Modern Statistical Methods for HCI
This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event hist...
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Cham
Springer Nature
2016
Springer Springer International Publishing AG Springer International Publishing |
| Edition | 1 |
| Series | Human–Computer Interaction Series |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319266336 3319266330 3319266314 9783319266312 |
| ISSN | 1571-5035 |
| DOI | 10.1007/978-3-319-26633-6 |
Cover
Table of Contents:
- 6.8 Statistical Model for Event History Analysis -- 6.9 Calculating Event History Analysis Using R -- 6.10 Interpreting and Presenting the Event History Analysis Findings -- References -- 7 Nonparametric Statistics in Human--Computer Interaction -- 7.1 Introduction -- 7.2 When to Use Nonparametric Analyses -- 7.2.1 Assumptions of Analysis of Variance (ANOVA) -- 7.2.2 Table of Analogous Parametric and Nonparametric Tests -- 7.3 Tests of Proportions -- 7.3.1 One-Sample Tests of Proportions -- 7.3.2 N-Sample Tests of Proportions -- 7.4 Single Factor Tests -- 7.4.1 Testing ANOVA Assumptions -- 7.4.2 Single-Factor Between-Subjects Tests -- 7.4.3 Single-Factor Within-Subjects Tests -- 7.4.4 Multifactor Tests -- 7.4.5 N-Way Analysis of Variance -- 7.4.6 Aligned Rank Transform (ART) -- 7.4.7 Generalized Linear Models (GLM) -- 7.4.8 Generalized Linear Mixed Models (GLMM) -- 7.4.9 Generalized Estimating Equations (GEE) -- 7.5 Summary -- References -- Part III Bayesian Inference -- 8 Bayesian Inference -- 8.1 Introduction -- 8.2 Introduction to Bayes' Theorem -- 8.3 Computing Bayesian Statistics -- 8.4 Bayesian Two Group Comparison for Binary Variables -- 8.5 Bayesian Two Group Comparison for Numeric Variables -- 8.6 Bayesian Regression with Numeric Predicted Variable -- 8.7 Do Not Reinvent the Wheel -- References -- 9 Bayesian Testing of Constrained Hypotheses -- 9.1 Introduction -- 9.1.1 Multiple Hypothesis Testing in HCI -- 9.1.2 Limitations of Classical Methods -- 9.1.3 Bayes Factors for Multiple Hypothesis Testing -- 9.1.4 Outline -- 9.2 Bayesian Estimation in the HCI Application -- 9.2.1 The Multivariate Normal Model -- 9.2.2 The Prior: A Formalization of Prior Beliefs -- 9.2.3 The Posterior: Our Belief After Observing the Data -- 9.2.4 HCI Data Example -- 9.3 Bayes Factors and Posterior Model Probabilities -- 9.3.1 Definition of the Bayes Factor
- 13.2.3 How Useful Is the Information Conveyed by P? -- 13.2.4 Usability Problems with p-Values -- 13.2.5 Conclusion -- 13.3 Null Hypothesis Significance Testing Versus Estimation -- 13.3.1 A Few More Reminders -- 13.3.2 How Useful Is the α Cut-Off? -- 13.3.3 More Usability Problems Brought by the α Cut-Off -- 13.3.4 Conclusion -- 13.4 Fair Statistical Communication Through Estimation -- 13.4.1 General Principles -- 13.4.2 Before Analyzing Data -- 13.4.3 Calculating Confidence Intervals -- 13.4.4 Plotting Confidence Intervals -- 13.4.5 Interpreting Confidence Intervals -- 13.5 Conclusion -- References -- 14 Improving Statistical Practice in HCI -- 14.1 Introduction -- 14.2 Case Studies from the HCI Literature -- 14.2.1 Misinterpretations of the p-Value -- 14.2.2 The Fallacy of the Transposed Conditional -- 14.2.3 A Lack of Power (Type II Errors) -- 14.2.4 Confusion of p-Values and Effect Size Estimates -- 14.2.5 Multiple Comparisons (Type I Errors) -- 14.2.6 Researcher Degrees of Freedom -- 14.3 What Do We Know Now? -- 14.4 Recommendations for Improving Statistical Methodology -- 14.5 Closing Remarks -- References
- Intro -- Foreword -- Preface -- About the Authors -- Maurits -- Judy -- Who Is This Book For? -- The Structure of the Book -- The Sample Dataset: The Mango Watch -- Our Approach -- Acknowledgements -- Contents -- Contributors -- 1 An Introduction to Modern Statistical Methods in HCI -- 1.1 Introduction -- 1.2 Earlier Commentaries on Statistical Methods in HCI and Beyond -- 1.3 Some of the Very Basic Ideas of Our Common ``NHST'' Method -- 1.4 The Common, and Well-Acknowledged, Problems with Our Current NHST Methods -- 1.4.1 Misinterpretations of the P-Value -- 1.4.2 The Fallacy of the Transposed Conditional -- 1.4.3 A Lack of Power -- 1.4.4 Confusion of P-Values and Effect Size Estimates -- 1.4.5 Multiple Comparisons -- 1.4.6 Researcher Degrees of Freedom -- 1.4.7 What Is the Aim of Statistical Analysis? -- 1.5 Broadening the Scope of Statistical Analysis in HCI -- References -- Part I Getting Started With Data Analysis -- 2 Getting Started with [R] -- a Brief Introduction -- 2.1 Introduction -- 2.1.1 Data Types -- 2.1.2 Storage -- 2.1.3 Storage Descriptives -- 2.2 Working with [R] -- 2.2.1 Writing Functions -- 2.2.2 Data: Input and Output -- 2.2.3 For Loop -- 2.2.4 Apply Function -- 2.2.5 Common Used Functions -- 2.2.6 Packages -- 2.3 Mastering [R] -- 2.3.1 Further Reading -- References -- 3 Descriptive Statistics, Graphs, and Visualisation -- 3.1 Introduction -- 3.1.1 Why Do We Visualise Data? -- 3.2 Descriptive Statistics and Exploratory Data Analysis -- 3.3 Principles of Visualisation -- 3.4 ggplot2---A Grammar of Graphics -- 3.4.1 ggplot2 -- 3.5 Case Study -- 3.5.1 Team Size -- 3.5.2 SUS Scores -- 3.5.3 Response Times -- 3.5.4 Model Predictions -- 3.6 Summary -- References -- 4 Handling Missing Data -- 4.1 Introduction -- 4.2 Missing Data: Problems and Pitfalls -- 4.2.1 Mechanisms of Misssingness
- 4.2.2 Comparing Three Missing Data Scenarios -- 4.3 Missing Data: Potential Solutions -- 4.3.1 Popular but Inadequate `Solutions' -- 4.3.2 Multiple Imputation -- 4.3.3 Pooling Imputations Using Rubin's Equations -- 4.3.4 Multiple Imputation in Practice -- 4.4 Maximum Likelihood and Bayesian in Approaches to Missing Data -- 4.4.1 Maximum Likelihood Estimation in Ignorable Models Using Expectation-Maximization -- 4.4.2 Bayesian Inference with Missing Data -- 4.5 Conclusion -- References -- Part II Classical Null Hypothesis Significance Testing Done Properly -- 5 Effect Sizes and Power Analysis in HCI -- 5.1 Introduction -- 5.2 Myths of the p Value -- 5.2.1 Myth 1: Threshold of the P Value -- 5.2.2 Myth 2: Magnitude of the Effect -- 5.2.3 Myth 3: ``Significant'' is ``Important'' -- 5.2.4 Summary -- 5.3 Effect Size -- 5.3.1 Interpretation of Effect Sizes -- 5.3.2 Paired t-Test -- 5.3.3 Unpaired t-Test -- 5.3.4 ANOVA -- 5.4 One-Way ANOVA -- 5.5 One-Way Repeated-Measure ANOVA -- 5.6 Two-Way ANOVA -- 5.7 Non-parametric Tests -- 5.8 Pearson's Correlation -- 5.9 Power Analysis -- 5.9.1 Type I Error and Type II Error -- 5.9.2 Conducting Power Analysis -- 5.9.3 Sample Size Estimation -- 5.9.4 Retrospective Power Analysis (Caution: Not Recommended) -- 5.10 Conclusion -- References -- 6 Using R for Repeated and Time-Series Observations -- 6.1 Repeated Measures and Time Series in HCI -- 6.2 An Introduction to Within-Subjects Analysis of Variance (ANOVA) -- 6.2.1 Assumptions of Within-Subjects ANOVA -- 6.2.2 Sphericity -- 6.2.3 Correcting for Sphericity -- 6.3 Conceptual Model for Within-Subjects ANOVA -- 6.4 Statistical Inference for Within-Subjects ANOVA -- 6.5 Calculating Within-Subjects ANOVA Using R -- 6.6 Interpreting and Presenting the Within-Subjects ANOVA Findings -- 6.7 An Introduction to Event History Analysis -- 6.7.1 Censoring
- 9.3.2 Interpreting Bayes Factors -- 9.3.3 Posterior Model Probabilities -- 9.3.4 Prior Specification When Computing Bayes Factors -- 9.4 A Bayesian T Test Using BIEMS -- 9.4.1 Hypotheses -- 9.4.2 Prior Specification -- 9.4.3 Bayes Factors and Posterior Model Probabilities -- 9.5 Evaluation of the HCI Application -- 9.6 Discussion -- References -- Part IV Advanced Modeling in HCI -- 10 Latent Variable Models -- 10.1 Introduction -- 10.1.1 Data -- 10.2 Path Models -- 10.2.1 Variables Types in a Path Model -- 10.2.2 Variables Relations in a Path Model -- 10.2.3 Tracing Rules -- 10.3 Latent Variable Models -- 10.3.1 Identification of Latent Variable Models -- 10.4 Latent Variable Models in R -- 10.4.1 Entering Data -- 10.4.2 Specifying Models in Lavaan -- 10.4.3 More Complex Models -- 10.5 Cautions and Considerations in Using Latent Variable Models -- 10.6 Conclusion -- References -- 11 Using Generalized Linear (Mixed) Models in HCI -- 11.1 Introduction -- 11.2 Linear Models -- 11.2.1 Fitting a Line -- 11.2.2 [R] Model Formulas -- 11.3 Regularization -- 11.4 Generalized Linear Models -- 11.5 Linear Mixed Models -- 11.5.1 Random Intercept Models -- 11.5.2 More Random Effect Specifications -- 11.5.3 Generalized Mixed Models -- 11.6 Conclusions and Recommendations -- References -- 12 Mixture Models: Latent Profile and Latent Class Analysis -- 12.1 Introduction -- 12.2 Mixtures of Continuous Variables: Latent Profile Analysis -- 12.3 Mixtures of Categorical Variables: Latent Class Analysis -- 12.4 Other Uses of Latent Class/Profile Analysis -- 12.5 Further References -- References -- Part V Improving Statistical Practice in HCI -- 13 Fair Statistical Communication in HCI -- 13.1 Introduction -- 13.2 p-Values, Effect Sizes and Confidence Intervals -- 13.2.1 A Minimalistic Example and Quick Reminders -- 13.2.2 Choosing a Pill