Instantaneous phase inversion based on an unwrapping algorithm
The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data. However, this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate in...
Saved in:
| Published in | Applied geophysics Vol. 17; no. 1; pp. 124 - 132 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Beijing
Chinese Geophysical Society
01.03.2020
Springer Nature B.V Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China%Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%College of Science, China University of Petroleum (East China), Qingdao 266580, China |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1672-7975 1993-0658 |
| DOI | 10.1007/s11770-019-0794-x |
Cover
| Abstract | The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data. However, this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate initial velocity or the lack of low-frequency information. furthermore, the object scale of inversion is affected by the observation system and wavelet bandwidth, the inversion for large-scale structures is a strongly nonlinear problem that is considerably difficult to solve. In this study, we modify the unwrapping algorithm to obtain accurate unwrapped instantaneous phase, then using this phase conducts the inversion for reducing the strong nonlinearity. The normal instantaneous phases are measured as modulo 2π, leading the loss of true phase information. The path integral algorithm can be used to unwrap the instantaneous phase of the seismograms having time series and one-dimensional (1D) signal characteristics. However, the unwrapped phase is easily affected by the numerical simulation and phase calculations, resulting in the low resolution of inversion parameters. To increase the noise resistance and ensure the inversion accuracy, we present an improved unwrapping method by adding an envelope into the path integral unwrapping algorithm for restricting the phase mutation points, getting accurate instantaneous phase. The objective function constructed by unwrapping instantaneous phase is less affected by the local minimum, thereby making it suitable for full-waveform inversion. Further, the corresponding instantaneous phase inversion formulas are provided. Using the improved algorithm, we can invert the low-wavenumber components of the underneath structure and ensure the accuracy of the inverted velocity. Finally, the numerical tests of the 2D Marmousi model and 3D SEG/EAGE salt model prove the accuracy of the proposed algorithm and the ability to restore large-scale low-wavenumber structures, respectively. |
|---|---|
| AbstractList | The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data. However, this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate initial velocity or the lack of low-frequency information. furthermore, the object scale of inversion is affected by the observation system and wavelet bandwidth, the inversion for large-scale structures is a strongly nonlinear problem that is considerably difcult to solve. In this study, we modify the unwrapping algorithm to obtain accurate unwrapped instantaneous phase, then using this phase conducts the inversion for reducing the strong nonlinearity. The normal instantaneous phases are measured as modulo 2π, leading the loss of true phase information. The path integral algorithm can be used to unwrap the instantaneous phase of the seismograms having time series and one-dimensional (1D) signal characteristics. However, the unwrapped phase is easily affected by the numerical simulation and phase calculations, resulting in the low resolution of inversion parameters. To increase the noise resistance and ensure the inversion accuracy, we present an improved unwrapping method by adding an envelope into the path integral unwrapping algorithm for restricting the phase mutation points, getting accurate instantaneous phase. The objective function constructed by unwrapping instantaneous phase is less affected by the local minimum, thereby making it suitable for full-waveform inversion. Further, the corresponding instantaneous phase inversion formulas are provided. Using the improved algorithm, we can invert the low-wavenumber components of the underneath structure and ensure the accuracy of the inverted velocity. Finally, the numerical tests of the 2D Marmousi model and 3D SEG/EAGE salt model prove the accuracy of the proposed algorithm and the ability to restore large-scale low-wavenumber structures, respectively. The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the observed data. However, this method suffers from cycle skipping in the time domain or phase wrapping in the frequency because of the inaccurate initial velocity or the lack of low-frequency information. furthermore, the object scale of inversion is affected by the observation system and wavelet bandwidth, the inversion for large-scale structures is a strongly nonlinear problem that is considerably difficult to solve. In this study, we modify the unwrapping algorithm to obtain accurate unwrapped instantaneous phase, then using this phase conducts the inversion for reducing the strong nonlinearity. The normal instantaneous phases are measured as modulo 2π, leading the loss of true phase information. The path integral algorithm can be used to unwrap the instantaneous phase of the seismograms having time series and one-dimensional (1D) signal characteristics. However, the unwrapped phase is easily affected by the numerical simulation and phase calculations, resulting in the low resolution of inversion parameters. To increase the noise resistance and ensure the inversion accuracy, we present an improved unwrapping method by adding an envelope into the path integral unwrapping algorithm for restricting the phase mutation points, getting accurate instantaneous phase. The objective function constructed by unwrapping instantaneous phase is less affected by the local minimum, thereby making it suitable for full-waveform inversion. Further, the corresponding instantaneous phase inversion formulas are provided. Using the improved algorithm, we can invert the low-wavenumber components of the underneath structure and ensure the accuracy of the inverted velocity. Finally, the numerical tests of the 2D Marmousi model and 3D SEG/EAGE salt model prove the accuracy of the proposed algorithm and the ability to restore large-scale low-wavenumber structures, respectively. |
| Author | Jiang, Ping Li, Zhen-Chun Zhang, Kai Ding, Ren-Wei Lin, Yu-Zhao |
| AuthorAffiliation | Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China;Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China%Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%College of Science, China University of Petroleum (East China), Qingdao 266580, China |
| AuthorAffiliation_xml | – name: Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China;Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China%Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%College of Science, China University of Petroleum (East China), Qingdao 266580, China |
| Author_xml | – sequence: 1 givenname: Yu-Zhao surname: Lin fullname: Lin, Yu-Zhao organization: Department of Geoscience, China University of Petroleum (East China), Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University of Science and Technology – sequence: 2 givenname: Zhen-Chun surname: Li fullname: Li, Zhen-Chun organization: Department of Geoscience, China University of Petroleum (East China) – sequence: 3 givenname: Kai surname: Zhang fullname: Zhang, Kai email: zhksam@163.cn organization: Department of Geoscience, China University of Petroleum (East China) – sequence: 4 givenname: Ren-Wei surname: Ding fullname: Ding, Ren-Wei organization: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University of Science and Technology – sequence: 5 givenname: Ping surname: Jiang fullname: Jiang, Ping organization: College of Science, China University of Petroleum (East China) |
| BookMark | eNp9kF1LwzAUhoMouE1_gHcFL7yKnny0aW4EGX4MBt7odUjbtOvo0i5p3fbvzagwEBQCOSc8T3LyTtG5ba1B6IbAPQEQD54QIQADkRiE5Hh_hiZESoYhidPzUCeCYiFFfImm3q8BEkYTPkGPC-t7bcMy7eCjbqW9iWr7ZZyvWxtloS2iUGgbDXbndNfVtop0U7Wu7lebK3RR6sab6599hj5fnj_mb3j5_rqYPy2xZkB6LMrUSMozBiJOC50C8DjPhBE6F1nBc1NQbXJGU250EY5jKGXBEgM5TRkYyWbobrx3p22pbaXW7eBseFEdDsV211CgAAQICeTtSHau3Q7G9yeUck5kkgqeBEqMVO5a750pVV73ug9f7p2uG0VAHWNVY6wqxKqOsap9MMkvs3P1RrvDvw4dHR9YWxl3mulv6Ruv0oz5 |
| CitedBy_id | crossref_primary_10_1109_TGRS_2022_3166028 |
| Cites_doi | 10.1364/JOSAA.15.000586 10.1190/1.1443081 10.1190/segam2015-5849854.1 10.1364/JOSAA.13.002355 10.1111/j.1365-246X.2006.02978.x 10.1190/geo2017-0353.1 10.1111/j.1365-246X.2011.04970.x 10.1190/1.1822588 10.1016/j.jappgeo.2014.07.010 10.1364/JOSAA.15.000407 10.1364/JOSAA.11.000107 10.1190/1.1443880 10.1190/1.1444598 10.3997/2214-4609.20130597 10.1109/36.499751 10.1109/36.499752 10.1111/j.1365-2478.2008.00698.x 10.1190/1.1443082 10.1190/geo2013-0004.1 10.1190/geo2016-0038.1 10.1190/1.1441754 10.1029/RS023i004p00713 10.1190/1.3238367 10.1109/TIP.2011.2138148 10.1190/1.3627727 10.1190/geo2014-0498.1 |
| ContentType | Journal Article |
| Copyright | The Editorial Department of APPLIED GEOPHYSICS. All rights reserved 2020 The Editorial Department of APPLIED GEOPHYSICS. All rights reserved 2020. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: The Editorial Department of APPLIED GEOPHYSICS. All rights reserved 2020 – notice: The Editorial Department of APPLIED GEOPHYSICS. All rights reserved 2020. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W H8D H96 KL. L.G L7M 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s11770-019-0794-x |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1993-0658 |
| EndPage | 132 |
| ExternalDocumentID | yydqwl202001011 10_1007_s11770_019_0794_x |
| GrantInformation_xml | – fundername: the National Science and Technology major projects of China; Shandong Key Research and Development Plan Project; China University of Petroleum (East China) Independent Innovation Research Project funderid: (2017ZX05032-003-002); (2018GHY115016); (18CX06023A) |
| GroupedDBID | -01 -0A -5A -5G -BR -EM -SA -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5VR 5VS 67M 6NX 88I 8FE 8FG 8FH 8TC 92E 92I 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ CAG CAJEA CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ K6- KOV LK5 LLZTM M2P M4Y M7R MA- MM- N9A NPVJJ NQJWS NU0 O9- O9J P2P P62 PCBAR PF0 PQQKQ PROAC PT4 Q-- Q-0 Q2X QOS R-A R89 R9I RNS ROL RPX RSV RT1 S.. S16 S1Z S27 S3B SAP SCL SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8Q TCJ TGP TSG TUC TUS U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z5O Z7Y ZMTXR ~02 ~A9 ~LI ~LJ AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7TG 7UA 8FD C1K F1W H8D H96 KL. L.G L7M 4A8 PMFND PSX |
| ID | FETCH-LOGICAL-a301t-7f8e924b30758da80045cb7e7ac7bd4ced2aec3284ead7e750f9d36e0c2830e93 |
| IEDL.DBID | U2A |
| ISSN | 1672-7975 |
| IngestDate | Thu May 29 03:56:19 EDT 2025 Thu Sep 18 00:02:05 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Wed Oct 01 04:48:45 EDT 2025 Fri Feb 21 02:28:51 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Instantaneous phase strongly nonlinear problem path integral algorithm envelope constraint |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a301t-7f8e924b30758da80045cb7e7ac7bd4ced2aec3284ead7e750f9d36e0c2830e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2441968746 |
| PQPubID | 54455 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_yydqwl202001011 proquest_journals_2441968746 crossref_citationtrail_10_1007_s11770_019_0794_x crossref_primary_10_1007_s11770_019_0794_x springer_journals_10_1007_s11770_019_0794_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Dordrecht |
| PublicationTitle | Applied geophysics |
| PublicationTitleAbbrev | Appl. Geophys |
| PublicationTitle_FL | Applied Geophysics |
| PublicationYear | 2020 |
| Publisher | Chinese Geophysical Society Springer Nature B.V Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China%Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%College of Science, China University of Petroleum (East China), Qingdao 266580, China |
| Publisher_xml | – name: Chinese Geophysical Society – name: Springer Nature B.V – name: Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China – name: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%Department of Geoscience, China University of Petroleum (East China), Qingdao 266580, China%Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minearl, Shandong University ofScience and Technology, Qingdao 266590, China%College of Science, China University of Petroleum (East China), Qingdao 266580, China |
| References | Lei, F., and Symes, W. W., 2017, A Robust Approach for Extended Waveform Inversion without Low-Frequency Data: 2017 SEG Workshop: Full-Waveform Inversion and Beyond, Expanded Abstracts, 38–42. FornaroGFranceschettiGLanariRSansotiERobust phase unwrapping techniques: a comparisonJournal of the Optical Society of America A199613122355236610.1364/JOSAA.13.002355 BozdagETrampertJTrompJMisfit functions for full waveform inversion based on instantaneous phase and envelope measurementsGeophysical Journal International2011185284587010.1111/j.1365-246X.2011.04970.x PrattR GShippR MSeismic waveform inversion in the frequency domain. Part 2: Fault delineation in sediments using crosshole dataGeophysics19996490291410.1190/1.1444598 VirieuxJOpertoSAn overview of full-waveform inversion in exploration geophysicsGeophysics2009746WCC1WCC2610.1190/1.3238367 BunksCSaleckFZaleskiSChaventGMultiscale seismic waveform inversionGeophysics19956051457147310.1190/1.1443880 CollaroAFranceschettiGPalmieriFFerreiroM SPhase unwrapping by means of genetic algorithmsJournal of the Optical Society of America A199715240741810.1364/JOSAA.15.000407 ChoiYAlkhalifahTUnwrapped phase inversion with an exponential dampingGeophysics2015805R251R26410.1190/geo2014-0498.1 PrittM DShipmanJ SLeast-squares two dimensional phase unwrapping using FFT’sIEEE Trans: Geosci. Remote Sens199432706708 SymesW WMigration velocity analysis and waveform inversionGeophysical Prospecting200856676579010.1111/j.1365-2478.2008.00698.x Al-Theyab, A., and Schuster, G., 2015, Reflection full-waveform inversion for inaccurate starting models: 2015 SEG Workshop: Depth Model Building, Expanded Abstracts,18–22. YuH WLiZ FBaoZResidues cluster-based segmentation and outlier-detection method for large-scale phase unwrappingIEEE Transactions on Image Processing201120102865287510.1109/TIP.2011.2138148 ChiBDongLLiuYFull waveform inversion method using envelope objective function without low frequency dataJournal of Applied Geophysics2014109364610.1016/j.jappgeo.2014.07.010 SymesW WCarazzoneJ JVelocity inversion by differential semblance optimizationGeophysics199156565466310.1190/1.1443082 TarantolaAInversion of seismic reflection data in the acoustic approximationGeophysics1984491259126610.1190/1.1441754 FuLGuoBSunYSchusterG TMultiscale phase inversion of seismic dataGeophysics2018832R159R7110.1190/geo2017-0353.1 Hu, W., 2014, FWI without low frequency data - beat tone inversion: 84th Annual International Meeting, SEG, Expanded Abstracts, 1116–1120. Sun, Y., and Schuster, G. T., 1993, Time-domain phase inversion: 63rd Annual International Meeting, SEG, Expanded Abstracts, 684–687. LuoYSchusterGWave-equation traveltime inversionGeophysics199156564565310.1190/1.1443081 PrittM DPhase unwrapping by means of multigrid techniques for interferometric SARIEEE Trans. Geosci. Remote Sens.19963472873810.1109/36.499752 MaYHaleDWave-equation reflection traveltime inversion with dynamic warping and full waveform inversionGeophysics2013786R223R23310.1190/geo2013-0004.1 GoldsteinR MZebkerH AWernerCSatellite radar interferometry: two-dimensional phase unwrappingRadio Sci19882371372010.1029/RS023i004p00713 LiY EDemanetLFull-waveform inversion with extrapolated low frequency dataGeophysics2016816R339R34810.1190/geo2016-0038.1 GhigliaD CRomeroL ARobust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methodsJ. Opt. Soc. Am. A19941110711710.1364/JOSAA.11.000107 ZebkerH ALuYPhase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithmsJournal of the Optical Society of America A1998151558659810.1364/JOSAA.15.000586 FornaroGFranceschettiGLanariRInterferometric SAR phase unwrapping using Green’s formulationIEEE Trans. Geosci. Remote Sens19963472072710.1109/36.499751 PlessixR EA review of the adjoint-state method for computing the gradient of a functional with geophysical applicationsGeophysical Journal International2006167249550310.1111/j.1365-246X.2006.02978.x Chi, B., Dong, L., and Liu, Y., 2013, Full waveform inversion based on envelope objective function: 75th EAGE Annual Meeting, Expanded Abstracts, 348–351. Choi, Y., and Alkhalifah, T., 2011, Frequency-domain waveform inversion using the unwrapped phase: 81st Annual International Meeting, SEG, Expanded Abstracts, 2576–2580. Y E Li (794_CR16) 2016; 81 D C Ghiglia (794_CR13) 1994; 11 H W Yu (794_CR28) 2011; 20 794_CR23 M D Pritt (794_CR20) 1996; 34 R M Goldstein (794_CR12) 1988; 23 A Tarantola (794_CR26) 1984; 49 Y Luo (794_CR15) 1991; 56 M D Pritt (794_CR19) 1994; 32 R E Plessix (794_CR22) 2006; 167 794_CR17 J Virieux (794_CR27) 2009; 74 L Fu (794_CR11) 2018; 83 G Fornaro (794_CR10) 1996; 13 Y Ma (794_CR18) 2013; 78 R G Pratt (794_CR21) 1999; 64 794_CR14 W W Symes (794_CR25) 2008; 56 A Collaro (794_CR8) 1997; 15 H A Zebker (794_CR29) 1998; 15 W W Symes (794_CR24) 1991; 56 G Fornaro (794_CR9) 1996; 34 794_CR1 794_CR6 C Bunks (794_CR2) 1995; 60 794_CR4 B Chi (794_CR5) 2014; 109 Y Choi (794_CR7) 2015; 80 E Bozdag (794_CR3) 2011; 185 |
| References_xml | – reference: PlessixR EA review of the adjoint-state method for computing the gradient of a functional with geophysical applicationsGeophysical Journal International2006167249550310.1111/j.1365-246X.2006.02978.x – reference: GhigliaD CRomeroL ARobust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methodsJ. Opt. Soc. Am. A19941110711710.1364/JOSAA.11.000107 – reference: BozdagETrampertJTrompJMisfit functions for full waveform inversion based on instantaneous phase and envelope measurementsGeophysical Journal International2011185284587010.1111/j.1365-246X.2011.04970.x – reference: YuH WLiZ FBaoZResidues cluster-based segmentation and outlier-detection method for large-scale phase unwrappingIEEE Transactions on Image Processing201120102865287510.1109/TIP.2011.2138148 – reference: ChoiYAlkhalifahTUnwrapped phase inversion with an exponential dampingGeophysics2015805R251R26410.1190/geo2014-0498.1 – reference: Sun, Y., and Schuster, G. T., 1993, Time-domain phase inversion: 63rd Annual International Meeting, SEG, Expanded Abstracts, 684–687. – reference: VirieuxJOpertoSAn overview of full-waveform inversion in exploration geophysicsGeophysics2009746WCC1WCC2610.1190/1.3238367 – reference: Chi, B., Dong, L., and Liu, Y., 2013, Full waveform inversion based on envelope objective function: 75th EAGE Annual Meeting, Expanded Abstracts, 348–351. – reference: TarantolaAInversion of seismic reflection data in the acoustic approximationGeophysics1984491259126610.1190/1.1441754 – reference: FornaroGFranceschettiGLanariRInterferometric SAR phase unwrapping using Green’s formulationIEEE Trans. Geosci. Remote Sens19963472072710.1109/36.499751 – reference: PrittM DPhase unwrapping by means of multigrid techniques for interferometric SARIEEE Trans. Geosci. Remote Sens.19963472873810.1109/36.499752 – reference: Choi, Y., and Alkhalifah, T., 2011, Frequency-domain waveform inversion using the unwrapped phase: 81st Annual International Meeting, SEG, Expanded Abstracts, 2576–2580. – reference: FuLGuoBSunYSchusterG TMultiscale phase inversion of seismic dataGeophysics2018832R159R7110.1190/geo2017-0353.1 – reference: BunksCSaleckFZaleskiSChaventGMultiscale seismic waveform inversionGeophysics19956051457147310.1190/1.1443880 – reference: ZebkerH ALuYPhase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithmsJournal of the Optical Society of America A1998151558659810.1364/JOSAA.15.000586 – reference: CollaroAFranceschettiGPalmieriFFerreiroM SPhase unwrapping by means of genetic algorithmsJournal of the Optical Society of America A199715240741810.1364/JOSAA.15.000407 – reference: PrittM DShipmanJ SLeast-squares two dimensional phase unwrapping using FFT’sIEEE Trans: Geosci. Remote Sens199432706708 – reference: FornaroGFranceschettiGLanariRSansotiERobust phase unwrapping techniques: a comparisonJournal of the Optical Society of America A199613122355236610.1364/JOSAA.13.002355 – reference: Al-Theyab, A., and Schuster, G., 2015, Reflection full-waveform inversion for inaccurate starting models: 2015 SEG Workshop: Depth Model Building, Expanded Abstracts,18–22. – reference: ChiBDongLLiuYFull waveform inversion method using envelope objective function without low frequency dataJournal of Applied Geophysics2014109364610.1016/j.jappgeo.2014.07.010 – reference: LiY EDemanetLFull-waveform inversion with extrapolated low frequency dataGeophysics2016816R339R34810.1190/geo2016-0038.1 – reference: LuoYSchusterGWave-equation traveltime inversionGeophysics199156564565310.1190/1.1443081 – reference: Hu, W., 2014, FWI without low frequency data - beat tone inversion: 84th Annual International Meeting, SEG, Expanded Abstracts, 1116–1120. – reference: SymesW WMigration velocity analysis and waveform inversionGeophysical Prospecting200856676579010.1111/j.1365-2478.2008.00698.x – reference: SymesW WCarazzoneJ JVelocity inversion by differential semblance optimizationGeophysics199156565466310.1190/1.1443082 – reference: GoldsteinR MZebkerH AWernerCSatellite radar interferometry: two-dimensional phase unwrappingRadio Sci19882371372010.1029/RS023i004p00713 – reference: PrattR GShippR MSeismic waveform inversion in the frequency domain. Part 2: Fault delineation in sediments using crosshole dataGeophysics19996490291410.1190/1.1444598 – reference: MaYHaleDWave-equation reflection traveltime inversion with dynamic warping and full waveform inversionGeophysics2013786R223R23310.1190/geo2013-0004.1 – reference: Lei, F., and Symes, W. W., 2017, A Robust Approach for Extended Waveform Inversion without Low-Frequency Data: 2017 SEG Workshop: Full-Waveform Inversion and Beyond, Expanded Abstracts, 38–42. – volume: 15 start-page: 586 issue: 15 year: 1998 ident: 794_CR29 publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.15.000586 – volume: 56 start-page: 645 issue: 5 year: 1991 ident: 794_CR15 publication-title: Geophysics doi: 10.1190/1.1443081 – ident: 794_CR1 doi: 10.1190/segam2015-5849854.1 – volume: 13 start-page: 2355 issue: 12 year: 1996 ident: 794_CR10 publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.13.002355 – volume: 167 start-page: 495 issue: 2 year: 2006 ident: 794_CR22 publication-title: Geophysical Journal International doi: 10.1111/j.1365-246X.2006.02978.x – volume: 83 start-page: R159 issue: 2 year: 2018 ident: 794_CR11 publication-title: Geophysics doi: 10.1190/geo2017-0353.1 – volume: 185 start-page: 845 issue: 2 year: 2011 ident: 794_CR3 publication-title: Geophysical Journal International doi: 10.1111/j.1365-246X.2011.04970.x – ident: 794_CR23 doi: 10.1190/1.1822588 – volume: 109 start-page: 36 year: 2014 ident: 794_CR5 publication-title: Journal of Applied Geophysics doi: 10.1016/j.jappgeo.2014.07.010 – volume: 15 start-page: 407 issue: 2 year: 1997 ident: 794_CR8 publication-title: Journal of the Optical Society of America A doi: 10.1364/JOSAA.15.000407 – volume: 11 start-page: 107 year: 1994 ident: 794_CR13 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.11.000107 – volume: 60 start-page: 1457 issue: 5 year: 1995 ident: 794_CR2 publication-title: Geophysics doi: 10.1190/1.1443880 – volume: 64 start-page: 902 year: 1999 ident: 794_CR21 publication-title: Geophysics doi: 10.1190/1.1444598 – ident: 794_CR4 doi: 10.3997/2214-4609.20130597 – ident: 794_CR14 – volume: 34 start-page: 720 year: 1996 ident: 794_CR9 publication-title: IEEE Trans. Geosci. Remote Sens doi: 10.1109/36.499751 – volume: 34 start-page: 728 year: 1996 ident: 794_CR20 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.499752 – volume: 56 start-page: 765 issue: 6 year: 2008 ident: 794_CR25 publication-title: Geophysical Prospecting doi: 10.1111/j.1365-2478.2008.00698.x – volume: 56 start-page: 654 issue: 5 year: 1991 ident: 794_CR24 publication-title: Geophysics doi: 10.1190/1.1443082 – volume: 78 start-page: R223 issue: 6 year: 2013 ident: 794_CR18 publication-title: Geophysics doi: 10.1190/geo2013-0004.1 – volume: 32 start-page: 706 year: 1994 ident: 794_CR19 publication-title: IEEE Trans: Geosci. Remote Sens – volume: 81 start-page: R339 issue: 6 year: 2016 ident: 794_CR16 publication-title: Geophysics doi: 10.1190/geo2016-0038.1 – ident: 794_CR17 – volume: 49 start-page: 1259 year: 1984 ident: 794_CR26 publication-title: Geophysics doi: 10.1190/1.1441754 – volume: 23 start-page: 713 year: 1988 ident: 794_CR12 publication-title: Radio Sci doi: 10.1029/RS023i004p00713 – volume: 74 start-page: WCC1 issue: 6 year: 2009 ident: 794_CR27 publication-title: Geophysics doi: 10.1190/1.3238367 – volume: 20 start-page: 2865 issue: 10 year: 2011 ident: 794_CR28 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2138148 – ident: 794_CR6 doi: 10.1190/1.3627727 – volume: 80 start-page: R251 issue: 5 year: 2015 ident: 794_CR7 publication-title: Geophysics doi: 10.1190/geo2014-0498.1 |
| SSID | ssj0063264 |
| Score | 2.1454594 |
| Snippet | The full-waveform inversion method is a high-precision inversion method based on the minimization of the misfit between the synthetic seismograms and the... |
| SourceID | wanfang proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124 |
| SubjectTerms | Accuracy Algorithms Computer simulation Earth and Environmental Science Earth Sciences Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Integrals Inversion Mathematical models Model accuracy Mutation Nonlinear systems Nonlinearity Numerical simulations Objective function Phase inversion Phase shift Seismic Inversion Seismograms Three dimensional models Two dimensional models Velocity Waveforms Wavelengths |
| Title | Instantaneous phase inversion based on an unwrapping algorithm |
| URI | https://link.springer.com/article/10.1007/s11770-019-0794-x https://www.proquest.com/docview/2441968746 https://d.wanfangdata.com.cn/periodical/yydqwl202001011 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1993-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: AFBBN dateStart: 20040701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1993-0658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1993-0658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063264 issn: 1672-7975 databaseCode: U2A dateStart: 20040701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXgRP3E6Rw6elED6lbYXYcjmVPTkYJ5KmqTbYHZz65z7731J21VBBkIOoU3e4eXj_ZKX93sIXYVSBhYTAeHMFUTHMpJQMEEcqnwRQ0k8HTv8_MJ6ffdx4A2KOO5F-dq9dEmanboKdrN8nSTFBN2ELgHgWPc0mxdM4r7dLrdfBnjEuJKZD9Ax9L3SlfmXiN_GqEKYG6eoCeVJE54Of1id7gHaL-Aibufje4h2VHqEds2zTbE4RrcPBt1BUXCCx7MR2CQ8Tj_zSzCsTZTEUOEpXqarOddkDEPMJ8PpfJyN3k9Qv9t5veuRIiMC4bAQM-IngYIDUwwL0wskDzQgA40qnws_lq5Q0uZKOGByYILAZ48moXSYokLzfKnQOUW1dJqqM4QptyWjjlJBwkCgHXLlxVCVji2olagGoqVqIlHQheusFZOoIjrW2oxAm5HWZvTVQNebLrOcK2Nb42ap76hYNosIsAbsCIHvsga6Kceg-r1FGC6GqWq8XsuP1cSmtqHRs87_JfAC7eme-WOzJqpl86W6BPSRxS1Ub9-_PXVaZtZ9A28T06g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kInrxLdbnHjwpkTSPTXIRRFqrrZ5aqKew2d20xZrWNrXqr3c2j0ZFhMIelmQzJDO7O99mXgBnnhBuhXJXY9Timopl1DxOuWbq0uEBttBWscMPj7Tetu47dieL457k3u65STLZqYtgt4qjiqQkQTeepSFwXLbwfGKUYPn69qlRzTdgiogkMSZTB8Gj59i5MfMvIj_VUYEx52bRJJgnClnU_aZ3ahvQyt84dTd5vpzGwSX__JXMccFP2oT1DIeS63TibMGSjLZhJfEH5ZMduLpLYCM2OZxOyKiHyo70o7f07xpRuk8Q7LCITKPZmKksD13CBt3huB_3XnahXau2bupaVmpBY7jCY80JXYknsQBXvO0K5iqkh6KSDuNOICwuhcEkN1GX4czDy7YeesKkUucqgZj0zD0oRcNI7gPRmSGobkrphhQJGh6TdoBdYRpcr4SyDHrOcZ9nechVOYyBX2RQVmzxkS2-Yov_Xobz-SOjNAnHf4OPcjH62Xqc-AhicKtxHYuW4SKXRXH7H2Ikk34x-ONDvM4Ghm4k-fkqBwsRPIXVeuuh6TfvHhuHsKaopB5tR1CKx1N5jBAnDk6yKf0FdtbyDQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SUbyIT6xWzcGTsjT7yu5ehKKW1kfxYKG3JZtk20JNa7u19t872UdXQQpCDmE3O4fJY77szHyD0FUghG9S7huMOtzQuYxGwCk3bCI9HkGLXZ07_NKhra7z2HN7eZ3TWRHtXrgks5wGzdKkkvpExPUy8c30dMGUNAEncAwAkZuO5kmABd21GsVRTAGbpG5l6gGMDDy3cGv-JeK3YSrR5spBmqb1qJip_g8L1NxDuzl0xI1srvfRhlQHaCsN4eSzQ3TbTpEeNAm3eTwZgH3CQ_WZ_RDD2lwJDB2m8FwtpkwTM_QxG_XH02EyeD9C3ebD213LyKsjGAw2ZWJ4sS_h8hTBJnV9wXwNzkC70mPci4TDpbCY5DaYH1gs8NglcSBsKgnXnF8ysI9RRY2VPEGYMEtQYkvpxxQEWgGTbgRdYVucmLGsIlKoJuQ5dbiuYDEKS9Jjrc0QtBlqbYZfVXS9-mSS8WasG1wr9B3mW2gWAu6A08H3HFpFN8UclK_XCMP5NJWDl0vxsRhZxEop9czTfwm8RNuv983wud15OkM7WkgWg1ZDlWQ6l-cASpLoIl143z-12Tw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+phase+inversion+based+on+an+unwrapping+algorithm&rft.jtitle=Applied+geophysics&rft.au=Lin%2C+Yu-Zhao&rft.au=Li%2C+Zhen-Chun&rft.au=Zhang%2C+Kai&rft.au=Ding%2C+Ren-Wei&rft.date=2020-03-01&rft.pub=Chinese+Geophysical+Society&rft.issn=1672-7975&rft.eissn=1993-0658&rft.volume=17&rft.issue=1&rft.spage=124&rft.epage=132&rft_id=info:doi/10.1007%2Fs11770-019-0794-x&rft.externalDocID=10_1007_s11770_019_0794_x |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyydqwl%2Fyydqwl.jpg |