Low-Contrast Dielectric Metasurface Optics

The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a subwavelength-patterned quasi-periodic structure, also known as a metasurface, one can build planar optical elements based on the principle of diffraction. Recent demonstrations of high-qua...

Full description

Saved in:
Bibliographic Details
Published inACS photonics Vol. 3; no. 2; pp. 209 - 214
Main Authors Zhan, Alan, Colburn, Shane, Trivedi, Rahul, Fryett, Taylor K, Dodson, Christopher M, Majumdar, Arka
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.02.2016
Subjects
Online AccessGet full text
ISSN2330-4022
2330-4022
DOI10.1021/acsphotonics.5b00660

Cover

Abstract The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a subwavelength-patterned quasi-periodic structure, also known as a metasurface, one can build planar optical elements based on the principle of diffraction. Recent demonstrations of high-quality metasurface optical elements are mostly based on high-refractive-index materials. Here, we present a design of low-contrast metasurface-based optical elements. We fabricate and experimentally characterize several silicon nitride-based lenses and vortex beam generators. The fabricated lenses achieved beam spots of less than 1 μm with numerical apertures as high as ∼0.75. We observed a transmission efficiency of 90% and focusing efficiency of 40% in the visible regime. Our results pave the way toward building low-loss metasurface-based optical elements at visible frequencies using low-contrast materials and extend the range of prospective material systems for metasurface optics.
AbstractList The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a subwavelength-patterned quasi-periodic structure, also known as a metasurface, one can build planar optical elements based on the principle of diffraction. Recent demonstrations of high-quality metasurface optical elements are mostly based on high-refractive-index materials. Here, we present a design of low-contrast metasurface-based optical elements. We fabricate and experimentally characterize several silicon nitride-based lenses and vortex beam generators. The fabricated lenses achieved beam spots of less than 1 μm with numerical apertures as high as ∼0.75. We observed a transmission efficiency of 90% and focusing efficiency of 40% in the visible regime. Our results pave the way toward building low-loss metasurface-based optical elements at visible frequencies using low-contrast materials and extend the range of prospective material systems for metasurface optics.
Author Fryett, Taylor K
Trivedi, Rahul
Dodson, Christopher M
Zhan, Alan
Colburn, Shane
Majumdar, Arka
AuthorAffiliation Indian Institute of Technology
Department of Electrical Engineering
University of Washington
Department of Physics
AuthorAffiliation_xml – name: Indian Institute of Technology
– name: Department of Physics
– name: Department of Electrical Engineering
– name: University of Washington
Author_xml – sequence: 1
  givenname: Alan
  surname: Zhan
  fullname: Zhan, Alan
– sequence: 2
  givenname: Shane
  surname: Colburn
  fullname: Colburn, Shane
– sequence: 3
  givenname: Rahul
  surname: Trivedi
  fullname: Trivedi, Rahul
– sequence: 4
  givenname: Taylor K
  surname: Fryett
  fullname: Fryett, Taylor K
– sequence: 5
  givenname: Christopher M
  surname: Dodson
  fullname: Dodson, Christopher M
– sequence: 6
  givenname: Arka
  surname: Majumdar
  fullname: Majumdar, Arka
  email: arka@uw.edu
BookMark eNqFj8FKAzEQhoNUsNa-gYeeha2TZJPtepNqVaj0oucwnSaYsm6WJEV8e1fbQ_Ggpxnm5_uZ75wN2tBaxi45TDkIfo2UureQQ-spTdUaQGs4YUMhJRQlCDE42s_YOKUtAHBQUutyyK6W4aOYhzZHTHly521jKUdPk2ebMe2iQ7KTVZf78gt26rBJdnyYI_a6uH-ZPxbL1cPT_HZZoKhFLhCtdLXGcga1qipcqxnpDdbEpVgT1BuSVgki53hZVdyp_sSFtFoRgtNKjtjNvpdiSClaZ8hnzP7nSd8YDuZb3ByLm4N4D5e_4C76d4yf_2Gwx_rUbMMutr3h38gXdkV0Mw
CitedBy_id crossref_primary_10_1515_nanoph_2020_0127
crossref_primary_10_1088_1742_6596_1368_2_022008
crossref_primary_10_1021_acsphotonics_4c02362
crossref_primary_10_1364_AO_57_001437
crossref_primary_10_1364_OE_388378
crossref_primary_10_1021_acsphotonics_0c01468
crossref_primary_10_1364_OSAC_376537
crossref_primary_10_1016_j_optcom_2018_03_018
crossref_primary_10_1109_LPT_2023_3260878
crossref_primary_10_3390_nano13101633
crossref_primary_10_1063_1_5007007
crossref_primary_10_1002_lpor_202000207
crossref_primary_10_1021_acsphotonics_6b00740
crossref_primary_10_1088_1361_6463_aaf7f3
crossref_primary_10_1002_admi_201701270
crossref_primary_10_1021_acs_nanolett_6b03626
crossref_primary_10_1002_adom_202301865
crossref_primary_10_1364_OL_42_001520
crossref_primary_10_1515_nanoph_2017_0129
crossref_primary_10_1002_lpor_201600295
crossref_primary_10_1038_srep38487
crossref_primary_10_1364_JOSAA_36_000079
crossref_primary_10_3788_PI_2024_R04
crossref_primary_10_1038_s41378_020_00190_6
crossref_primary_10_1063_5_0193284
crossref_primary_10_1021_acsphotonics_8b01487
crossref_primary_10_1103_PhysRevB_101_155430
crossref_primary_10_1038_s41566_022_01098_5
crossref_primary_10_1038_ncomms13682
crossref_primary_10_1364_OE_454878
crossref_primary_10_1364_AO_58_004654
crossref_primary_10_1021_acs_nanolett_8b04673
crossref_primary_10_1109_JSTQE_2016_2616447
crossref_primary_10_1364_OE_27_000667
crossref_primary_10_1021_acsphotonics_9b01216
crossref_primary_10_1016_j_optcom_2017_07_083
crossref_primary_10_3390_nano12121973
crossref_primary_10_1038_s41467_018_03155_6
crossref_primary_10_1021_acs_nanolett_6b05137
crossref_primary_10_1126_science_aam8100
crossref_primary_10_1515_nanoph_2017_0130
crossref_primary_10_1021_acsphotonics_7b01363
crossref_primary_10_1021_acsphotonics_0c00354
crossref_primary_10_1515_nanoph_2023_0561
crossref_primary_10_1364_OME_499193
crossref_primary_10_1038_s41598_020_71480_2
crossref_primary_10_1002_advs_202402530
crossref_primary_10_1515_nanoph_2020_0158
crossref_primary_10_1109_JPHOT_2020_2986263
crossref_primary_10_1364_OE_402064
crossref_primary_10_1016_j_photonics_2021_100898
crossref_primary_10_1021_acsphotonics_8b00809
crossref_primary_10_1364_OME_434362
crossref_primary_10_1038_s41378_020_00226_x
crossref_primary_10_1002_adom_202102707
crossref_primary_10_1364_OPTICA_4_000139
crossref_primary_10_1515_nanoph_2018_0072
crossref_primary_10_1088_1361_6463_aa6f9b
crossref_primary_10_1016_j_optcom_2020_126061
crossref_primary_10_1088_1402_4896_acb85e
crossref_primary_10_1016_j_optcom_2023_129839
crossref_primary_10_1364_JOSAA_33_001641
crossref_primary_10_1021_acsphotonics_7b00022
crossref_primary_10_1038_s41467_018_06495_5
crossref_primary_10_1016_j_mtphys_2017_11_001
crossref_primary_10_1364_OE_27_000202
crossref_primary_10_1021_acsphotonics_6b00714
crossref_primary_10_1007_s12200_022_00017_4
crossref_primary_10_1364_OL_42_003996
crossref_primary_10_3389_fphy_2022_846718
crossref_primary_10_3390_ma12071005
crossref_primary_10_1364_OL_498397
crossref_primary_10_1088_1361_6633_ac2aaf
crossref_primary_10_1088_1361_6528_ab7c75
crossref_primary_10_1126_sciadv_adg7297
crossref_primary_10_1364_OE_25_016907
crossref_primary_10_1364_OE_26_030383
crossref_primary_10_1364_OE_493257
crossref_primary_10_1002_adom_202200734
crossref_primary_10_1016_j_optmat_2024_114944
crossref_primary_10_1364_AO_56_008822
crossref_primary_10_1364_PRJ_6_000517
crossref_primary_10_1364_OE_481384
crossref_primary_10_1021_acsphotonics_9b01625
crossref_primary_10_1039_C9NR07408B
crossref_primary_10_1364_AO_58_001460
crossref_primary_10_1088_1361_6463_aaa92d
crossref_primary_10_1038_s42005_021_00568_6
crossref_primary_10_1063_5_0062219
crossref_primary_10_1515_nanoph_2020_0220
crossref_primary_10_1002_adma_202005893
crossref_primary_10_1002_sdtp_13986
crossref_primary_10_1038_s41598_017_13004_z
crossref_primary_10_3367_UFNe_2017_08_038192
crossref_primary_10_1103_PhysRevApplied_10_014005
crossref_primary_10_1016_j_progsurf_2020_100584
crossref_primary_10_3390_nano8090699
crossref_primary_10_1038_s41598_017_01908_9
crossref_primary_10_1364_AOP_11_000380
crossref_primary_10_1515_nanoph_2021_0431
crossref_primary_10_3390_ma15217587
crossref_primary_10_1088_1361_6463_ac2068
crossref_primary_10_1364_OE_25_023899
crossref_primary_10_1186_s11671_017_2413_1
crossref_primary_10_1021_acs_nanolett_0c01624
crossref_primary_10_1021_acsphotonics_7b00334
crossref_primary_10_1021_acs_chemrev_1c00294
crossref_primary_10_1515_nanoph_2023_0756
crossref_primary_10_1364_OE_27_030308
crossref_primary_10_1364_PRJ_476120
crossref_primary_10_1088_1674_1056_27_11_117805
crossref_primary_10_1126_sciadv_abc7646
crossref_primary_10_3390_mi13112023
crossref_primary_10_1002_adom_202301333
crossref_primary_10_1016_j_optcom_2019_03_022
crossref_primary_10_1364_OPTICA_6_001461
crossref_primary_10_1038_s41377_018_0078_x
crossref_primary_10_1126_sciadv_aar2114
crossref_primary_10_1364_OE_24_028815
crossref_primary_10_1364_OSAC_395767
crossref_primary_10_1364_OE_26_005632
crossref_primary_10_1021_acsphotonics_9b01719
crossref_primary_10_1038_s41467_021_23814_5
crossref_primary_10_1021_acsphotonics_9b00744
crossref_primary_10_1039_C9NR00187E
crossref_primary_10_1016_j_optcom_2019_04_057
crossref_primary_10_1126_sciadv_ado4847
crossref_primary_10_1364_OL_419419
crossref_primary_10_1038_s41566_017_0078_z
crossref_primary_10_1002_aisy_201900132
crossref_primary_10_1364_OME_8_001940
crossref_primary_10_1116_6_0003429
crossref_primary_10_1364_AO_58_003179
crossref_primary_10_1088_1361_6463_ab0c70
crossref_primary_10_1021_acsaelm_1c00654
crossref_primary_10_1039_C6RA27741A
crossref_primary_10_1021_acsphotonics_8b01513
crossref_primary_10_1073_pnas_2006336117
crossref_primary_10_1039_C9NA00751B
crossref_primary_10_1021_acsphotonics_9b01703
crossref_primary_10_1021_acs_nanolett_8b01570
crossref_primary_10_1038_s41598_022_09680_1
crossref_primary_10_1088_2040_8986_aa86d5
crossref_primary_10_1364_AO_479338
crossref_primary_10_1364_OE_550169
crossref_primary_10_1002_lpor_202300355
crossref_primary_10_1016_j_precisioneng_2025_01_011
crossref_primary_10_1088_1361_6463_ac0faa
crossref_primary_10_1364_OL_524721
crossref_primary_10_1002_adts_201800167
crossref_primary_10_1364_OE_26_009573
crossref_primary_10_1364_PRJ_396839
crossref_primary_10_1364_OE_25_009196
crossref_primary_10_1002_adma_201802632
crossref_primary_10_1016_j_matdes_2024_113500
crossref_primary_10_1364_OL_388704
crossref_primary_10_1002_admi_202200149
crossref_primary_10_1016_j_rinp_2021_104765
crossref_primary_10_1088_2040_8986_acf054
crossref_primary_10_1016_j_optmat_2023_114206
crossref_primary_10_1063_5_0022162
crossref_primary_10_1021_acsphotonics_9b00523
crossref_primary_10_1364_OE_545928
crossref_primary_10_1038_s41566_019_0536_x
crossref_primary_10_1038_s41377_021_00492_y
crossref_primary_10_3390_photonics9090606
crossref_primary_10_1063_5_0059012
crossref_primary_10_1021_acs_nanolett_1c02612
crossref_primary_10_1038_srep40174
crossref_primary_10_1109_JLT_2022_3218687
crossref_primary_10_1364_PRJ_434681
crossref_primary_10_1002_lpor_202401993
crossref_primary_10_1002_adom_201801337
crossref_primary_10_1002_adom_202302459
crossref_primary_10_7498_aps_66_144208
crossref_primary_10_1038_s42005_019_0258_x
crossref_primary_10_1021_acsphotonics_6b00436
crossref_primary_10_1002_adom_202402833
crossref_primary_10_1364_OSAC_1_000506
crossref_primary_10_1021_acsphotonics_0c00762
crossref_primary_10_1186_s11671_019_2867_4
crossref_primary_10_1364_OE_523676
crossref_primary_10_1364_OE_26_013085
crossref_primary_10_3390_polym15030545
crossref_primary_10_1002_adom_201801786
crossref_primary_10_1021_acsphotonics_2c02016
crossref_primary_10_1080_02678292_2016_1199057
crossref_primary_10_1364_OE_496492
crossref_primary_10_1016_j_physrep_2017_07_006
crossref_primary_10_1103_PhysRevB_94_075446
crossref_primary_10_1002_adom_202001414
crossref_primary_10_1364_OE_24_029153
crossref_primary_10_1021_acs_nanolett_8b02875
crossref_primary_10_1021_acsnano_2c05887
crossref_primary_10_1364_AO_390610
crossref_primary_10_1364_OPTCON_475828
crossref_primary_10_1016_j_optlaseng_2024_108641
crossref_primary_10_1021_acsphotonics_8b00183
crossref_primary_10_1515_nanoph_2020_0298
crossref_primary_10_1515_nanoph_2023_0579
crossref_primary_10_1002_adom_201800104
crossref_primary_10_1039_C7RA04103A
crossref_primary_10_1038_s41598_019_56789_x
crossref_primary_10_1364_OL_539172
crossref_primary_10_1016_j_optlaseng_2021_106734
crossref_primary_10_1038_s41598_020_74202_w
crossref_primary_10_1038_s41578_020_0203_3
crossref_primary_10_1364_PRJ_521005
crossref_primary_10_1002_lpor_202200265
crossref_primary_10_1103_PhysRevB_98_165418
crossref_primary_10_1021_acsphotonics_7b01038
crossref_primary_10_7567_APEX_11_105201
crossref_primary_10_1126_sciadv_aax4769
crossref_primary_10_1088_2040_8986_aaca4f
crossref_primary_10_1088_1361_6528_ab4858
crossref_primary_10_1016_j_isci_2020_101877
crossref_primary_10_1021_acs_nanolett_7b03135
crossref_primary_10_1109_ACCESS_2024_3499860
crossref_primary_10_1515_nanoph_2019_0470
crossref_primary_10_1364_OPTICA_4_000625
crossref_primary_10_1088_1361_6463_ab7ca2
crossref_primary_10_1016_j_chaos_2025_116342
crossref_primary_10_1364_OL_412040
crossref_primary_10_1364_OME_8_002330
crossref_primary_10_1038_s41524_022_00774_y
crossref_primary_10_1515_nanoph_2020_0063
crossref_primary_10_1021_acsphotonics_3c01745
crossref_primary_10_1021_acsphotonics_9b01809
crossref_primary_10_1038_srep32803
crossref_primary_10_1016_j_mser_2020_100563
crossref_primary_10_1038_s41467_024_45904_w
crossref_primary_10_1063_5_0152474
crossref_primary_10_1021_acsphotonics_9b00042
crossref_primary_10_1073_pnas_1611740113
crossref_primary_10_1117_1_AP_1_3_036001
crossref_primary_10_1364_OE_25_002583
Cites_doi 10.1038/ncomms3807
10.1515/nanoph-2012-0009
10.1021/acsphotonics.5b00132
10.1364/OPN.23.6.000030
10.1038/nmeth818
10.1109/LPT.2014.2325947
10.1021/nl4044482
10.1364/OL.16.001921
10.1146/annurev.neuro.051508.135540
10.1063/1.3673334
10.1126/science.1232009
10.1021/nl401734r
10.1126/science.aaa2494
10.1364/OL.21.000177
10.1021/nl5041572
10.1021/cr9000429
10.1364/OL.20.000121
10.1021/nl1006307
10.1364/OL.23.000552
10.1038/nnano.2015.2
10.1364/AOP.1.000001
10.1109/JLT.2006.874555
10.1364/JOSAA.16.001143
10.1038/nnano.2015.186
10.1103/PhysRevLett.110.203903
10.1021/nl302516v
10.1038/ncomms8069
10.1038/lsa.2013.28
10.1038/nmat3839
10.1038/nphoton.2010.116
10.1038/nmeth.1694
10.1126/science.1253213
10.1117/2.1201309.005108
10.1021/nl303445u
10.1002/lpor.201500041
10.1038/nmat3431
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsphotonics.5b00660
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2330-4022
EndPage 214
ExternalDocumentID 10_1021_acsphotonics_5b00660
c301207332
GroupedDBID 53G
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
GNL
IH9
JG
JG~
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a292t-aae3f96a4809577ab58c6da9c132bc09dc3e52ccff14771f509d123e65ca0f653
IEDL.DBID ACS
ISSN 2330-4022
IngestDate Tue Jul 01 04:16:33 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Thu Aug 27 13:41:54 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords diffractive optics
silicon nitride photonics
dielectric metasurface
lens
vortex beam generator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a292t-aae3f96a4809577ab58c6da9c132bc09dc3e52ccff14771f509d123e65ca0f653
PageCount 6
ParticipantIDs crossref_citationtrail_10_1021_acsphotonics_5b00660
crossref_primary_10_1021_acsphotonics_5b00660
acs_journals_10_1021_acsphotonics_5b00660
ProviderPackageCode JG~
GNL
VF5
XKZ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-17
PublicationDateYYYYMMDD 2016-02-17
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-17
  day: 17
PublicationDecade 2010
PublicationTitle ACS photonics
PublicationTitleAlternate ACS Photonics
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1038/ncomms3807
– ident: ref32/cit32
  doi: 10.1515/nanoph-2012-0009
– ident: ref35/cit35
  doi: 10.1021/acsphotonics.5b00132
– ident: ref36/cit36
  doi: 10.1364/OPN.23.6.000030
– ident: ref4/cit4
  doi: 10.1038/nmeth818
– ident: ref10/cit10
  doi: 10.1109/LPT.2014.2325947
– ident: ref12/cit12
  doi: 10.1021/nl4044482
– ident: ref27/cit27
  doi: 10.1364/OL.16.001921
– ident: ref2/cit2
  doi: 10.1146/annurev.neuro.051508.135540
– ident: ref5/cit5
  doi: 10.1063/1.3673334
– ident: ref7/cit7
  doi: 10.1126/science.1232009
– ident: ref13/cit13
  doi: 10.1021/nl401734r
– ident: ref29/cit29
  doi: 10.1126/science.aaa2494
– ident: ref26/cit26
  doi: 10.1364/OL.21.000177
– ident: ref28/cit28
  doi: 10.1021/nl5041572
– ident: ref33/cit33
  doi: 10.1021/cr9000429
– ident: ref25/cit25
  doi: 10.1364/OL.20.000121
– ident: ref34/cit34
  doi: 10.1021/nl1006307
– ident: ref20/cit20
  doi: 10.1364/OL.23.000552
– ident: ref14/cit14
  doi: 10.1038/nnano.2015.2
– ident: ref30/cit30
  doi: 10.1364/AOP.1.000001
– ident: ref16/cit16
  doi: 10.1109/JLT.2006.874555
– ident: ref21/cit21
  doi: 10.1364/JOSAA.16.001143
– ident: ref18/cit18
  doi: 10.1038/nnano.2015.186
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.110.203903
– ident: ref24/cit24
  doi: 10.1021/nl302516v
– ident: ref9/cit9
  doi: 10.1038/ncomms8069
– ident: ref19/cit19
  doi: 10.1038/lsa.2013.28
– ident: ref6/cit6
  doi: 10.1038/nmat3839
– ident: ref11/cit11
  doi: 10.1038/nphoton.2010.116
– ident: ref3/cit3
  doi: 10.1038/nmeth.1694
– ident: ref23/cit23
  doi: 10.1126/science.1253213
– ident: ref1/cit1
  doi: 10.1117/2.1201309.005108
– ident: ref17/cit17
  doi: 10.1021/nl303445u
– ident: ref22/cit22
  doi: 10.1002/lpor.201500041
– ident: ref31/cit31
  doi: 10.1038/nmat3431
SSID ssj0001053664
Score 2.5251243
Snippet The miniaturization of current image sensors is largely limited by the volume of the optical elements. Using a subwavelength-patterned quasi-periodic...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 209
Title Low-Contrast Dielectric Metasurface Optics
URI http://dx.doi.org/10.1021/acsphotonics.5b00660
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SL158i_XFHrwopHbz2uYo1VJE7UELvS3JNMGitKW7RfDXO9lubVF83TdLdviW-b7M5BtCTnmCLN5aTrX1mgoHghrWAOocpndACgxQdPneq3ZX3PRkbyEUP1fwWXxhIBs_jfJgFJvVZECJQom-yhQiLVCh5sPiTAURpQrHKIYyPUgjNr8t982LQk6CbCknLSWX1gbpzK_ozHpKnmvT3Nbg7atj4x_3vUnWS54ZXc6AsUVW3HCbbJScMyr_6GyHnN-OXmmwqJqYLI-uBrOxOAOI7lweTg-9ARd1xsHMeZd0W9ePzTYt5ydguDXLqTGOe62MaCCPShJjZQNU32hABWqhrvvAnWQA3sciSWKP3KGPicwpCabuleR7pDIcDd0-iUBzb5TS0gkvmFCWS9TUoWpogFsQVXKG35uW-M_SorTN4nQ5CGkZhCrh82inUBqRh3kYL7-soh-rxjMjjh-fP_jHjg7JGvKgohk7To5IJZ9M3TFyjdyeFAB7B9st0ag
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IHvQiPiM-9-BFk0W2r2WPBDWogAfBcNu0QxuJBgi7xMRf73RZlJio4dq0zXQyzXzTmX5DyDkLEcVrzfxI28jnBrivaA18Y9C9A0JggKzKtyObPX7fF_0CEYu_MChEgjslWRL_m10guMKxycs4dXyxSUU4Y5EYqa8hHqGuY0O98fT9tIKGJTPiKIrRuouQ6OLT3C8bOdcEyZJrWvIxtyXy_CVdVlryWpmlugIfP4gbVxZ_i2zmqNOrz81kmxTMaIeUcgTq5fc72SWXrfG77wirpipJvevhvEnOELy2Sd1bolVgvMeJo3beI73bm26j6efdFFD5EU19pQyzkVS8hqgqDJUWNZADFQHGoxqq0QCYERTA2oCHYWARSQzQrRkpQFWtFGyfFEfjkTkgHkTMKikjYbjllEvNBEbYLoeogGngZXKB543z25DEWaKbBvGyEuJcCWXCFkqPIacld90x3v5Z5X-tmsxpOf6cf7iCRGdkvdltt-LWXefhiGwgQsrKtIPwmBTT6cycIApJ9Wlmc5-SdtoJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iIL44P3F-9sEXhcy1SdP1cWyOqXMKOhi-lOSW4FC2snYI_vVeum4WQUVfSxMu1zvud7nr7wg5ZQGieKUYDZUJKdfAqfRqQLXG8A4IgQGyLt-uaPf4dd_vF0Z9oRAJ7pRkRXzr1fHA5AwD7gU-j5_HqeWMTSq-NRiB2fqKrdzZqQ31xsPn9Qoal8jIozzM2G2W5M1_nPtmIxueICmEp0KcaZXI00LCrL3kpTJNVQXev5A3_usIG2Q9R59OfWYum2RJj7ZIKUeiTu7nyTY574zfqCWumsgkdZrD2bCcITi3OrV3ikaCdu5iS_G8Q3qty8dGm-ZTFfAjhF5KpdTMhELyGqKrIJDKr4EYyBAwL1VQDQfAtO8BGOPyIHANIooBhjctfJBVI3y2S5ZH45HeIw6EzEghQl9zwz0uFPMx07a1RAlMAS-TMzxvlHtFEmUFb8-NikqIciWUCZsrPoKcntxOyXj9ZRVdrIpn9Bw_vr__B4lOyOp9sxV1rro3B2QNgVLWre0Gh2Q5nUz1EYKRVB1nZvcBrWncjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Contrast+Dielectric+Metasurface+Optics&rft.jtitle=ACS+photonics&rft.au=Zhan%2C+Alan&rft.au=Colburn%2C+Shane&rft.au=Trivedi%2C+Rahul&rft.au=Fryett%2C+Taylor+K.&rft.date=2016-02-17&rft.issn=2330-4022&rft.eissn=2330-4022&rft.volume=3&rft.issue=2&rft.spage=209&rft.epage=214&rft_id=info:doi/10.1021%2Facsphotonics.5b00660&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsphotonics_5b00660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2330-4022&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2330-4022&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2330-4022&client=summon