Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices

Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons b...

Full description

Saved in:
Bibliographic Details
Published inACS photonics Vol. 6; no. 8; pp. 1963 - 1971
Main Authors Muziol, Grzegorz, Turski, Henryk, Siekacz, Marcin, Szkudlarek, Krzesimir, Janicki, Lukasz, Baranowski, Michal, Zolud, Sebastian, Kudrawiec, Robert, Suski, Tadeusz, Skierbiszewski, Czeslaw
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.08.2019
Subjects
Online AccessGet full text
ISSN2330-4022
2330-4022
DOI10.1021/acsphotonics.9b00327

Cover

Abstract Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.
AbstractList Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.
Author Muziol, Grzegorz
Baranowski, Michal
Zolud, Sebastian
Suski, Tadeusz
Skierbiszewski, Czeslaw
Szkudlarek, Krzesimir
Turski, Henryk
Janicki, Lukasz
Siekacz, Marcin
Kudrawiec, Robert
AuthorAffiliation Faculty of Fundamental Problems of Technology
TopGaN Ltd
AuthorAffiliation_xml – name: TopGaN Ltd
– name: Faculty of Fundamental Problems of Technology
Author_xml – sequence: 1
  givenname: Grzegorz
  orcidid: 0000-0001-7430-3838
  surname: Muziol
  fullname: Muziol, Grzegorz
  email: gmuziol@unipress.waw.pl
– sequence: 2
  givenname: Henryk
  surname: Turski
  fullname: Turski, Henryk
– sequence: 3
  givenname: Marcin
  surname: Siekacz
  fullname: Siekacz, Marcin
– sequence: 4
  givenname: Krzesimir
  surname: Szkudlarek
  fullname: Szkudlarek, Krzesimir
– sequence: 5
  givenname: Lukasz
  orcidid: 0000-0002-1054-6643
  surname: Janicki
  fullname: Janicki, Lukasz
  organization: Faculty of Fundamental Problems of Technology
– sequence: 6
  givenname: Michal
  orcidid: 0000-0002-5974-0850
  surname: Baranowski
  fullname: Baranowski, Michal
  organization: Faculty of Fundamental Problems of Technology
– sequence: 7
  givenname: Sebastian
  surname: Zolud
  fullname: Zolud, Sebastian
  organization: Faculty of Fundamental Problems of Technology
– sequence: 8
  givenname: Robert
  orcidid: 0000-0003-2593-9172
  surname: Kudrawiec
  fullname: Kudrawiec, Robert
  organization: Faculty of Fundamental Problems of Technology
– sequence: 9
  givenname: Tadeusz
  surname: Suski
  fullname: Suski, Tadeusz
– sequence: 10
  givenname: Czeslaw
  surname: Skierbiszewski
  fullname: Skierbiszewski, Czeslaw
  organization: TopGaN Ltd
BookMark eNqF0M1OAjEQB_DGYCIib-ChL7DYj2W7600RPxISMNHzpnSnULLbkraYwNO7wh6IBz3NTCa_SeZ_jXrWWUDolpIRJYzeSRW2axedNSqMiiUhnIkL1GeckyQljPXO-is0DGFDCKFkzLMs7SP3CHtnK_y-kzbuGjzV2igDVu3xzDQmymicDXjuzcrYdrArrL1rcFwDXhg4OKhBRW8UXrhaenM4Amxsy1frmEzbG0f1BF9GQbhBl1rWAYZdHaDP5-nH5DWZzV_eJg-zRLKCxaRShVCZFEKM5ZKA4KmCTFSS5znPZUVBVTovpJJ6TCnQTAPNKVWpzrNKMLHkA3R_uqu8C8GDLlX3TPTS1CUl5U965Xl6ZZdei9NfeOtNI_3-P0ZOrN2WG7fztv3wb_INT6GO_w
CitedBy_id crossref_primary_10_1109_JPHOT_2024_3379231
crossref_primary_10_1063_5_0167779
crossref_primary_10_4028_p_a4ldk0
crossref_primary_10_3390_photonics12030276
crossref_primary_10_3390_photonics10060647
crossref_primary_10_1007_s11082_021_03455_0
crossref_primary_10_1038_s41467_023_43335_7
crossref_primary_10_1063_5_0177614
crossref_primary_10_1063_1_5121368
crossref_primary_10_1109_JSTQE_2021_3114316
crossref_primary_10_1103_PhysRevApplied_15_024046
crossref_primary_10_1103_PhysRevApplied_19_014044
crossref_primary_10_1039_D1QM00723H
crossref_primary_10_1063_5_0073741
crossref_primary_10_1038_s41377_022_00985_4
crossref_primary_10_1063_5_0148168
crossref_primary_10_1364_OE_415258
crossref_primary_10_1103_PhysRevB_108_045304
crossref_primary_10_1364_OE_382646
crossref_primary_10_3390_ma15010237
crossref_primary_10_1364_OE_480074
crossref_primary_10_3390_electronics9091481
crossref_primary_10_1103_PhysRevApplied_20_034040
crossref_primary_10_35848_1347_4065_ac3c1a
crossref_primary_10_1016_j_ceramint_2024_08_041
crossref_primary_10_1364_OE_441387
crossref_primary_10_1002_lpor_202400529
crossref_primary_10_1364_OE_405994
crossref_primary_10_1103_PhysRevApplied_21_054030
crossref_primary_10_1021_acsphotonics_4c02193
crossref_primary_10_3390_ma17164022
crossref_primary_10_1109_JQE_2021_3137822
crossref_primary_10_1063_5_0142035
crossref_primary_10_1007_s12648_023_02677_0
Cites_doi 10.1063/1.2807272
10.1109/JDT.2012.2227682
10.1103/PhysRevB.61.10994
10.1063/1.371866
10.1021/acs.nanolett.8b04781
10.7567/APEX.8.032103
10.1002/pssa.201000948
10.1063/1.3517481
10.1103/PhysRevB.38.6160
10.1364/OE.19.00A991
10.1109/JDT.2007.895339
10.1109/JSTQE.2009.2013476
10.7567/1882-0786/aaf4b1
10.1143/APEX.5.112103
10.1002/pssa.201026149
10.1117/12.2212011
10.1103/PhysRevB.56.R10024
10.1063/1.3570656
10.1103/PhysRevB.60.8849
10.1063/1.1351517
10.1088/0953-8984/14/13/302
10.1063/1.2189788
10.1143/JJAP.35.L74
10.1063/1.2775334
10.1063/1.3541785
10.1016/j.jcrysgro.2008.08.021
10.1002/pssa.200983410
10.1063/1.2805197
10.1063/1.111832
10.1063/1.4989998
10.1109/JPROC.2002.1021567
10.1063/1.126940
10.1103/PhysRevLett.103.026801
10.1103/PhysRevB.98.165302
10.1063/1.4941815
10.1103/PhysRevLett.116.027401
10.1063/1.4861655
10.1063/1.1477620
10.1103/PhysRevB.58.R13371
10.1103/PhysRevX.7.041017
10.1063/1.109775
10.1103/PhysRevLett.110.177406
10.1038/nphoton.2009.32
10.1063/1.4790839
10.1143/JJAP.39.413
10.1063/1.2800290
10.1063/1.369664
10.1063/1.2785135
10.1063/1.3464172
10.1063/1.371241
10.1063/1.122247
10.1103/PhysRevB.57.R9435
10.1063/1.116981
10.1063/1.3639292
10.1063/1.2218385
10.1143/JJAP.46.L190
10.1063/1.124193
10.1016/j.jcrysgro.2006.12.054
10.1063/1.122350
10.1063/1.5003112
10.1063/1.4811560
10.7567/APEX.6.122704
10.1088/0022-3727/31/20/001
10.1063/1.123727
10.1016/j.mssp.2018.12.011
10.1063/1.2839305
10.1143/JJAP.36.L382
10.1038/35022529
10.1126/science.1183226
10.1007/978-3-662-04156-7
10.1143/APEX.2.082101
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acsphotonics.9b00327
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2330-4022
EndPage 1971
ExternalDocumentID 10_1021_acsphotonics_9b00327
b948600668
GroupedDBID 53G
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
GNL
IH9
JG
JG~
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3
IEDL.DBID ACS
ISSN 2330-4022
IngestDate Tue Jul 01 04:16:37 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Thu Aug 27 13:43:24 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords piezoelectric polarization
green gap
light-emitting diodes
photonic devices
III-nitrides
quantum wells
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3
ORCID 0000-0002-5974-0850
0000-0002-1054-6643
0000-0001-7430-3838
0000-0003-2593-9172
PageCount 9
ParticipantIDs crossref_citationtrail_10_1021_acsphotonics_9b00327
crossref_primary_10_1021_acsphotonics_9b00327
acs_journals_10_1021_acsphotonics_9b00327
ProviderPackageCode JG~
GNL
VF5
XKZ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-21
PublicationDateYYYYMMDD 2019-08-21
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-21
  day: 21
PublicationDecade 2010
PublicationTitle ACS photonics
PublicationTitleAlternate ACS Photonics
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
Sze S. M. (ref66/cit66) 2001
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
Nakamura S. (ref14/cit14) 2000
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref47/cit47
  doi: 10.1063/1.2807272
– ident: ref44/cit44
  doi: 10.1109/JDT.2012.2227682
– ident: ref68/cit68
  doi: 10.1103/PhysRevB.61.10994
– ident: ref8/cit8
  doi: 10.1063/1.371866
– ident: ref58/cit58
  doi: 10.1021/acs.nanolett.8b04781
– ident: ref62/cit62
  doi: 10.7567/APEX.8.032103
– ident: ref70/cit70
  doi: 10.1002/pssa.201000948
– ident: ref11/cit11
  doi: 10.1063/1.3517481
– ident: ref67/cit67
  doi: 10.1103/PhysRevB.38.6160
– ident: ref38/cit38
  doi: 10.1364/OE.19.00A991
– ident: ref18/cit18
  doi: 10.1109/JDT.2007.895339
– ident: ref19/cit19
  doi: 10.1109/JSTQE.2009.2013476
– ident: ref56/cit56
  doi: 10.7567/1882-0786/aaf4b1
– ident: ref60/cit60
  doi: 10.1143/APEX.5.112103
– ident: ref31/cit31
  doi: 10.1002/pssa.201026149
– ident: ref48/cit48
  doi: 10.1117/12.2212011
– ident: ref1/cit1
  doi: 10.1103/PhysRevB.56.R10024
– ident: ref32/cit32
  doi: 10.1063/1.3570656
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.60.8849
– ident: ref25/cit25
  doi: 10.1063/1.1351517
– ident: ref4/cit4
  doi: 10.1088/0953-8984/14/13/302
– ident: ref53/cit53
  doi: 10.1063/1.2189788
– ident: ref16/cit16
  doi: 10.1143/JJAP.35.L74
– ident: ref39/cit39
  doi: 10.1063/1.2775334
– ident: ref72/cit72
  doi: 10.1063/1.3541785
– ident: ref50/cit50
  doi: 10.1016/j.jcrysgro.2008.08.021
– ident: ref74/cit74
  doi: 10.1002/pssa.200983410
– ident: ref46/cit46
  doi: 10.1063/1.2805197
– ident: ref15/cit15
  doi: 10.1063/1.111832
– ident: ref64/cit64
– ident: ref57/cit57
  doi: 10.1063/1.4989998
– ident: ref6/cit6
  doi: 10.1109/JPROC.2002.1021567
– ident: ref9/cit9
  doi: 10.1063/1.126940
– ident: ref12/cit12
  doi: 10.1103/PhysRevLett.103.026801
– ident: ref69/cit69
  doi: 10.1103/PhysRevB.98.165302
– ident: ref37/cit37
  doi: 10.1063/1.4941815
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.116.027401
– ident: ref61/cit61
  doi: 10.1063/1.4861655
– ident: ref54/cit54
  doi: 10.1063/1.1477620
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.58.R13371
– volume-title: Semiconductor Devices: Physics and Technology
  year: 2001
  ident: ref66/cit66
– ident: ref13/cit13
  doi: 10.1103/PhysRevX.7.041017
– ident: ref5/cit5
  doi: 10.1063/1.109775
– ident: ref33/cit33
  doi: 10.1103/PhysRevLett.110.177406
– ident: ref20/cit20
  doi: 10.1038/nphoton.2009.32
– ident: ref55/cit55
  doi: 10.1063/1.4790839
– ident: ref45/cit45
  doi: 10.1143/JJAP.39.413
– ident: ref30/cit30
  doi: 10.1063/1.2800290
– ident: ref7/cit7
  doi: 10.1063/1.369664
– ident: ref34/cit34
  doi: 10.1063/1.2785135
– ident: ref63/cit63
– ident: ref71/cit71
  doi: 10.1063/1.3464172
– ident: ref24/cit24
  doi: 10.1063/1.371241
– ident: ref2/cit2
  doi: 10.1063/1.122247
– ident: ref27/cit27
  doi: 10.1103/PhysRevB.57.R9435
– ident: ref29/cit29
  doi: 10.1063/1.116981
– ident: ref59/cit59
  doi: 10.1063/1.3639292
– ident: ref41/cit41
  doi: 10.1063/1.2218385
– ident: ref43/cit43
  doi: 10.1143/JJAP.46.L190
– ident: ref3/cit3
  doi: 10.1063/1.124193
– ident: ref51/cit51
  doi: 10.1016/j.jcrysgro.2006.12.054
– ident: ref23/cit23
  doi: 10.1063/1.122350
– ident: ref65/cit65
  doi: 10.1063/1.5003112
– ident: ref49/cit49
  doi: 10.1063/1.4811560
– ident: ref73/cit73
  doi: 10.7567/APEX.6.122704
– ident: ref17/cit17
  doi: 10.1088/0022-3727/31/20/001
– ident: ref22/cit22
  doi: 10.1063/1.123727
– ident: ref52/cit52
  doi: 10.1016/j.mssp.2018.12.011
– ident: ref36/cit36
  doi: 10.1063/1.2839305
– ident: ref28/cit28
  doi: 10.1143/JJAP.36.L382
– ident: ref40/cit40
  doi: 10.1038/35022529
– ident: ref10/cit10
  doi: 10.1126/science.1183226
– volume-title: The Blue Laser Diode: The Complete Story
  year: 2000
  ident: ref14/cit14
  doi: 10.1007/978-3-662-04156-7
– ident: ref42/cit42
  doi: 10.1143/APEX.2.082101
SSID ssj0001053664
Score 2.3540516
Snippet Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 1963
Title Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices
URI http://dx.doi.org/10.1021/acsphotonics.9b00327
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCyUpygveWBhSGnsxI5HVFohJGgRVOoWObYjKmhSkWTpr-ecpLQC8dpjy7qcfd-d_X2H0DmLdEy5gLTE843j-UI4gTCBE1Dd0XHsdrSy9Y67e3Yz8m7H_niZKH6-wSfupVTZ7DnNrVBs1rYKfpTwdbRBGIQaC4W6j8uaCngUKxWjCKTpNjUiC7bcNxPZmKSylZi0Elz6TTRYUHSqNyUv7SKP2mr-VbHxj-veRls1zsRXlWPsoDWT7KJmjTlxvaOzPZRWFBb8UICJiynulZISlo-JS-5TVdDDg6p_ln0jjS0jBQNuxMOJmadVH52JwkObJNesTjxJYLiVKOlNJ-XLanxtyjNpH436vafujVM3YXAkESR3tBJcMck592XUMZx6yjCuJQ0CGkjtGqXjQEglY4BuxmWxAczgKi8OmAZsFNED1EjSxBwiTJSC4yTyDczgcXAdsAp1pTTaSCapaaELMFpYb6IsLO_HiRuuWjKsLdlCdPHLQlUbwzbVeP1llPMxalapefz4_dE_VnSMNgFMCVtvJu4JauRvhTkFwJJHZ6WXvgP8Wu2c
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHOBCWcWOD1w4pDRxYifHqhSVpQXEot4ix3ZEBbSIJJd-PWMnhQoJUK9RbI0mY_vNxO8NwDFLVEp5hGmJH2jHD6LICSMdOiFVDZWmbkNJU-_o9ljn0b_sB_05CCZcGDQiw5ky-xP_W13APcVn78-j3OjFZnUj5Ec9Pg-LAfOZ6djQbN1_l1YwsJgVjvIwWzcZkjchzf0ykTmaZDZ1NE2dMec1ePqyzl4teakXeVKX4x_CjTObvworFeokzTJM1mBOD9ehViFQUq3vbANGJaGF3BXo8OKNtK3AhGFnEsuEKst75KbspmVuTBPDTyGIIsntQI9HZVedgSS3JmWuOJ5kMMThRrCk_Taw96zJmbY71CY8nrcfWh2nasngCC_yckfJiEsmOOeBSBqaU19qxpWgYUhDoVwtVRpGQooUgZx2WaoRQbjST0OmECkldAsWhqOh3gbiSYmbSxJonMHnGEjoFeoKoZUWTFC9AyfotLhaUlls_5Z7bjztybjy5A7QyZeLZeUM02Lj9Z9Rzteo91Lb48_3d2ew6AiWOg_d6_j6one1B8sIsyJTifbcfVjIPwp9gFAmTw5t4H4Ceu31_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gSIgLb8R45sCFQ8fStE17RLBpvMYQTJq4VGmSigr2EO0u-_U4aTYmJEBwrZrIde3ksxN_RugkSGRKWQRhiecrx_OjyAkjFTohlXWZpqQuhc533LWDVte77vm9uVZfIEQOM-XmEF979UimlmGAnMHz0cuw0JyxeU2T-VGXLaIlwCREd204v3j8TK-AcQWGPMqFiF1HSe60cO6bifT2JPK57Wlun2muoeeZhOZ6yWttXCQ1MflC3vivT1hHqxZ94vPSXDbQghpsojWLRLH183wLDcvCFvwwBsWP-7hhiCZ0lSY2FVFlmg_fl1219M1prOtUMKBJ3MnUZFh218kE7ujQ2dZ64mwAwzVxSaOfmfvW-FKZlWobdZuNp4uWY1szONyN3MKRImIi4Iwxnyd1xagnVMAkp2FIQy6JEjINIy54CoBOkSBVgCSI8NIwkICYErqDKoPhQO0i7AoBi0ziK5jBY2BQoBVKOFdS8YBTVUWnoLTYulYem1Nzl8TzmoytJquITv9eLKwydKuNt19GObNRo5Lj48f39_4g0TFa7lw249ur9s0-WgG0FemEtEsOUKV4H6tDQDRFcmRs9wMk8vh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Quantum+Efficiency+Limitations+Originating+from+the+Piezoelectric+Polarization+in+Light-Emitting+Devices&rft.jtitle=ACS+photonics&rft.au=Muziol%2C+Grzegorz&rft.au=Turski%2C+Henryk&rft.au=Siekacz%2C+Marcin&rft.au=Szkudlarek%2C+Krzesimir&rft.date=2019-08-21&rft.pub=American+Chemical+Society&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=6&rft.issue=8&rft.spage=1963&rft.epage=1971&rft_id=info:doi/10.1021%2Facsphotonics.9b00327&rft.externalDocID=b948600668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon