivability evaluation towards attacked WSNs based on stochastic game and continuous-time Markov chain. Applied Soft Computing 12, 5 (2012), 1467--1476. 10.1016/j.asoc.2012.01.009
– reference: K. C. Nguyen, T. Alpcan, and T. Basar. 2009. Stochastic games for security in networks with interdependent nodes. In Proceedings of the International Conference on Game Theory for Networks (GameNets’09).
– reference: Q. Zhu, H. Tembine, and T. Basar. 2010. Network security configurations: A nonzero-sum stochastic game approach. In Proceedings of the 2010 American Control Conference.
– reference: S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley. 2014. RRE: A game-theoretic intrusion response and recovery engine. IEEE Transactions on Parallel and Distributed Systems 25, 2 (2014), 395--406. 10.1109/TPDS.2013.211
– reference: J. v Neumann. 1928. Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 1 (1928), 295--320.
– reference: N. Stakhanova, S. Basu, and J. Wong. 2007. A taxonomy of intrusion response systems. International Journal of Information and Computer Security 1, 1/2 (2007), 169--184. 10.1504/IJICS.2007.012248
– reference: S. Axelsson. 2000a. The base-rate fallacy and the difficulty of intrusion detection. ACM Transactions on Information and System Security 3, 3 (2000), 186--205. 10.1145/357830.357849
– reference: MATLAB. 2010. Version 7.10.0 (R2010a). The MathWorks Inc.
– reference: A. Fielder, E. Panaousis, P. Malacaria, C. Hankin, and F. Smeraldi. 2015. Comparing decision support approaches for cyber security investment. CoRR abs/1502.05532 (2015).
– reference: H. Otrok, M. Mehrandish, C. Assi, M. Debbabi, and P. Bhattacharya. 2008a. Game theoretic models for detecting network intrusions. Computer Communications 31, 10 (2008), 1934--1944. 10.1016/j.comcom.2007.12.028
– reference: G. Gonzalez Granadillo, H. Debar, G. Jacob, C. Gaber, and M. Achemlal. 2012. Individual countermeasure selection based on the return on response investment index. Computer Network Security. Springer, Berlin, 156--170. 10.1007/978-3-642-33704-8_14
– reference: X. Liang and Y. Xiao. 2013. Game theory for network security. IEEE Communications Surveys Tutorials 15, 1 (2013), 472--486.
– reference: C. Alexander. 2009. Market Risk Analysis: Value-at-Risk Models. Vol. 4. Wiley.
– reference: FIRST 2015. Common Vulnerability Scoring System v3.0: Specification Document. FIRST.
– reference: W. Sonnenreich, J. Albanese, and B. Stout. 2006. Return on security investment (ROSI): A practical quantitative model. Journal of Research and Practice in Information Technology 38, 1 (2006), 45--56.
– reference: H. Moosavi and F. M. Bui. 2014b. A game-theoretic framework for robust optimal intrusion detection in wireless sensor networks. IEEE Transactions on Information Forensics and Security 9, 9 (2014), 1367--1379. 10.1109/TIFS.2014.2332816
– ident: e_1_2_1_47_1
  doi: 10.1109/SURV.2012.062612.00056
– volume: 6571
  volume-title: Proceedings of SPIE
  ident: e_1_2_1_76_1
– volume-title: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03)
  ident: e_1_2_1_43_1
– ident: e_1_2_1_65_1
  doi: 10.1016/j.comcom.2007.12.028
– volume-title: Proceedings of the 12th International Symposium on Dynamic Games and Applications.
  ident: e_1_2_1_4_1
– volume-title: The Theory of Learning in Games
  ident: e_1_2_1_33_1
– ident: e_1_2_1_56_1
  doi: 10.1006/game.1995.1023
– ident: e_1_2_1_39_1
  doi: 10.1016/j.jnca.2015.12.006
– ident: e_1_2_1_85_1
  doi: 10.1287/mnsc.27.4.479
– ident: e_1_2_1_72_1
  doi: 10.2307/2938166
– volume-title: Proceedings of the 2010 American Control Conference.
  ident: e_1_2_1_88_1
– ident: e_1_2_1_17_1
  doi: 10.1016/j.compeleceng.2012.05.013
– ident: e_1_2_1_70_1
  doi: 10.2307/3007957
– ident: e_1_2_1_42_1
  doi: 10.1016/j.cose.2010.06.002
– ident: e_1_2_1_75_1
  doi: 10.1016/j.cose.2014.04.009
– ident: e_1_2_1_48_1
  doi: 10.5555/1620163.1620192
– ident: e_1_2_1_7_1
  doi: 10.1609/aimag.v33i4.2401
– volume-title: Information Security Indicators (ISI)
  ident: e_1_2_1_25_1
– volume-title: Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing.
  ident: e_1_2_1_58_1
– ident: e_1_2_1_63_1
  doi: 10.5555/1689499.1689587
– ident: e_1_2_1_62_1
  doi: 10.1007/BF01448847
– ident: e_1_2_1_8_1
  doi: 10.2307/2171725
– ident: e_1_2_1_27_1
  doi: 10.5555/2693068.2693077
– volume-title: Proceedings of the 23rd Iranian Conference on Electrical Engineering.
  ident: e_1_2_1_35_1
– ident: e_1_2_1_51_1
  doi: 10.1002/sec.730
– volume-title: Partially Observable Markov Decision Processes
  ident: e_1_2_1_80_1
– volume-title: Proceedings of the 42nd IEEE Conference on Decision and Control.
  ident: e_1_2_1_3_1
– ident: e_1_2_1_64_1
– ident: e_1_2_1_34_1
  doi: 10.1016/j.cose.2008.08.003
– ident: e_1_2_1_68_1
  doi: 10.5555/1620270.1620401
– ident: e_1_2_1_15_1
  doi: 10.1109/COMST.2015.2494502
– ident: e_1_2_1_71_1
  doi: 10.5555/1748111.1748149
– ident: e_1_2_1_83_1
  doi: 10.5555/784592.784788
– ident: e_1_2_1_52_1
  doi: 10.1007/s10207-004-0060-x
– ident: e_1_2_1_14_1
  doi: 10.5555/517430
– ident: e_1_2_1_38_1
  doi: 10.1016/j.ins.2011.03.014
– ident: e_1_2_1_26_1
  doi: 10.1007/978-3-642-10844-0_29
– volume-title: Dynamic Programming and Markov Processes
  ident: e_1_2_1_37_1
– volume-title: Proceedings of the 2005 International Conference on Security and Management.
  ident: e_1_2_1_73_1
– ident: e_1_2_1_16_1
  doi: 10.1109/SURV.2013.050113.00191
– ident: e_1_2_1_28_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_1_69_1
  doi: 10.5555/1039834.1039864
– volume-title: Proceedings of the 5th International Conference on Communications and Electronics.
  ident: e_1_2_1_59_1
– volume: 6
  start-page: 679
  year: 1957
  ident: e_1_2_1_13_1
  article-title: A Markovian decision process
  publication-title: Journal of Mathematics and Mechanics
– ident: e_1_2_1_30_1
  doi: 10.5555/248676
– ident: e_1_2_1_87_1
  doi: 10.5555/1689499.1689548
– ident: e_1_2_1_10_1
  doi: 10.1145/357830.357849
– volume-title: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications (INFOCOM’03)
  ident: e_1_2_1_81_1
– ident: e_1_2_1_29_1
– ident: e_1_2_1_78_1
  doi: 10.4304/jnw.6.3.521-532
– volume: 5
  start-page: 23
  year: 2011
  ident: e_1_2_1_67_1
  article-title: Comprehensive survey on game theory based intrusion detection system for mobile adhoc networks
  publication-title: IJCA Special Issue on Network Security and Cryptography NSC
– ident: e_1_2_1_54_1
– ident: e_1_2_1_31_1
– ident: e_1_2_1_12_1
  doi: 10.5555/1793974.1794083
– ident: e_1_2_1_1_1
  doi: 10.5555/1025126.1025973
– ident: e_1_2_1_61_1
  doi: 10.2307/1969529
– ident: e_1_2_1_89_1
  doi: 10.1109/TPDS.2013.211
– ident: e_1_2_1_18_1
  doi: 10.1109/TIFS.2009.2019154
– volume-title: Market Risk Analysis: Value-at-Risk Models
  ident: e_1_2_1_2_1
– ident: e_1_2_1_55_1
  doi: 10.1145/382912.382923
– ident: e_1_2_1_19_1
  doi: 10.1145/2038916.2038945
– volume-title: Rationality and Bounded Rationality
  ident: e_1_2_1_9_1
– ident: e_1_2_1_23_1
  doi: 10.1109/TSE.1987.232894
– ident: e_1_2_1_60_1
  doi: 10.1109/TIFS.2014.2332816
– volume-title: Constrained Markov Decision Processes
  ident: e_1_2_1_6_1
– ident: e_1_2_1_66_1
  doi: 10.1016/j.comcom.2007.10.024
– ident: e_1_2_1_41_1
  doi: 10.1007/978-1-4614-5416-8_2
– ident: e_1_2_1_22_1
– ident: e_1_2_1_5_1
  doi: 10.5555/1951874
– ident: e_1_2_1_45_1
  doi: 10.1109/TPWRS.2014.2326403
– ident: e_1_2_1_21_1
  doi: 10.5555/324119.324126
– ident: e_1_2_1_36_1
  doi: 10.1007/978-3-642-33704-8_14
– ident: e_1_2_1_44_1
  doi: 10.1016/j.cose.2011.08.009
– ident: e_1_2_1_77_1
  doi: 10.1016/j.asoc.2012.01.009
– ident: e_1_2_1_46_1
  doi: 10.5555/1076314
– ident: e_1_2_1_57_1
  doi: 10.1145/2808691
– ident: e_1_2_1_24_1
  doi: 10.1145/3057268
– volume-title: Proceedings of the International Conference on Computer Systems and Applications.
  ident: e_1_2_1_50_1
– volume-title: Proceedings of the 48th IEEE Conference on Decision and Control.
  ident: e_1_2_1_86_1
– ident: e_1_2_1_32_1
  doi: 10.5555/501093
– ident: e_1_2_1_82_1
  doi: 10.1504/IJICS.2007.012248
– volume-title: Proceedings of the DARPA Information Survivability Conference and Exposition.
  ident: e_1_2_1_49_1
– volume: 38
  start-page: 45
  year: 2006
  ident: e_1_2_1_79_1
  article-title: Return on security investment (ROSI): A practical quantitative model
  publication-title: Journal of Research and Practice in Information Technology
– volume-title: Proceedings of the 8th Conference on Decision and Game Theory for Security (GameSec’17)
  ident: e_1_2_1_40_1
– ident: e_1_2_1_74_1
  doi: 10.5555/517959
– ident: e_1_2_1_84_1
  doi: 10.1007/978-1-4612-4146-1
– ident: e_1_2_1_53_1
  doi: 10.1145/2480741.2480742
– ident: e_1_2_1_20_1
  doi: 10.1111/j.1539-6924.1999.tb00399.x
SSID ssj0002416
Score 2.4611175
Snippet Intrusion Detection Systems (IDS) are key components for securing critical infrastructures, capable of detecting malicious activities on networks or hosts....
SourceID hal
proquest
crossref
acm
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Communications traffic
Computer Science
Computing methodologies
Cryptography and Security
Cybersecurity
Decision analysis
Decision making
Decision theory
Game theory
Intrusion detection systems
Intrusion/anomaly detection and malware mitigation
Machine learning
Machine learning approaches
Machine learning theory
Markov decision processes
Markov processes
Optimization
Optimization techniques
Security and privacy
Stochastic games
Theory and algorithms for application domains
Theory of computation
SubjectTermsDisplay Computing methodologies -- Machine learning -- Machine learning approaches -- Stochastic games
Security and privacy -- Intrusion/anomaly detection and malware mitigation -- Intrusion detection systems
Theory of computation -- Theory and algorithms for application domains -- Machine learning theory -- Markov decision processes
Title A Survey on Game-Theoretic Approaches for Intrusion Detection and Response Optimization
URI https://dl.acm.org/doi/10.1145/3232848
https://www.proquest.com/docview/2175284565
https://hal.science/hal-02009646
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9sKFQgGxbUEWQlyQIYnjPI7RqtWqtMBhgYpLZHtnRSV2W7VpD_x6ZmznsVskHpdo5c1Dyfd5PB7PfGbsVZLmNoNMCWtKEKmeL4TOCBCLkC_Q_ikXGjj9kE0_p8dn6qxfLnDVJY15a3_-tq7kf1DFNsSVqmT_AdnuptiAvxFfPCLCePwrjCvs91e32KtJGkMvQczaskTyLl2tFDi9BQr8Xd1QYAwNTANhe3BXmuhSZOHNRzQdy1CTOXRYq8mpSzu_cenR1-5x_fqPyxbzRT-9SkHPtqX2EeZv53reecxgfE73lHIt29YTEtZsfDz8GAJjQzAiJnFrkQzjkzKLBNoNv9QCwaaqXOTS61u1RjeozJ4Pl7WdBY0HQ7EfH-4a-ZT0MCT6goVX6VyX0d4Y3rqkQ1-Crepw4RbbTnL0t0Zsu3r_ZfKpG7_Rpwkr3P5VfKk1XfouXEqejF2ueTJb3ymPdmM4dz7K7CF7ECYXvPJMecTuwWqX7bQbd_Bgxx-zrxX3xOEXK75OHN4ThyNxeEcc3hGHI3F4Sxw-JM4TNjs6nE2mIuywITROFRsRm1jKrMylVlaXOcRQ5LbQGozRUsWL1AIa-Ry0tjHM00KaXOvEJrosF5G28ikbrS5W8Ixxkt6LUiipuDk1kSp0UhibYH8HCTZTY7aLn6y-9BIqLQZj9rr9hLUNmvS0NcqPegOsMePdie097pzyEjHo_iXZ9Gl1UlNbREuAWZrdxmN20EJUh458XeOsXOEdcGqz9-fH7LP7PfEP2AhBgOfolzbmRSDSL48qjPc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Game-Theoretic+Approaches+for+Intrusion+Detection+and+Response+Optimization&rft.jtitle=ACM+computing+surveys&rft.au=Kiennert%2C+Christophe&rft.au=Ismail%2C+Ziad&rft.au=Debar%2C+Herve&rft.au=Leneutre%2C+Jean&rft.date=2018-08-22&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=51&rft.issue=5&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1145%2F3232848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3232848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon