Modern Statistical Methods for HCI
This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event hist...
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Cham
Springer Nature
2016
Springer Springer International Publishing AG Springer International Publishing |
| Edition | 1 |
| Series | Human–Computer Interaction Series |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319266336 3319266330 3319266314 9783319266312 |
| ISSN | 1571-5035 |
| DOI | 10.1007/978-3-319-26633-6 |
Cover
| Abstract | This
book critically reflects on current statistical methods used in Human-Computer
Interaction (HCI) and introduces a number of novel methods to the reader.
Covering
many techniques and approaches for exploratory data analysis including effect
and power calculations, experimental design, event history analysis,
non-parametric testing and Bayesian inference; the research contained in this
book discusses how to communicate statistical results fairly, as well as
presenting a general set of recommendations for authors and reviewers to
improve the quality of statistical analysis in HCI. Each chapter presents [R]
code for running analyses on HCI examples and explains how the results can be
interpreted.
Modern
Statistical Methods for HCI is aimed at researchers and graduate students who have some
knowledge of "traditional" null hypothesis significance testing, but who wish
to improve their practice by using techniques which have recently emerged from
statistics and related fields. This book critically evaluates current practices
within the field and supports a less rigid, procedural view of statistics in
favour of fair statistical communication. |
|---|---|
| AbstractList | This
book critically reflects on current statistical methods used in Human-Computer
Interaction (HCI) and introduces a number of novel methods to the reader.
Covering
many techniques and approaches for exploratory data analysis including effect
and power calculations, experimental design, event history analysis,
non-parametric testing and Bayesian inference; the research contained in this
book discusses how to communicate statistical results fairly, as well as
presenting a general set of recommendations for authors and reviewers to
improve the quality of statistical analysis in HCI. Each chapter presents [R]
code for running analyses on HCI examples and explains how the results can be
interpreted.
Modern
Statistical Methods for HCI is aimed at researchers and graduate students who have some
knowledge of "traditional" null hypothesis significance testing, but who wish
to improve their practice by using techniques which have recently emerged from
statistics and related fields. This book critically evaluates current practices
within the field and supports a less rigid, procedural view of statistics in
favour of fair statistical communication. |
| Author | Robertson, Judy Kaptein, Maurits |
| Author_xml | – sequence: 1 fullname: Robertson, Judy – sequence: 2 fullname: Kaptein, Maurits |
| BackLink | https://cir.nii.ac.jp/crid/1130000796600404608$$DView record in CiNii |
| BookMark | eNpd0E9PwjAYBvAa0YjIB_BGiInxMHnf_l2PuqCQQDxovDZl62AyV1ynfn0H86KXNn3ye96k7znpVb5yhFwi3CKAmmgVRyxiqCMqJWORPCLDNmNtcgjk8b93j_RRKIwEMHFK-pqLWDEd4xkZhvAGACgFR6B9Ml76zNXV6LmxTRGaIrXlaOmajc_CKPf1aJbML8hJbsvghr_3gLw-TF-SWbR4epwnd4vIUi0xjuzKSm0tKqBIXcwtUAmconIqEyLnjuVSZrETK4ECckxzSlOWsoy5VOssZwNy0w22Yeu-w8aXTTBfpVt5vw3mzwdbO-ls2NVFtXa16RSC2a9srw0zrTeHgtk3rrvGrvYfny405jA4dVVT29JM7xPOhUCpWnnVyaooTFrsT0TWbg2UlhKAA5cQt2zcsdQGW7bMvPvKr2u72wQjuGZKSPYDTdp6iA |
| ContentType | eBook Book |
| Copyright | Springer International Publishing Switzerland 2016 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2016 |
| DBID | I4C RYH |
| DEWEY | 005 |
| DOI | 10.1007/978-3-319-26633-6 |
| DatabaseName | Casalini Torrossa eBooks Institutional Catalogue CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Statistics |
| EISBN | 9783319266336 3319266330 |
| Edition | 1 1st ed. 2016 |
| Editor | Robertson, Judy |
| Editor_xml | – sequence: 1 fullname: Robertson, Judy |
| ExternalDocumentID | 9783319266336 326403 EBC4455167 BB22003557 5493756 |
| GroupedDBID | 0D6 0DA 38. AABBV AAMCO AAQZU ABMNI ABOWU ACBPT ACLMJ ADCXD ADPGQ AEIBC AEJGN AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS AORVH AZZ BBABE CZZ I4C IEZ MYL SBO SWNTM TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z87 Z88 RYH |
| ID | FETCH-LOGICAL-a29618-aba69aa170212e84a02604217e7d55f4e3f66d8e5b5150f1cf22c3c3d3ec99df3 |
| ISBN | 9783319266336 3319266330 3319266314 9783319266312 |
| ISSN | 1571-5035 |
| IngestDate | Fri Sep 12 03:45:18 EDT 2025 Wed Sep 17 03:43:15 EDT 2025 Fri May 30 23:27:12 EDT 2025 Fri Jun 27 00:27:27 EDT 2025 Sun May 11 05:58:52 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | Q |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a29618-aba69aa170212e84a02604217e7d55f4e3f66d8e5b5150f1cf22c3c3d3ec99df3 |
| Notes | Includes bibliographical references |
| OCLC | 945873981 |
| PQID | EBC4455167 |
| PageCount | 359 |
| ParticipantIDs | askewsholts_vlebooks_9783319266336 springer_books_10_1007_978_3_319_26633_6 proquest_ebookcentral_EBC4455167 nii_cinii_1130000796600404608 casalini_monographs_5493756 |
| PublicationCentury | 2000 |
| PublicationDate | 2016 c2016 2016-03-23 |
| PublicationDateYYYYMMDD | 2016-01-01 2016-03-23 |
| PublicationDate_xml | – year: 2016 text: 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Netherlands – name: Cham |
| PublicationSeriesTitle | Human–Computer Interaction Series |
| PublicationSeriesTitleAlternate | Human–Computer Interaction Series |
| PublicationYear | 2016 |
| Publisher | Springer Nature Springer Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer Nature – name: Springer – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Tan, Desney Vanderdonckt, Jean |
| RelatedPersons_xml | – sequence: 1 givenname: Desney surname: Tan fullname: Tan, Desney – sequence: 2 givenname: Jean surname: Vanderdonckt fullname: Vanderdonckt, Jean |
| SSID | ssj0001654102 |
| Score | 1.9150183 |
| Snippet | This
book critically reflects on current statistical methods used in Human-Computer
Interaction (HCI) and introduces a number of novel methods to the reader.... |
| SourceID | askewsholts springer proquest nii casalini |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Computer programming, programs, data Computer Science Human-computer interaction Human-computer interaction -- Statistical methods Statistics Statistics for Social Sciences, Humanities, Law User Interfaces and Human Computer Interaction |
| TableOfContents | 6.8 Statistical Model for Event History Analysis -- 6.9 Calculating Event History Analysis Using R -- 6.10 Interpreting and Presenting the Event History Analysis Findings -- References -- 7 Nonparametric Statistics in Human--Computer Interaction -- 7.1 Introduction -- 7.2 When to Use Nonparametric Analyses -- 7.2.1 Assumptions of Analysis of Variance (ANOVA) -- 7.2.2 Table of Analogous Parametric and Nonparametric Tests -- 7.3 Tests of Proportions -- 7.3.1 One-Sample Tests of Proportions -- 7.3.2 N-Sample Tests of Proportions -- 7.4 Single Factor Tests -- 7.4.1 Testing ANOVA Assumptions -- 7.4.2 Single-Factor Between-Subjects Tests -- 7.4.3 Single-Factor Within-Subjects Tests -- 7.4.4 Multifactor Tests -- 7.4.5 N-Way Analysis of Variance -- 7.4.6 Aligned Rank Transform (ART) -- 7.4.7 Generalized Linear Models (GLM) -- 7.4.8 Generalized Linear Mixed Models (GLMM) -- 7.4.9 Generalized Estimating Equations (GEE) -- 7.5 Summary -- References -- Part III Bayesian Inference -- 8 Bayesian Inference -- 8.1 Introduction -- 8.2 Introduction to Bayes' Theorem -- 8.3 Computing Bayesian Statistics -- 8.4 Bayesian Two Group Comparison for Binary Variables -- 8.5 Bayesian Two Group Comparison for Numeric Variables -- 8.6 Bayesian Regression with Numeric Predicted Variable -- 8.7 Do Not Reinvent the Wheel -- References -- 9 Bayesian Testing of Constrained Hypotheses -- 9.1 Introduction -- 9.1.1 Multiple Hypothesis Testing in HCI -- 9.1.2 Limitations of Classical Methods -- 9.1.3 Bayes Factors for Multiple Hypothesis Testing -- 9.1.4 Outline -- 9.2 Bayesian Estimation in the HCI Application -- 9.2.1 The Multivariate Normal Model -- 9.2.2 The Prior: A Formalization of Prior Beliefs -- 9.2.3 The Posterior: Our Belief After Observing the Data -- 9.2.4 HCI Data Example -- 9.3 Bayes Factors and Posterior Model Probabilities -- 9.3.1 Definition of the Bayes Factor 13.2.3 How Useful Is the Information Conveyed by P? -- 13.2.4 Usability Problems with p-Values -- 13.2.5 Conclusion -- 13.3 Null Hypothesis Significance Testing Versus Estimation -- 13.3.1 A Few More Reminders -- 13.3.2 How Useful Is the α Cut-Off? -- 13.3.3 More Usability Problems Brought by the α Cut-Off -- 13.3.4 Conclusion -- 13.4 Fair Statistical Communication Through Estimation -- 13.4.1 General Principles -- 13.4.2 Before Analyzing Data -- 13.4.3 Calculating Confidence Intervals -- 13.4.4 Plotting Confidence Intervals -- 13.4.5 Interpreting Confidence Intervals -- 13.5 Conclusion -- References -- 14 Improving Statistical Practice in HCI -- 14.1 Introduction -- 14.2 Case Studies from the HCI Literature -- 14.2.1 Misinterpretations of the p-Value -- 14.2.2 The Fallacy of the Transposed Conditional -- 14.2.3 A Lack of Power (Type II Errors) -- 14.2.4 Confusion of p-Values and Effect Size Estimates -- 14.2.5 Multiple Comparisons (Type I Errors) -- 14.2.6 Researcher Degrees of Freedom -- 14.3 What Do We Know Now? -- 14.4 Recommendations for Improving Statistical Methodology -- 14.5 Closing Remarks -- References Intro -- Foreword -- Preface -- About the Authors -- Maurits -- Judy -- Who Is This Book For? -- The Structure of the Book -- The Sample Dataset: The Mango Watch -- Our Approach -- Acknowledgements -- Contents -- Contributors -- 1 An Introduction to Modern Statistical Methods in HCI -- 1.1 Introduction -- 1.2 Earlier Commentaries on Statistical Methods in HCI and Beyond -- 1.3 Some of the Very Basic Ideas of Our Common ``NHST'' Method -- 1.4 The Common, and Well-Acknowledged, Problems with Our Current NHST Methods -- 1.4.1 Misinterpretations of the P-Value -- 1.4.2 The Fallacy of the Transposed Conditional -- 1.4.3 A Lack of Power -- 1.4.4 Confusion of P-Values and Effect Size Estimates -- 1.4.5 Multiple Comparisons -- 1.4.6 Researcher Degrees of Freedom -- 1.4.7 What Is the Aim of Statistical Analysis? -- 1.5 Broadening the Scope of Statistical Analysis in HCI -- References -- Part I Getting Started With Data Analysis -- 2 Getting Started with [R] -- a Brief Introduction -- 2.1 Introduction -- 2.1.1 Data Types -- 2.1.2 Storage -- 2.1.3 Storage Descriptives -- 2.2 Working with [R] -- 2.2.1 Writing Functions -- 2.2.2 Data: Input and Output -- 2.2.3 For Loop -- 2.2.4 Apply Function -- 2.2.5 Common Used Functions -- 2.2.6 Packages -- 2.3 Mastering [R] -- 2.3.1 Further Reading -- References -- 3 Descriptive Statistics, Graphs, and Visualisation -- 3.1 Introduction -- 3.1.1 Why Do We Visualise Data? -- 3.2 Descriptive Statistics and Exploratory Data Analysis -- 3.3 Principles of Visualisation -- 3.4 ggplot2---A Grammar of Graphics -- 3.4.1 ggplot2 -- 3.5 Case Study -- 3.5.1 Team Size -- 3.5.2 SUS Scores -- 3.5.3 Response Times -- 3.5.4 Model Predictions -- 3.6 Summary -- References -- 4 Handling Missing Data -- 4.1 Introduction -- 4.2 Missing Data: Problems and Pitfalls -- 4.2.1 Mechanisms of Misssingness 4.2.2 Comparing Three Missing Data Scenarios -- 4.3 Missing Data: Potential Solutions -- 4.3.1 Popular but Inadequate `Solutions' -- 4.3.2 Multiple Imputation -- 4.3.3 Pooling Imputations Using Rubin's Equations -- 4.3.4 Multiple Imputation in Practice -- 4.4 Maximum Likelihood and Bayesian in Approaches to Missing Data -- 4.4.1 Maximum Likelihood Estimation in Ignorable Models Using Expectation-Maximization -- 4.4.2 Bayesian Inference with Missing Data -- 4.5 Conclusion -- References -- Part II Classical Null Hypothesis Significance Testing Done Properly -- 5 Effect Sizes and Power Analysis in HCI -- 5.1 Introduction -- 5.2 Myths of the p Value -- 5.2.1 Myth 1: Threshold of the P Value -- 5.2.2 Myth 2: Magnitude of the Effect -- 5.2.3 Myth 3: ``Significant'' is ``Important'' -- 5.2.4 Summary -- 5.3 Effect Size -- 5.3.1 Interpretation of Effect Sizes -- 5.3.2 Paired t-Test -- 5.3.3 Unpaired t-Test -- 5.3.4 ANOVA -- 5.4 One-Way ANOVA -- 5.5 One-Way Repeated-Measure ANOVA -- 5.6 Two-Way ANOVA -- 5.7 Non-parametric Tests -- 5.8 Pearson's Correlation -- 5.9 Power Analysis -- 5.9.1 Type I Error and Type II Error -- 5.9.2 Conducting Power Analysis -- 5.9.3 Sample Size Estimation -- 5.9.4 Retrospective Power Analysis (Caution: Not Recommended) -- 5.10 Conclusion -- References -- 6 Using R for Repeated and Time-Series Observations -- 6.1 Repeated Measures and Time Series in HCI -- 6.2 An Introduction to Within-Subjects Analysis of Variance (ANOVA) -- 6.2.1 Assumptions of Within-Subjects ANOVA -- 6.2.2 Sphericity -- 6.2.3 Correcting for Sphericity -- 6.3 Conceptual Model for Within-Subjects ANOVA -- 6.4 Statistical Inference for Within-Subjects ANOVA -- 6.5 Calculating Within-Subjects ANOVA Using R -- 6.6 Interpreting and Presenting the Within-Subjects ANOVA Findings -- 6.7 An Introduction to Event History Analysis -- 6.7.1 Censoring 9.3.2 Interpreting Bayes Factors -- 9.3.3 Posterior Model Probabilities -- 9.3.4 Prior Specification When Computing Bayes Factors -- 9.4 A Bayesian T Test Using BIEMS -- 9.4.1 Hypotheses -- 9.4.2 Prior Specification -- 9.4.3 Bayes Factors and Posterior Model Probabilities -- 9.5 Evaluation of the HCI Application -- 9.6 Discussion -- References -- Part IV Advanced Modeling in HCI -- 10 Latent Variable Models -- 10.1 Introduction -- 10.1.1 Data -- 10.2 Path Models -- 10.2.1 Variables Types in a Path Model -- 10.2.2 Variables Relations in a Path Model -- 10.2.3 Tracing Rules -- 10.3 Latent Variable Models -- 10.3.1 Identification of Latent Variable Models -- 10.4 Latent Variable Models in R -- 10.4.1 Entering Data -- 10.4.2 Specifying Models in Lavaan -- 10.4.3 More Complex Models -- 10.5 Cautions and Considerations in Using Latent Variable Models -- 10.6 Conclusion -- References -- 11 Using Generalized Linear (Mixed) Models in HCI -- 11.1 Introduction -- 11.2 Linear Models -- 11.2.1 Fitting a Line -- 11.2.2 [R] Model Formulas -- 11.3 Regularization -- 11.4 Generalized Linear Models -- 11.5 Linear Mixed Models -- 11.5.1 Random Intercept Models -- 11.5.2 More Random Effect Specifications -- 11.5.3 Generalized Mixed Models -- 11.6 Conclusions and Recommendations -- References -- 12 Mixture Models: Latent Profile and Latent Class Analysis -- 12.1 Introduction -- 12.2 Mixtures of Continuous Variables: Latent Profile Analysis -- 12.3 Mixtures of Categorical Variables: Latent Class Analysis -- 12.4 Other Uses of Latent Class/Profile Analysis -- 12.5 Further References -- References -- Part V Improving Statistical Practice in HCI -- 13 Fair Statistical Communication in HCI -- 13.1 Introduction -- 13.2 p-Values, Effect Sizes and Confidence Intervals -- 13.2.1 A Minimalistic Example and Quick Reminders -- 13.2.2 Choosing a Pill |
| Title | Modern Statistical Methods for HCI |
| URI | http://digital.casalini.it/9783319266336 https://cir.nii.ac.jp/crid/1130000796600404608 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4455167 http://link.springer.com/10.1007/978-3-319-26633-6 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319266336&uid=none |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6N7mW8wDYQpTBFaA9IU6YkdpzkkaJOVTX2BIg3y44dqQKVaQk88Ou5c-I2LUiIvVhtEsXWfc75zuf7DuB7ZISOTFSEJVcaHRSN31wh4rBiGT7PrCocA9_FHzG94rOb9GZVN8xllzT6Z_n0al7J_6CK1xBXypJ9B7LLl-IF_I34YosIY7th_C7_drWX2gpmlA3kiJZdCgiVgnbsCj-mq9rU7cnpLq1q5qlkScOqv77Q5QVRCzVrGwDx5gaA3wBccwwZflm49LL2iPILNdk_GUFZTPQoCzcoqd0iNx4njjM1zbZgK8vQvf14Npn9vl7tY1Eh8Ygc3mWfLd9ibww-mtwR-q71uQ3bqr5FhY7KvqnJOlC1oqRQXOwX8_ma4b8Rq3YmwOUuDCgt5DN8sIsvsOOLYQSdbvwKJy0mQQ-ToMMkQEwCxGQPrn9NLs-nYVeAIlQJVcIJlVaiUCrOiAjf5lwRAxtHL85mJk0rblklhMltqtEsjKq4rJKkZCUzzJZFYSq2D4PF_cIeQJBbrhPFY12k2No0J1VbWYNK3uCqY4Zw0pODfLxzwfJa9gTJxBBGXjwS53JLal5L9PFZluLdY5SYLOfUxhSnRIkT-yoqai6ifAiBl6V0b-_O_8rJ-JxziphmQzj1MpZt_57WGschmcSRSDcUKQ7f6G0En1az9QgGzb8He4wGXKO_dXPoGRzpNbo |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Modern+statistical+methods+for+HCI&rft.au=Robertson%2C+Judy&rft.au=Kaptein%2C+Maurits&rft.date=2016-01-01&rft.pub=Springer&rft.isbn=9783319266312&rft_id=info:doi/10.1007%2F978-3-319-26633-6&rft.externalDocID=BB22003557 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833192%2F9783319266336.jpg |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-26633-6 |