Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices
Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons b...
Saved in:
Published in | ACS photonics Vol. 6; no. 8; pp. 1963 - 1971 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
21.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2330-4022 2330-4022 |
DOI | 10.1021/acsphotonics.9b00327 |
Cover
Abstract | Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides. |
---|---|
AbstractList | Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides. |
Author | Muziol, Grzegorz Baranowski, Michal Zolud, Sebastian Suski, Tadeusz Skierbiszewski, Czeslaw Szkudlarek, Krzesimir Turski, Henryk Janicki, Lukasz Siekacz, Marcin Kudrawiec, Robert |
AuthorAffiliation | Faculty of Fundamental Problems of Technology TopGaN Ltd |
AuthorAffiliation_xml | – name: TopGaN Ltd – name: Faculty of Fundamental Problems of Technology |
Author_xml | – sequence: 1 givenname: Grzegorz orcidid: 0000-0001-7430-3838 surname: Muziol fullname: Muziol, Grzegorz email: gmuziol@unipress.waw.pl – sequence: 2 givenname: Henryk surname: Turski fullname: Turski, Henryk – sequence: 3 givenname: Marcin surname: Siekacz fullname: Siekacz, Marcin – sequence: 4 givenname: Krzesimir surname: Szkudlarek fullname: Szkudlarek, Krzesimir – sequence: 5 givenname: Lukasz orcidid: 0000-0002-1054-6643 surname: Janicki fullname: Janicki, Lukasz organization: Faculty of Fundamental Problems of Technology – sequence: 6 givenname: Michal orcidid: 0000-0002-5974-0850 surname: Baranowski fullname: Baranowski, Michal organization: Faculty of Fundamental Problems of Technology – sequence: 7 givenname: Sebastian surname: Zolud fullname: Zolud, Sebastian organization: Faculty of Fundamental Problems of Technology – sequence: 8 givenname: Robert orcidid: 0000-0003-2593-9172 surname: Kudrawiec fullname: Kudrawiec, Robert organization: Faculty of Fundamental Problems of Technology – sequence: 9 givenname: Tadeusz surname: Suski fullname: Suski, Tadeusz – sequence: 10 givenname: Czeslaw surname: Skierbiszewski fullname: Skierbiszewski, Czeslaw organization: TopGaN Ltd |
BookMark | eNqF0M1OAjEQB_DGYCIib-ChL7DYj2W7600RPxISMNHzpnSnULLbkraYwNO7wh6IBz3NTCa_SeZ_jXrWWUDolpIRJYzeSRW2axedNSqMiiUhnIkL1GeckyQljPXO-is0DGFDCKFkzLMs7SP3CHtnK_y-kzbuGjzV2igDVu3xzDQmymicDXjuzcrYdrArrL1rcFwDXhg4OKhBRW8UXrhaenM4Amxsy1frmEzbG0f1BF9GQbhBl1rWAYZdHaDP5-nH5DWZzV_eJg-zRLKCxaRShVCZFEKM5ZKA4KmCTFSS5znPZUVBVTovpJJ6TCnQTAPNKVWpzrNKMLHkA3R_uqu8C8GDLlX3TPTS1CUl5U965Xl6ZZdei9NfeOtNI_3-P0ZOrN2WG7fztv3wb_INT6GO_w |
CitedBy_id | crossref_primary_10_1109_JPHOT_2024_3379231 crossref_primary_10_1063_5_0167779 crossref_primary_10_4028_p_a4ldk0 crossref_primary_10_3390_photonics12030276 crossref_primary_10_3390_photonics10060647 crossref_primary_10_1007_s11082_021_03455_0 crossref_primary_10_1038_s41467_023_43335_7 crossref_primary_10_1063_5_0177614 crossref_primary_10_1063_1_5121368 crossref_primary_10_1109_JSTQE_2021_3114316 crossref_primary_10_1103_PhysRevApplied_15_024046 crossref_primary_10_1103_PhysRevApplied_19_014044 crossref_primary_10_1039_D1QM00723H crossref_primary_10_1063_5_0073741 crossref_primary_10_1038_s41377_022_00985_4 crossref_primary_10_1063_5_0148168 crossref_primary_10_1364_OE_415258 crossref_primary_10_1103_PhysRevB_108_045304 crossref_primary_10_1364_OE_382646 crossref_primary_10_3390_ma15010237 crossref_primary_10_1364_OE_480074 crossref_primary_10_3390_electronics9091481 crossref_primary_10_1103_PhysRevApplied_20_034040 crossref_primary_10_35848_1347_4065_ac3c1a crossref_primary_10_1016_j_ceramint_2024_08_041 crossref_primary_10_1364_OE_441387 crossref_primary_10_1002_lpor_202400529 crossref_primary_10_1364_OE_405994 crossref_primary_10_1103_PhysRevApplied_21_054030 crossref_primary_10_1021_acsphotonics_4c02193 crossref_primary_10_3390_ma17164022 crossref_primary_10_1109_JQE_2021_3137822 crossref_primary_10_1063_5_0142035 crossref_primary_10_1007_s12648_023_02677_0 |
Cites_doi | 10.1063/1.2807272 10.1109/JDT.2012.2227682 10.1103/PhysRevB.61.10994 10.1063/1.371866 10.1021/acs.nanolett.8b04781 10.7567/APEX.8.032103 10.1002/pssa.201000948 10.1063/1.3517481 10.1103/PhysRevB.38.6160 10.1364/OE.19.00A991 10.1109/JDT.2007.895339 10.1109/JSTQE.2009.2013476 10.7567/1882-0786/aaf4b1 10.1143/APEX.5.112103 10.1002/pssa.201026149 10.1117/12.2212011 10.1103/PhysRevB.56.R10024 10.1063/1.3570656 10.1103/PhysRevB.60.8849 10.1063/1.1351517 10.1088/0953-8984/14/13/302 10.1063/1.2189788 10.1143/JJAP.35.L74 10.1063/1.2775334 10.1063/1.3541785 10.1016/j.jcrysgro.2008.08.021 10.1002/pssa.200983410 10.1063/1.2805197 10.1063/1.111832 10.1063/1.4989998 10.1109/JPROC.2002.1021567 10.1063/1.126940 10.1103/PhysRevLett.103.026801 10.1103/PhysRevB.98.165302 10.1063/1.4941815 10.1103/PhysRevLett.116.027401 10.1063/1.4861655 10.1063/1.1477620 10.1103/PhysRevB.58.R13371 10.1103/PhysRevX.7.041017 10.1063/1.109775 10.1103/PhysRevLett.110.177406 10.1038/nphoton.2009.32 10.1063/1.4790839 10.1143/JJAP.39.413 10.1063/1.2800290 10.1063/1.369664 10.1063/1.2785135 10.1063/1.3464172 10.1063/1.371241 10.1063/1.122247 10.1103/PhysRevB.57.R9435 10.1063/1.116981 10.1063/1.3639292 10.1063/1.2218385 10.1143/JJAP.46.L190 10.1063/1.124193 10.1016/j.jcrysgro.2006.12.054 10.1063/1.122350 10.1063/1.5003112 10.1063/1.4811560 10.7567/APEX.6.122704 10.1088/0022-3727/31/20/001 10.1063/1.123727 10.1016/j.mssp.2018.12.011 10.1063/1.2839305 10.1143/JJAP.36.L382 10.1038/35022529 10.1126/science.1183226 10.1007/978-3-662-04156-7 10.1143/APEX.2.082101 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsphotonics.9b00327 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2330-4022 |
EndPage | 1971 |
ExternalDocumentID | 10_1021_acsphotonics_9b00327 b948600668 |
GroupedDBID | 53G ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD GNL IH9 JG JG~ UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3 |
IEDL.DBID | ACS |
ISSN | 2330-4022 |
IngestDate | Tue Jul 01 04:16:37 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Thu Aug 27 13:43:24 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Keywords | piezoelectric polarization green gap light-emitting diodes photonic devices III-nitrides quantum wells |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3 |
ORCID | 0000-0002-5974-0850 0000-0002-1054-6643 0000-0001-7430-3838 0000-0003-2593-9172 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1021_acsphotonics_9b00327 crossref_primary_10_1021_acsphotonics_9b00327 acs_journals_10_1021_acsphotonics_9b00327 |
ProviderPackageCode | JG~ GNL VF5 XKZ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-21 |
PublicationDateYYYYMMDD | 2019-08-21 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-21 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | ACS photonics |
PublicationTitleAlternate | ACS Photonics |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 Sze S. M. (ref66/cit66) 2001 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 Nakamura S. (ref14/cit14) 2000 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref47/cit47 doi: 10.1063/1.2807272 – ident: ref44/cit44 doi: 10.1109/JDT.2012.2227682 – ident: ref68/cit68 doi: 10.1103/PhysRevB.61.10994 – ident: ref8/cit8 doi: 10.1063/1.371866 – ident: ref58/cit58 doi: 10.1021/acs.nanolett.8b04781 – ident: ref62/cit62 doi: 10.7567/APEX.8.032103 – ident: ref70/cit70 doi: 10.1002/pssa.201000948 – ident: ref11/cit11 doi: 10.1063/1.3517481 – ident: ref67/cit67 doi: 10.1103/PhysRevB.38.6160 – ident: ref38/cit38 doi: 10.1364/OE.19.00A991 – ident: ref18/cit18 doi: 10.1109/JDT.2007.895339 – ident: ref19/cit19 doi: 10.1109/JSTQE.2009.2013476 – ident: ref56/cit56 doi: 10.7567/1882-0786/aaf4b1 – ident: ref60/cit60 doi: 10.1143/APEX.5.112103 – ident: ref31/cit31 doi: 10.1002/pssa.201026149 – ident: ref48/cit48 doi: 10.1117/12.2212011 – ident: ref1/cit1 doi: 10.1103/PhysRevB.56.R10024 – ident: ref32/cit32 doi: 10.1063/1.3570656 – ident: ref21/cit21 doi: 10.1103/PhysRevB.60.8849 – ident: ref25/cit25 doi: 10.1063/1.1351517 – ident: ref4/cit4 doi: 10.1088/0953-8984/14/13/302 – ident: ref53/cit53 doi: 10.1063/1.2189788 – ident: ref16/cit16 doi: 10.1143/JJAP.35.L74 – ident: ref39/cit39 doi: 10.1063/1.2775334 – ident: ref72/cit72 doi: 10.1063/1.3541785 – ident: ref50/cit50 doi: 10.1016/j.jcrysgro.2008.08.021 – ident: ref74/cit74 doi: 10.1002/pssa.200983410 – ident: ref46/cit46 doi: 10.1063/1.2805197 – ident: ref15/cit15 doi: 10.1063/1.111832 – ident: ref64/cit64 – ident: ref57/cit57 doi: 10.1063/1.4989998 – ident: ref6/cit6 doi: 10.1109/JPROC.2002.1021567 – ident: ref9/cit9 doi: 10.1063/1.126940 – ident: ref12/cit12 doi: 10.1103/PhysRevLett.103.026801 – ident: ref69/cit69 doi: 10.1103/PhysRevB.98.165302 – ident: ref37/cit37 doi: 10.1063/1.4941815 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.116.027401 – ident: ref61/cit61 doi: 10.1063/1.4861655 – ident: ref54/cit54 doi: 10.1063/1.1477620 – ident: ref26/cit26 doi: 10.1103/PhysRevB.58.R13371 – volume-title: Semiconductor Devices: Physics and Technology year: 2001 ident: ref66/cit66 – ident: ref13/cit13 doi: 10.1103/PhysRevX.7.041017 – ident: ref5/cit5 doi: 10.1063/1.109775 – ident: ref33/cit33 doi: 10.1103/PhysRevLett.110.177406 – ident: ref20/cit20 doi: 10.1038/nphoton.2009.32 – ident: ref55/cit55 doi: 10.1063/1.4790839 – ident: ref45/cit45 doi: 10.1143/JJAP.39.413 – ident: ref30/cit30 doi: 10.1063/1.2800290 – ident: ref7/cit7 doi: 10.1063/1.369664 – ident: ref34/cit34 doi: 10.1063/1.2785135 – ident: ref63/cit63 – ident: ref71/cit71 doi: 10.1063/1.3464172 – ident: ref24/cit24 doi: 10.1063/1.371241 – ident: ref2/cit2 doi: 10.1063/1.122247 – ident: ref27/cit27 doi: 10.1103/PhysRevB.57.R9435 – ident: ref29/cit29 doi: 10.1063/1.116981 – ident: ref59/cit59 doi: 10.1063/1.3639292 – ident: ref41/cit41 doi: 10.1063/1.2218385 – ident: ref43/cit43 doi: 10.1143/JJAP.46.L190 – ident: ref3/cit3 doi: 10.1063/1.124193 – ident: ref51/cit51 doi: 10.1016/j.jcrysgro.2006.12.054 – ident: ref23/cit23 doi: 10.1063/1.122350 – ident: ref65/cit65 doi: 10.1063/1.5003112 – ident: ref49/cit49 doi: 10.1063/1.4811560 – ident: ref73/cit73 doi: 10.7567/APEX.6.122704 – ident: ref17/cit17 doi: 10.1088/0022-3727/31/20/001 – ident: ref22/cit22 doi: 10.1063/1.123727 – ident: ref52/cit52 doi: 10.1016/j.mssp.2018.12.011 – ident: ref36/cit36 doi: 10.1063/1.2839305 – ident: ref28/cit28 doi: 10.1143/JJAP.36.L382 – ident: ref40/cit40 doi: 10.1038/35022529 – ident: ref10/cit10 doi: 10.1126/science.1183226 – volume-title: The Blue Laser Diode: The Complete Story year: 2000 ident: ref14/cit14 doi: 10.1007/978-3-662-04156-7 – ident: ref42/cit42 doi: 10.1143/APEX.2.082101 |
SSID | ssj0001053664 |
Score | 2.3540516 |
Snippet | Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1963 |
Title | Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices |
URI | http://dx.doi.org/10.1021/acsphotonics.9b00327 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCyUpygveWBhSGnsxI5HVFohJGgRVOoWObYjKmhSkWTpr-ecpLQC8dpjy7qcfd-d_X2H0DmLdEy5gLTE843j-UI4gTCBE1Dd0XHsdrSy9Y67e3Yz8m7H_niZKH6-wSfupVTZ7DnNrVBs1rYKfpTwdbRBGIQaC4W6j8uaCngUKxWjCKTpNjUiC7bcNxPZmKSylZi0Elz6TTRYUHSqNyUv7SKP2mr-VbHxj-veRls1zsRXlWPsoDWT7KJmjTlxvaOzPZRWFBb8UICJiynulZISlo-JS-5TVdDDg6p_ln0jjS0jBQNuxMOJmadVH52JwkObJNesTjxJYLiVKOlNJ-XLanxtyjNpH436vafujVM3YXAkESR3tBJcMck592XUMZx6yjCuJQ0CGkjtGqXjQEglY4BuxmWxAczgKi8OmAZsFNED1EjSxBwiTJSC4yTyDczgcXAdsAp1pTTaSCapaaELMFpYb6IsLO_HiRuuWjKsLdlCdPHLQlUbwzbVeP1llPMxalapefz4_dE_VnSMNgFMCVtvJu4JauRvhTkFwJJHZ6WXvgP8Wu2c |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHOBCWcWOD1w4pDRxYifHqhSVpQXEot4ix3ZEBbSIJJd-PWMnhQoJUK9RbI0mY_vNxO8NwDFLVEp5hGmJH2jHD6LICSMdOiFVDZWmbkNJU-_o9ljn0b_sB_05CCZcGDQiw5ky-xP_W13APcVn78-j3OjFZnUj5Ec9Pg-LAfOZ6djQbN1_l1YwsJgVjvIwWzcZkjchzf0ykTmaZDZ1NE2dMec1ePqyzl4teakXeVKX4x_CjTObvworFeokzTJM1mBOD9ehViFQUq3vbANGJaGF3BXo8OKNtK3AhGFnEsuEKst75KbspmVuTBPDTyGIIsntQI9HZVedgSS3JmWuOJ5kMMThRrCk_Taw96zJmbY71CY8nrcfWh2nasngCC_yckfJiEsmOOeBSBqaU19qxpWgYUhDoVwtVRpGQooUgZx2WaoRQbjST0OmECkldAsWhqOh3gbiSYmbSxJonMHnGEjoFeoKoZUWTFC9AyfotLhaUlls_5Z7bjztybjy5A7QyZeLZeUM02Lj9Z9Rzteo91Lb48_3d2ew6AiWOg_d6_j6one1B8sIsyJTifbcfVjIPwp9gFAmTw5t4H4Ceu31_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSIgLb8R45sCFQ8fStE17RLBpvMYQTJq4VGmSigr2EO0u-_U4aTYmJEBwrZrIde3ksxN_RugkSGRKWQRhiecrx_OjyAkjFTohlXWZpqQuhc533LWDVte77vm9uVZfIEQOM-XmEF979UimlmGAnMHz0cuw0JyxeU2T-VGXLaIlwCREd204v3j8TK-AcQWGPMqFiF1HSe60cO6bifT2JPK57Wlun2muoeeZhOZ6yWttXCQ1MflC3vivT1hHqxZ94vPSXDbQghpsojWLRLH183wLDcvCFvwwBsWP-7hhiCZ0lSY2FVFlmg_fl1219M1prOtUMKBJ3MnUZFh218kE7ujQ2dZ64mwAwzVxSaOfmfvW-FKZlWobdZuNp4uWY1szONyN3MKRImIi4Iwxnyd1xagnVMAkp2FIQy6JEjINIy54CoBOkSBVgCSI8NIwkICYErqDKoPhQO0i7AoBi0ziK5jBY2BQoBVKOFdS8YBTVUWnoLTYulYem1Nzl8TzmoytJquITv9eLKwydKuNt19GObNRo5Lj48f39_4g0TFa7lw249ur9s0-WgG0FemEtEsOUKV4H6tDQDRFcmRs9wMk8vh4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Quantum+Efficiency+Limitations+Originating+from+the+Piezoelectric+Polarization+in+Light-Emitting+Devices&rft.jtitle=ACS+photonics&rft.au=Muziol%2C+Grzegorz&rft.au=Turski%2C+Henryk&rft.au=Siekacz%2C+Marcin&rft.au=Szkudlarek%2C+Krzesimir&rft.date=2019-08-21&rft.pub=American+Chemical+Society&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=6&rft.issue=8&rft.spage=1963&rft.epage=1971&rft_id=info:doi/10.1021%2Facsphotonics.9b00327&rft.externalDocID=b948600668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon |