A Synchronization-Avoiding Distance-1 Grundy Coloring Algorithm for Power-Law Graphs

In this paper, we propose a distributed, unordered, label-correcting distance-1 Grundy (vertex) coloring algorithm, namely, Distributed Control (DC) coloring algorithm. Our algorithm eliminates the need for vertex-centric barriers and global synchronization for color refinement, relying only on atom...

Full description

Saved in:
Bibliographic Details
Published inProceedings / International Conference on Parallel Architectures and Compilation Techniques pp. 421 - 432
Main Authors Firoz, Jesun Sahariar, Zalewski, Marcin, Lumsdaine, Andrew
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2019
Subjects
Online AccessGet full text
ISSN2641-7936
DOI10.1109/PACT.2019.00040

Cover

More Information
Summary:In this paper, we propose a distributed, unordered, label-correcting distance-1 Grundy (vertex) coloring algorithm, namely, Distributed Control (DC) coloring algorithm. Our algorithm eliminates the need for vertex-centric barriers and global synchronization for color refinement, relying only on atomic operations and local termination detection to update vertex color. DC proceeds optimistically, correcting the colors asynchronously as the algorithm progresses and depends on local ordering of tasks to minimize the execution of sub-optimal work. We implement our DC coloring algorithm and the well-known Jones-Plassmann algorithm and compare their performance with 4 different types of standard RMAT graphs and real-world graphs. We show that the elimination of waiting time of global and vertex-centric barriers and investing this time for local ordering leads to improved scaling for graphs with prominent power-law characteristics and densely interconnected local subgraphs.
ISSN:2641-7936
DOI:10.1109/PACT.2019.00040