Handbook of in vivo chemistry in mice : from lab to living system
Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals.
Saved in:
Main Authors | , |
---|---|
Format | eBook Book |
Language | English |
Published |
Weinheim
Wiley-VCH
2020
John Wiley & Sons, Incorporated |
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 9783527344321 3527344322 |
DOI | 10.1002/9783527344406 |
Cover
Table of Contents:
- 5.6 PET in Animal Imaging -- 5.6.1 PET in Oncology Model -- 5.6.1.1 Cancer Diagnosis -- 5.6.1.2 Personal Treatment Screening -- 5.6.1.3 Therapeutic Effect Monitoring -- 5.6.1.4 Radiotherapy Planning -- 5.6.1.5 Drug Discovery -- 5.6.2 PET in Cardiology Model -- 5.6.3 PET in Neurology Model -- 5.6.4 PET Imaging in Other Disease Models -- 5.7 PET Image Analysis -- 5.8 Outlook for the Future -- Reference -- Chapter 6 Single‐Photon Emission Computed Tomographic Imaging in Live Animals -- 6.1 Introduction -- 6.2 SPECT Devices Used in Small Animals -- 6.2.1 Innovative Preclinical Full‐Body SPECT Imager for Rats and Mice: γ‐CUBE -- 6.2.2 Innovative Preclinical Full‐Body PET Imager for Rats and Mice: β‐CUBE -- 6.2.3 Innovative Preclinical Full‐Body CT Imager for Rats and Mice: X‐CUBE -- 6.2.4 Animal Monitoring: Its Importance and Overview of MOLECUBES's Integrated Solution to Advance Physiological Monitoring -- 6.2.5 Selected Applications Acquired on the CUBES -- 6.2.5.1 SPECT Imaging with γ‐CUBE -- 6.2.5.2 PET Imaging with β‐CUBE -- 6.2.5.3 CT Imaging with X‐CUBE -- 6.3 Characteristics of SPECT Radionuclides and SPECT Imaging Probes -- 6.3.1 Characteristics of SPECT Radionuclides -- 6.3.2 Characteristics of SPECT Imaging Probes -- 6.4 Radiolabeling -- 6.4.1 Characteristic of Radiolabeling -- 6.4.2 Radiolabeling with Technetium‐99m -- 6.4.3 Radiolabeling with Iodine‐123 and Iodine‐131 -- 6.4.4 Radioactive Iodine Labeling for Small Molecular Compounds -- 6.4.5 Aromatic Electrophilic Substitution Reaction -- 6.5 In Vivo Imaging of Disease Models -- 6.5.1 Imaging of Central Nervous System Disease -- 6.5.1.1 Alzheimer's Disease -- 6.5.1.2 Parkinson's Disease -- 6.5.1.3 Cerebral Ischemia -- 6.5.2 Imaging of Cardiovascular Disease -- 6.5.2.1 Atherosclerotic Plaque -- 6.5.2.2 Myocardial Ischemia -- 6.5.2.3 Imaging of Cancer -- 6.6 Conclusions -- References
- 9.2.7 Controlled Activation of siRNA Using IEDDA Chemistry
- 2.6.2.5 Intranasal Administration -- 2.6.2.6 Intradermal Administration -- 2.6.2.7 Epicutaneous Administration -- 2.6.2.8 Intratracheal Administration -- 2.6.2.9 Inhalational Administration -- 2.6.2.10 Retro‐orbital Administration -- References -- Chapter 3 Optical‐Based Detection in Live Animals -- 3.1 Introduction -- 3.1.1 Basics of Luminescence -- 3.1.2 Appropriate Wavelengths for Live Animal Imaging -- 3.1.3 Advantages and Disadvantages of In Vivo Optical Imaging -- 3.2 Fluorescence Imaging in Live Animals -- 3.2.1 Fluorescent Molecules for Live Animal Imaging -- 3.2.2 How to Detect Fluorescence in Live Animals? -- 3.2.3 Activatable Probes -- 3.2.4 Microscope -- 3.2.5 Application of Fluorescence Imaging to Drug Development -- 3.3 Luminescence Imaging in Live Animals -- 3.3.1 Luminescence Systems for Live Animal Imaging -- 3.3.1.1 Firefly/Beetle Luciferin-Luciferase System -- 3.3.1.2 Coelenterazine‐Dependent Luciferase System -- 3.3.1.3 Chemiluminescence System -- 3.3.2 How to Detect Luminescence in Live Animals? -- 3.3.3 Luciferase‐Based Bioluminescence Probes for In Vivo Imaging -- 3.4 Summary -- References -- Chapter 4 Ultrasound Imaging in Live Animals -- 4.1 Introduction -- 4.2 High‐Frequency Ultrasound Imaging -- 4.3 Ultrasound Contrast Agents -- 4.4 Photoacoustic Imaging -- 4.5 Preclinical Applications -- 4.5.1 Cardiovascular -- 4.5.2 Oncology -- 4.5.3 Developmental Biology -- References -- Chapter 5 Positron Emission Tomography (PET) Imaging in Live Animals -- 5.1 Introduction -- 5.2 Brief History of PET -- 5.3 Principles of PET -- 5.4 Small‐Animal PET Scanners -- 5.5 PET Imaging Tracers -- 5.5.1 Metabolic Probe -- 5.5.2 Specific Receptor Targeting Probe -- 5.5.3 Gene Expression -- 5.5.4 Specific Enzyme Substrate -- 5.5.5 Microenvironment Probe -- 5.5.6 Biological Processes -- 5.5.7 Perfusion Probes -- 5.5.8 Nanoparticles
- Cover -- Title Page -- Copyright -- Contents -- Chapter 1 Summary of Currently Available Mouse Models -- 1.1 Introduction -- 1.2 Origin and History of Laboratory Mice -- 1.3 Laboratory Mouse Strains -- 1.3.1 Wild‐Derived Mice -- 1.3.2 Inbred Mice -- 1.3.3 Hybrid Mice -- 1.3.4 Outbred Stocks -- 1.3.5 Closed Colony -- 1.3.6 Congenic Mice -- 1.4 Mutant Mice -- 1.4.1 Spontaneous -- 1.4.2 Transgenesis -- 1.4.3 Targeted Mutagenesis -- 1.4.4 Inducible Mutagenesis -- 1.4.5 Cre-loxP System -- 1.4.6 CRISPR/Cas9 System -- 1.5 Resources of Laboratory Strains -- 1.6 Germ‐Free Mice -- 1.7 Gnotobiotic Mice -- 1.8 Specific Pathogen‐Free Mice -- 1.9 Immunocompetent and Immunodeficient Mice -- 1.10 Mouse Health Monitoring -- 1.11 Production and Maintenance of Mouse Colony -- 1.11.1 Production Planning -- 1.11.2 Breeding Systems and Mating Schemes -- 1.12 Mating -- 1.13 Gestation Period -- 1.14 Parturition -- 1.15 Parental Behavior and Rearing Pups -- 1.16 Growth of Pups -- 1.17 Reproductive Lifespan -- 1.18 Record Keeping and Colony Organization -- 1.19 Animal Identification -- 1.20 Animal Models in Preclinical Research -- References -- Chapter 2 General Notes of Chemical Administration to Live Animals -- 2.1 Introduction -- 2.2 Restraint -- 2.2.1 One‐Handed Restraint -- 2.2.2 Two‐Handed Restraint -- 2.3 Substances -- 2.3.1 Substance Characteristics -- 2.3.2 Vehicle Characteristics -- 2.3.3 Frequency and Volume of Administration -- 2.3.4 Needle Size -- 2.4 Anesthesia -- 2.4.1 Inhaled Agents -- 2.4.2 Injectable Agents -- 2.5 Euthanasia -- 2.6 Administration -- 2.6.1 Enteral Administration -- 2.6.1.1 Oral Administration -- 2.6.1.2 Intragastric Administration -- 2.6.2 Parenteral Administration -- 2.6.2.1 Subcutaneous Administration -- 2.6.2.2 Intraperitoneal Administration -- 2.6.2.3 Intravenous Administration -- 2.6.2.4 Intramuscular Administration
- Chapter 7 Radiotherapeutic Applications -- 7.1 Introduction -- 7.2 Radionuclide Therapy in Tumor‐Bearing Mice -- 7.2.1 Radiotherapy with β‐Emitting Nuclides -- 7.2.2 Radiotherapy Using α‐Emitting Nuclides -- 7.3 Radiolabeling Strategy -- 7.3.1 Labeled Target Compounds -- 7.3.2 211At‐Labeled Compounds -- 7.3.3 Chelating Agents for 90Y, 177Lu, 225Ac, 213Bi -- 7.3.4 Peptides for Radionuclide Therapy -- 7.3.4.1 Octreotate (TATE) and [Tyr3]‐Octreotide (TOC) -- 7.3.4.2 NeoBOMB1 -- 7.3.4.3 Pentixather -- 7.3.4.4 PSMA‐617 -- 7.3.4.5 Minigastrin -- 7.3.5 Antibodies for Radionuclide Therapy -- 7.3.5.1 Lintuzumab -- 7.3.5.2 Rituximab -- 7.3.5.3 Trastuzumab -- 7.3.6 Examples of Radiotherapeutic Agents and Target Diseases -- 7.4 Radiotheranostics -- 7.4.1 Radiotheranostics Probe -- 7.4.2 Our Approach to Radiotheranostic Probe Development -- 7.4.3 Expectations and Challenges in Radiotheranostics -- 7.4.4 Boron Neutron Capture Therapy (BNCT) -- 7.4.5 Current Status of BNCT Drugs -- 7.4.5.1 4‐Borono‐l‐Phenylalanine (BPA) -- 7.4.5.2 Sodium Borocaptate (BSH) -- 7.5 Conclusion -- References -- Chapter 8 Metabolic Glycan Engineering in Live Animals: Using Bio‐orthogonal Chemistry to Alter Cell Surface Glycans -- 8.1 Introduction -- 8.2 Overview of Metabolic Glycan Engineering -- 8.2.1 Origin of Metabolic Glycan Engineering -- 8.2.2 Expansion of the Methodology to Include Unnatural Functional Groups and Bio‐orthogonal Elaboration -- 8.3 Bio‐orthogonal Chemistries that Alter Cell Surface Glycans -- 8.3.1 Bio‐orthogonal Chemistries Amenable to Deployment in Live Animals -- 8.3.2 Bio‐orthogonal Chemistries Amenable to Deployment on Cells -- 8.4 Permissive Carbohydrate Biosynthetic Pathways -- 8.4.1 Deployment of Unnatural Monosaccharides in Mammalian Cells -- 8.4.2 Unnatural Sugars that Label Glycans on Bacterial Cells
- 8.5 Cell‐ and Tissue‐Specific Delivery of Unnatural Sugars -- 8.5.1 Harness Inherent Differences in Carbohydrate Biosynthesis -- 8.5.2 Metabolically Label Cells Ex vivo Before Introducing Them In vivo -- 8.5.3 Label Tissues or Organs In vivo Before Analyzing them Ex vivo -- 8.5.4 Employ Tissue‐Specific Enzymes to Release Monosaccharide Substrates -- 8.5.5 Deliver Monosaccharide Substrates via Liposomes -- 8.5.6 Use Tissue‐Specific Transporters to Induce Monosaccharide Uptake -- 8.6 Applications of Metabolic Glycan Labeling in Mice -- 8.6.1 Imaging Glycans in Mice -- 8.6.2 Covalent Delivery of Therapeutics in Mice -- 8.7 Beyond Mice: Metabolic Glycan Engineering in Diverse Animals -- 8.7.1 Zebra Fish -- 8.7.2 Worms -- 8.7.3 Plants -- 8.8 Conclusions and Future Outlook -- 8.8.1 Metabolic Glycan Engineering Offers a Test Bed for Bio‐orthogonal Chemistries -- 8.8.2 New Bio‐orthogonal Reactions Could Transform the Field -- 8.8.3 Basic Questions About Glycans Within Living Systems Remain Unanswered -- Acknowledgments -- References -- Chapter 9 In Vivo Bioconjugation Using Bio‐orthogonal Chemistry -- 9.1 Introduction -- 9.1.1 IEDDA Chemistry Between trans‐Cyclooctene and Tetrazine -- 9.1.2 Synthesis of New Tetrazines and Characterization of Their Reactivity -- 9.1.3 Second Generation of IEDDA Reagents -- 9.1.4 Bond‐cleaving Bio‐orthogonal "Click‐to‐Release" Chemistry -- 9.2 In Vivo Applications of IEDDA Chemistry -- 9.2.1 Pretargeting Approach for Cell Imaging -- 9.2.2 Pretargeting Approach for In Vivo Imaging -- 9.2.3 Application of the Pretargeting Strategy for In Vivo Radio Imaging -- 9.2.4 In Vivo Drug Activation Using Bond‐cleaving Bio‐orthogonal Chemistry -- 9.2.5 Reloadable Materials Allow Local Prodrug Activation -- 9.2.6 Reloadable Materials Allow Local Prodrug Activation Using IEDDA Chemistry