Modern Statistical Methods for HCI

This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event hist...

Full description

Saved in:
Bibliographic Details
Main Authors Robertson, Judy, Kaptein, Maurits
Format eBook Book
LanguageEnglish
Published Cham Springer Nature 2016
Springer
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesHuman–Computer Interaction Series
Subjects
Online AccessGet full text
ISBN9783319266336
3319266330
3319266314
9783319266312
ISSN1571-5035
DOI10.1007/978-3-319-26633-6

Cover

Abstract This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event history analysis, non-parametric testing and Bayesian inference; the research contained in this book discusses how to communicate statistical results fairly, as well as presenting a general set of recommendations for authors and reviewers to improve the quality of statistical analysis in HCI. Each chapter presents [R] code for running analyses on HCI examples and explains how the results can be interpreted. Modern Statistical Methods for HCI is aimed at researchers and graduate students who have some knowledge of "traditional" null hypothesis significance testing, but who wish to improve their practice by using techniques which have recently emerged from statistics and related fields. This book critically evaluates current practices within the field and supports a less rigid, procedural view of statistics in favour of fair statistical communication.
AbstractList This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event history analysis, non-parametric testing and Bayesian inference; the research contained in this book discusses how to communicate statistical results fairly, as well as presenting a general set of recommendations for authors and reviewers to improve the quality of statistical analysis in HCI. Each chapter presents [R] code for running analyses on HCI examples and explains how the results can be interpreted. Modern Statistical Methods for HCI is aimed at researchers and graduate students who have some knowledge of "traditional" null hypothesis significance testing, but who wish to improve their practice by using techniques which have recently emerged from statistics and related fields. This book critically evaluates current practices within the field and supports a less rigid, procedural view of statistics in favour of fair statistical communication.
Author Robertson, Judy
Kaptein, Maurits
Author_xml – sequence: 1
  fullname: Robertson, Judy
– sequence: 2
  fullname: Kaptein, Maurits
BackLink https://cir.nii.ac.jp/crid/1130000796600404608$$DView record in CiNii
BookMark eNpd0E9PwjAYBvAa0YjIB_BGiInxMHnf_l2PuqCQQDxovDZl62AyV1ynfn0H86KXNn3ye96k7znpVb5yhFwi3CKAmmgVRyxiqCMqJWORPCLDNmNtcgjk8b93j_RRKIwEMHFK-pqLWDEd4xkZhvAGACgFR6B9Ml76zNXV6LmxTRGaIrXlaOmajc_CKPf1aJbML8hJbsvghr_3gLw-TF-SWbR4epwnd4vIUi0xjuzKSm0tKqBIXcwtUAmconIqEyLnjuVSZrETK4ECckxzSlOWsoy5VOssZwNy0w22Yeu-w8aXTTBfpVt5vw3mzwdbO-ls2NVFtXa16RSC2a9srw0zrTeHgtk3rrvGrvYfny405jA4dVVT29JM7xPOhUCpWnnVyaooTFrsT0TWbg2UlhKAA5cQt2zcsdQGW7bMvPvKr2u72wQjuGZKSPYDTdp6iA
ContentType eBook
Book
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DBID I4C
RYH
DEWEY 005
DOI 10.1007/978-3-319-26633-6
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Statistics
EISBN 9783319266336
3319266330
Edition 1
1st ed. 2016
Editor Robertson, Judy
Editor_xml – sequence: 1
  fullname: Robertson, Judy
ExternalDocumentID 9783319266336
326403
EBC4455167
BB22003557
5493756
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAQZU
ABMNI
ABOWU
ACBPT
ACLMJ
ADCXD
ADPGQ
AEIBC
AEJGN
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
AORVH
AZZ
BBABE
CZZ
I4C
IEZ
MYL
SBO
SWNTM
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z87
Z88
RYH
ID FETCH-LOGICAL-a29618-aba69aa170212e84a02604217e7d55f4e3f66d8e5b5150f1cf22c3c3d3ec99df3
ISBN 9783319266336
3319266330
3319266314
9783319266312
ISSN 1571-5035
IngestDate Fri Sep 12 03:45:18 EDT 2025
Wed Sep 17 03:43:15 EDT 2025
Fri May 30 23:27:12 EDT 2025
Fri Jun 27 00:27:27 EDT 2025
Sun May 11 05:58:52 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a29618-aba69aa170212e84a02604217e7d55f4e3f66d8e5b5150f1cf22c3c3d3ec99df3
Notes Includes bibliographical references
OCLC 945873981
PQID EBC4455167
PageCount 359
ParticipantIDs askewsholts_vlebooks_9783319266336
springer_books_10_1007_978_3_319_26633_6
proquest_ebookcentral_EBC4455167
nii_cinii_1130000796600404608
casalini_monographs_5493756
PublicationCentury 2000
PublicationDate 2016
c2016
2016-03-23
PublicationDateYYYYMMDD 2016-01-01
2016-03-23
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Human–Computer Interaction Series
PublicationSeriesTitleAlternate Human–Computer Interaction Series
PublicationYear 2016
Publisher Springer Nature
Springer
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer Nature
– name: Springer
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Tan, Desney
Vanderdonckt, Jean
RelatedPersons_xml – sequence: 1
  givenname: Desney
  surname: Tan
  fullname: Tan, Desney
– sequence: 2
  givenname: Jean
  surname: Vanderdonckt
  fullname: Vanderdonckt, Jean
SSID ssj0001654102
Score 1.9150183
Snippet This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader....
SourceID askewsholts
springer
proquest
nii
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Computer programming, programs, data
Computer Science
Human-computer interaction
Human-computer interaction -- Statistical methods
Statistics
Statistics for Social Sciences, Humanities, Law
User Interfaces and Human Computer Interaction
TableOfContents 6.8 Statistical Model for Event History Analysis -- 6.9 Calculating Event History Analysis Using R -- 6.10 Interpreting and Presenting the Event History Analysis Findings -- References -- 7 Nonparametric Statistics in Human--Computer Interaction -- 7.1 Introduction -- 7.2 When to Use Nonparametric Analyses -- 7.2.1 Assumptions of Analysis of Variance (ANOVA) -- 7.2.2 Table of Analogous Parametric and Nonparametric Tests -- 7.3 Tests of Proportions -- 7.3.1 One-Sample Tests of Proportions -- 7.3.2 N-Sample Tests of Proportions -- 7.4 Single Factor Tests -- 7.4.1 Testing ANOVA Assumptions -- 7.4.2 Single-Factor Between-Subjects Tests -- 7.4.3 Single-Factor Within-Subjects Tests -- 7.4.4 Multifactor Tests -- 7.4.5 N-Way Analysis of Variance -- 7.4.6 Aligned Rank Transform (ART) -- 7.4.7 Generalized Linear Models (GLM) -- 7.4.8 Generalized Linear Mixed Models (GLMM) -- 7.4.9 Generalized Estimating Equations (GEE) -- 7.5 Summary -- References -- Part III Bayesian Inference -- 8 Bayesian Inference -- 8.1 Introduction -- 8.2 Introduction to Bayes' Theorem -- 8.3 Computing Bayesian Statistics -- 8.4 Bayesian Two Group Comparison for Binary Variables -- 8.5 Bayesian Two Group Comparison for Numeric Variables -- 8.6 Bayesian Regression with Numeric Predicted Variable -- 8.7 Do Not Reinvent the Wheel -- References -- 9 Bayesian Testing of Constrained Hypotheses -- 9.1 Introduction -- 9.1.1 Multiple Hypothesis Testing in HCI -- 9.1.2 Limitations of Classical Methods -- 9.1.3 Bayes Factors for Multiple Hypothesis Testing -- 9.1.4 Outline -- 9.2 Bayesian Estimation in the HCI Application -- 9.2.1 The Multivariate Normal Model -- 9.2.2 The Prior: A Formalization of Prior Beliefs -- 9.2.3 The Posterior: Our Belief After Observing the Data -- 9.2.4 HCI Data Example -- 9.3 Bayes Factors and Posterior Model Probabilities -- 9.3.1 Definition of the Bayes Factor
13.2.3 How Useful Is the Information Conveyed by P? -- 13.2.4 Usability Problems with p-Values -- 13.2.5 Conclusion -- 13.3 Null Hypothesis Significance Testing Versus Estimation -- 13.3.1 A Few More Reminders -- 13.3.2 How Useful Is the α Cut-Off? -- 13.3.3 More Usability Problems Brought by the α Cut-Off -- 13.3.4 Conclusion -- 13.4 Fair Statistical Communication Through Estimation -- 13.4.1 General Principles -- 13.4.2 Before Analyzing Data -- 13.4.3 Calculating Confidence Intervals -- 13.4.4 Plotting Confidence Intervals -- 13.4.5 Interpreting Confidence Intervals -- 13.5 Conclusion -- References -- 14 Improving Statistical Practice in HCI -- 14.1 Introduction -- 14.2 Case Studies from the HCI Literature -- 14.2.1 Misinterpretations of the p-Value -- 14.2.2 The Fallacy of the Transposed Conditional -- 14.2.3 A Lack of Power (Type II Errors) -- 14.2.4 Confusion of p-Values and Effect Size Estimates -- 14.2.5 Multiple Comparisons (Type I Errors) -- 14.2.6 Researcher Degrees of Freedom -- 14.3 What Do We Know Now? -- 14.4 Recommendations for Improving Statistical Methodology -- 14.5 Closing Remarks -- References
Intro -- Foreword -- Preface -- About the Authors -- Maurits -- Judy -- Who Is This Book For? -- The Structure of the Book -- The Sample Dataset: The Mango Watch -- Our Approach -- Acknowledgements -- Contents -- Contributors -- 1 An Introduction to Modern Statistical Methods in HCI -- 1.1 Introduction -- 1.2 Earlier Commentaries on Statistical Methods in HCI and Beyond -- 1.3 Some of the Very Basic Ideas of Our Common ``NHST'' Method -- 1.4 The Common, and Well-Acknowledged, Problems with Our Current NHST Methods -- 1.4.1 Misinterpretations of the P-Value -- 1.4.2 The Fallacy of the Transposed Conditional -- 1.4.3 A Lack of Power -- 1.4.4 Confusion of P-Values and Effect Size Estimates -- 1.4.5 Multiple Comparisons -- 1.4.6 Researcher Degrees of Freedom -- 1.4.7 What Is the Aim of Statistical Analysis? -- 1.5 Broadening the Scope of Statistical Analysis in HCI -- References -- Part I Getting Started With Data Analysis -- 2 Getting Started with [R] -- a Brief Introduction -- 2.1 Introduction -- 2.1.1 Data Types -- 2.1.2 Storage -- 2.1.3 Storage Descriptives -- 2.2 Working with [R] -- 2.2.1 Writing Functions -- 2.2.2 Data: Input and Output -- 2.2.3 For Loop -- 2.2.4 Apply Function -- 2.2.5 Common Used Functions -- 2.2.6 Packages -- 2.3 Mastering [R] -- 2.3.1 Further Reading -- References -- 3 Descriptive Statistics, Graphs, and Visualisation -- 3.1 Introduction -- 3.1.1 Why Do We Visualise Data? -- 3.2 Descriptive Statistics and Exploratory Data Analysis -- 3.3 Principles of Visualisation -- 3.4 ggplot2---A Grammar of Graphics -- 3.4.1 ggplot2 -- 3.5 Case Study -- 3.5.1 Team Size -- 3.5.2 SUS Scores -- 3.5.3 Response Times -- 3.5.4 Model Predictions -- 3.6 Summary -- References -- 4 Handling Missing Data -- 4.1 Introduction -- 4.2 Missing Data: Problems and Pitfalls -- 4.2.1 Mechanisms of Misssingness
4.2.2 Comparing Three Missing Data Scenarios -- 4.3 Missing Data: Potential Solutions -- 4.3.1 Popular but Inadequate `Solutions' -- 4.3.2 Multiple Imputation -- 4.3.3 Pooling Imputations Using Rubin's Equations -- 4.3.4 Multiple Imputation in Practice -- 4.4 Maximum Likelihood and Bayesian in Approaches to Missing Data -- 4.4.1 Maximum Likelihood Estimation in Ignorable Models Using Expectation-Maximization -- 4.4.2 Bayesian Inference with Missing Data -- 4.5 Conclusion -- References -- Part II Classical Null Hypothesis Significance Testing Done Properly -- 5 Effect Sizes and Power Analysis in HCI -- 5.1 Introduction -- 5.2 Myths of the p Value -- 5.2.1 Myth 1: Threshold of the P Value -- 5.2.2 Myth 2: Magnitude of the Effect -- 5.2.3 Myth 3: ``Significant'' is ``Important'' -- 5.2.4 Summary -- 5.3 Effect Size -- 5.3.1 Interpretation of Effect Sizes -- 5.3.2 Paired t-Test -- 5.3.3 Unpaired t-Test -- 5.3.4 ANOVA -- 5.4 One-Way ANOVA -- 5.5 One-Way Repeated-Measure ANOVA -- 5.6 Two-Way ANOVA -- 5.7 Non-parametric Tests -- 5.8 Pearson's Correlation -- 5.9 Power Analysis -- 5.9.1 Type I Error and Type II Error -- 5.9.2 Conducting Power Analysis -- 5.9.3 Sample Size Estimation -- 5.9.4 Retrospective Power Analysis (Caution: Not Recommended) -- 5.10 Conclusion -- References -- 6 Using R for Repeated and Time-Series Observations -- 6.1 Repeated Measures and Time Series in HCI -- 6.2 An Introduction to Within-Subjects Analysis of Variance (ANOVA) -- 6.2.1 Assumptions of Within-Subjects ANOVA -- 6.2.2 Sphericity -- 6.2.3 Correcting for Sphericity -- 6.3 Conceptual Model for Within-Subjects ANOVA -- 6.4 Statistical Inference for Within-Subjects ANOVA -- 6.5 Calculating Within-Subjects ANOVA Using R -- 6.6 Interpreting and Presenting the Within-Subjects ANOVA Findings -- 6.7 An Introduction to Event History Analysis -- 6.7.1 Censoring
9.3.2 Interpreting Bayes Factors -- 9.3.3 Posterior Model Probabilities -- 9.3.4 Prior Specification When Computing Bayes Factors -- 9.4 A Bayesian T Test Using BIEMS -- 9.4.1 Hypotheses -- 9.4.2 Prior Specification -- 9.4.3 Bayes Factors and Posterior Model Probabilities -- 9.5 Evaluation of the HCI Application -- 9.6 Discussion -- References -- Part IV Advanced Modeling in HCI -- 10 Latent Variable Models -- 10.1 Introduction -- 10.1.1 Data -- 10.2 Path Models -- 10.2.1 Variables Types in a Path Model -- 10.2.2 Variables Relations in a Path Model -- 10.2.3 Tracing Rules -- 10.3 Latent Variable Models -- 10.3.1 Identification of Latent Variable Models -- 10.4 Latent Variable Models in R -- 10.4.1 Entering Data -- 10.4.2 Specifying Models in Lavaan -- 10.4.3 More Complex Models -- 10.5 Cautions and Considerations in Using Latent Variable Models -- 10.6 Conclusion -- References -- 11 Using Generalized Linear (Mixed) Models in HCI -- 11.1 Introduction -- 11.2 Linear Models -- 11.2.1 Fitting a Line -- 11.2.2 [R] Model Formulas -- 11.3 Regularization -- 11.4 Generalized Linear Models -- 11.5 Linear Mixed Models -- 11.5.1 Random Intercept Models -- 11.5.2 More Random Effect Specifications -- 11.5.3 Generalized Mixed Models -- 11.6 Conclusions and Recommendations -- References -- 12 Mixture Models: Latent Profile and Latent Class Analysis -- 12.1 Introduction -- 12.2 Mixtures of Continuous Variables: Latent Profile Analysis -- 12.3 Mixtures of Categorical Variables: Latent Class Analysis -- 12.4 Other Uses of Latent Class/Profile Analysis -- 12.5 Further References -- References -- Part V Improving Statistical Practice in HCI -- 13 Fair Statistical Communication in HCI -- 13.1 Introduction -- 13.2 p-Values, Effect Sizes and Confidence Intervals -- 13.2.1 A Minimalistic Example and Quick Reminders -- 13.2.2 Choosing a Pill
Title Modern Statistical Methods for HCI
URI http://digital.casalini.it/9783319266336
https://cir.nii.ac.jp/crid/1130000796600404608
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4455167
http://link.springer.com/10.1007/978-3-319-26633-6
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319266336&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED6N7mW8wDYQpTBFaA9IU6YkdpzkkaJOVTX2BIg3y44dqQKVaQk88Ou5c-I2LUiIvVhtEsXWfc75zuf7DuB7ZISOTFSEJVcaHRSN31wh4rBiGT7PrCocA9_FHzG94rOb9GZVN8xllzT6Z_n0al7J_6CK1xBXypJ9B7LLl-IF_I34YosIY7th_C7_drWX2gpmlA3kiJZdCgiVgnbsCj-mq9rU7cnpLq1q5qlkScOqv77Q5QVRCzVrGwDx5gaA3wBccwwZflm49LL2iPILNdk_GUFZTPQoCzcoqd0iNx4njjM1zbZgK8vQvf14Npn9vl7tY1Eh8Ygc3mWfLd9ibww-mtwR-q71uQ3bqr5FhY7KvqnJOlC1oqRQXOwX8_ma4b8Rq3YmwOUuDCgt5DN8sIsvsOOLYQSdbvwKJy0mQQ-ToMMkQEwCxGQPrn9NLs-nYVeAIlQJVcIJlVaiUCrOiAjf5lwRAxtHL85mJk0rblklhMltqtEsjKq4rJKkZCUzzJZFYSq2D4PF_cIeQJBbrhPFY12k2No0J1VbWYNK3uCqY4Zw0pODfLxzwfJa9gTJxBBGXjwS53JLal5L9PFZluLdY5SYLOfUxhSnRIkT-yoqai6ifAiBl6V0b-_O_8rJ-JxziphmQzj1MpZt_57WGschmcSRSDcUKQ7f6G0En1az9QgGzb8He4wGXKO_dXPoGRzpNbo
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Modern+statistical+methods+for+HCI&rft.au=Robertson%2C+Judy&rft.au=Kaptein%2C+Maurits&rft.date=2016-01-01&rft.pub=Springer&rft.isbn=9783319266312&rft_id=info:doi/10.1007%2F978-3-319-26633-6&rft.externalDocID=BB22003557
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833192%2F9783319266336.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-26633-6