2D fast Fourier transform analytical solutions in all space for all gravity and magnetic components
ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods com...
Saved in:
Published in | Geophysical Prospecting Vol. 72; no. 2; pp. 809 - 832 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Houten
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-8025 1365-2478 |
DOI | 10.1111/1365-2478.13427 |
Cover
Abstract | ABSTRACT
Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada). |
---|---|
AbstractList | Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber
w
is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada). ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada). Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada). |
Author | Boulanger, Olivier |
Author_xml | – sequence: 1 givenname: Olivier orcidid: 0000-0002-6076-6521 surname: Boulanger fullname: Boulanger, Olivier email: Olivier.Boulanger@NRCan-RNCan.gc.ca organization: Geological Survey of Canada |
BookMark | eNqFkM1LAzEQxYNUsK2evQY8b5vJbja7R6m2CgVF9Bxms0nZsl8mW6X_vWlXvDqXYR7vN8y8GZm0XWsIuQW2gFBLiFMR8URmC4gTLi_I9E-ZkCljkEYZ4-KKzLzfMxYzIZIp0fyBWvQDXXcHVxlHB4ett51rKLZYH4dKY019Vx-Gqms9rVqKdRB61IYG23naOfyqhmMgStrgrjWBorpr-nBhO_hrcmmx9ubmt8_Jx_rxffUUbV82z6v7bYQ85zLKLQOhS0AuyzLmYCWkUFqNCIIVRa45pGhtYo2GrCgAQTKOmTSxlEzEPJ6Tu3Fv77rPg_GD2oenwhde8RzyPGcsF8G1HF3add47Y1XvqgbdUQFTpyTVKTd1yk2dkwyEGInvqjbH_-xq8_o2cj9E-Xel |
Cites_doi | 10.1093/gji/ggz152 10.1023/A:1006554408567 10.1190/1.1443968 10.1093/gji/ggaa240 10.1016/j.cageo.2020.104575 10.1190/1.1444596 10.1046/j.1365-246X.2003.01766.x 10.1190/1.1444214 10.1016/j.cageo.2012.01.006 10.1190/1.1439658 10.1093/gji/ggw010 10.1190/1.3026538 10.1093/gji/ggy480 10.1111/j.1365-246X.1990.tb00701.x 10.1016/j.jmmm.2003.09.010 10.1093/gji/ggt313 10.1190/geo2019-0603.1 10.1093/gji/ggv301 10.1190/geo2014-0559.1 10.1190/1.1444550 10.1190/1.1581067 10.1111/j.1365-2478.1976.tb01562.x 10.1190/geo2020-0077.1 10.1016/S0304-8853(03)00238-5 10.1190/geo2013-0393.1 10.1190/geo2014-0039.1 10.1016/j.jappgeo.2018.01.002 10.1190/geo2020-0694.1 10.1093/gji/ggz389 10.1007/s00024-022-03031-x 10.1016/j.jappgeo.2011.02.005 10.1007/s10712-018-9461-7 10.1007/s00190-019-01294-2 10.1007/s11770-018-0690-9 10.1046/j.1365-2478.2001.00254.x 10.1016/j.jappgeo.2009.03.007 10.1007/s00190-018-1187-2 10.1190/1.1444302 10.1111/j.1365-246X.2006.02964.x 10.1016/j.jappgeo.2014.09.003 10.1190/1.1442532 10.1190/geo2019-0633.1 10.1111/j.1365-246X.1973.tb06513.x 10.1190/geo2011-0388.1 10.1190/1.1439767 10.1190/geo2012-0373.1 10.1007/BF02520242 10.1029/2021JB022553 10.1190/geo2015-0457.1 |
ContentType | Journal Article |
Copyright | 2023 His Majesty the King in Right of Canada. © 2023 European Association of Geoscientists & Engineers. Reproduced with the permission of the Minister of Natural Resources Canada. 2024 European Association of Geoscientists & Engineers. |
Copyright_xml | – notice: 2023 His Majesty the King in Right of Canada. © 2023 European Association of Geoscientists & Engineers. Reproduced with the permission of the Minister of Natural Resources Canada. – notice: 2024 European Association of Geoscientists & Engineers. |
DBID | AAYXX CITATION 8FD F1W FR3 H96 KR7 L.G |
DOI | 10.1111/1365-2478.13427 |
DatabaseName | CrossRef Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1365-2478 |
EndPage | 832 |
ExternalDocumentID | 10_1111_1365_2478_13427 GPR13427 |
Genre | article |
GrantInformation_xml | – fundername: Geological Survey of Canada funderid: 20220084 |
GroupedDBID | -~X 1OB 1OC ALMA_UNASSIGNED_HOLDINGS BDRZF BRZYM DDYGU FZ0 AAYXX CITATION PALCI 8FD F1W FR3 H96 KR7 L.G |
ID | FETCH-LOGICAL-a2927-9f015cd1a27dd321f7161dfcaa150bb9c216aff4fec18bb1a1702a87e37705323 |
IEDL.DBID | DR2 |
ISSN | 0016-8025 |
IngestDate | Tue Jul 01 09:23:25 EDT 2025 Tue Jul 01 01:43:28 EDT 2025 Sat Aug 24 00:56:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a2927-9f015cd1a27dd321f7161dfcaa150bb9c216aff4fec18bb1a1702a87e37705323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6076-6521 |
PQID | 2919990095 |
PQPubID | 1066348 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2919990095 crossref_primary_10_1111_1365_2478_13427 wiley_primary_10_1111_1365_2478_13427_GPR13427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Houten |
PublicationPlace_xml | – name: Houten |
PublicationTitle | Geophysical Prospecting |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 93 1976; 24 2021; 126 2019; 15 2018; 203 2001; 49 2003; 19 2022; 65 2009; 114 2022; 179 2018; 39 1998; 19 2011; 73 1996; 61 2021; 195 2016; 81 2006; 166 1965; 30 2009; 68 1997; 62 2021; 86 2020; 85 1998 1996 2007 1999; 64 2020; 222 2020; 144 2016; 205 2022; 87 1988; 53 1998; 63 2014; 110 2014; 85 2012; 77 1966; 31 2009; 74 2018; 150 2013; 78 2004; 271 2003; 68 2016; 63 2014; 79 2019; 218 2019; 219 1972; 31 1988; 62 2019; 216 2012; 48 1990; 110 2012; 117 2018; 15 2003; 263 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Gradshteyn I. (e_1_2_8_18_1) 2007 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Blakely R. (e_1_2_8_7_1) 1996 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Naidu P.S. (e_1_2_8_28_1) 1998 e_1_2_8_32_1 Tontini F. (e_1_2_8_42_1) 2012; 117 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 Vitale A. (e_1_2_8_46_1) 2014; 85 Yuan Y. (e_1_2_8_55_1) 2022; 65 e_1_2_8_2_1 Tontini F. (e_1_2_8_41_1) 2009; 114 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Dai S.‐K. (e_1_2_8_11_1) 2019; 15 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 64 start-page: 452 year: 1999 end-page: 460 article-title: 3‐D inversion of gravity and magnetic data with depth resolution publication-title: Geophysics – volume: 222 start-page: 1898 year: 2020 end-page: 1908 article-title: Speed and accuracy improvements in standard algorithm for prismatic gravitational field publication-title: Geophysical Journal International – volume: 150 start-page: 294 year: 2018 end-page: 303 article-title: High‐accuracy 3D Fourier forward modeling of gravity field based on the Gauss‐FFT technique publication-title: Journal of Applied Geophysics – volume: 31 start-page: 97 issue: 1 year: 1966 end-page: 121 article-title: Continuous spectrum of the total‐magnetic‐field anomaly due to a rectangular prismatic body publication-title: Geophysics – volume: 15 start-page: 500 issue: 3 year: 2018 end-page: 512 article-title: Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface publication-title: Applied Geophysics – volume: 53 start-page: 957 issue: 7 year: 1988 end-page: 966 article-title: Calculation of magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation publication-title: Geophysics – volume: 61 start-page: 394 year: 1996 end-page: 408 article-title: 3‐D inversion of magnetic data publication-title: Geophysics – volume: 216 start-page: 1062 year: 2019 end-page: 1071 article-title: Fast and accurate forward modelling of gravity field using prismatic grids publication-title: Geophysical Journal International – volume: 73 start-page: 336 year: 2011 end-page: 347 article-title: 3D stochastic inversion of magnetic data publication-title: Journal of Applied Geophysics – volume: 63 start-page: ID37 year: 2016 end-page: ID57 article-title: Joint inversion of multiple geophysical data using guided fuzzy c‐means clustering publication-title: Geophysics – volume: 79 start-page: G59 issue: 5 year: 2014 end-page: G68 article-title: High‐precision Fourier forward modeling of potential fields publication-title: Geophysics – year: 1998 – volume: 195 start-page: 854 year: 2021 end-page: 869 article-title: Self‐constrained inversion of potential fields publication-title: Geophysical Journal International – volume: 68 start-page: 417 year: 2009 end-page: 422 article-title: Three‐dimensional modelling of gravity data using finite differences publication-title: Journal of Applied Geophysics – volume: 81 start-page: G13 issue: 1 year: 2016 end-page: G26 article-title: Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrast publication-title: Geophysics – volume: 219 start-page: 989 year: 2019 end-page: 2012 article-title: A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior publication-title: Geophysical Journal International – volume: 19 start-page: 251 year: 2003 end-page: 265 article-title: Fast inversion of large‐scale magnetic data using wavelet transformsand a logarithmic barrier method publication-title: Geophysical Journal International – volume: 30 start-page: 829 issue: 5 year: 1965 end-page: 857 article-title: Two‐dimensional harmonic analysis as a tool for magnetic interpretation publication-title: Geophysics – volume: 31 start-page: 447 year: 1972 end-page: 455 article-title: The rapid calculation of potential anomalies publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 93 start-page: 635 year: 2019 end-page: 653 article-title: Fourier‐domain modeling of gravity effects caused by polyhedral bodies publication-title: Journal of Geodesy – volume: 39 start-page: 401 year: 2018 end-page: 434 article-title: Efficient modeling of gravity fields caused by sources with arbitrary geometry and arbitrary density distribution publication-title: Survey in Geophysics – volume: 93 start-page: 1963 year: 2019 end-page: 1984 article-title: Improved Fourier modeling of gravity fields caused by polyhedral bodies with applications to asteroid Bennu and comet 67P/Churyumov‐Gerasimenko publication-title: Journal of Geodesy – volume: 85 start-page: G143 issue: 5 year: 2014 end-page: G156 article-title: Self‐constrained inversion of potential fields through a 3D depth weightings publication-title: Geophysics – volume: 77 start-page: G55 year: 2012 end-page: G66 article-title: Robust 3D gravity gradient inversion by planting anomalous densities publication-title: Geophysics – volume: 19 start-page: 339 year: 1998 end-page: 368 article-title: Three‐dimensional gravity modelling in all space publication-title: Surveys in Geophysics – volume: 62 start-page: 1132 year: 1997 end-page: 1142 article-title: 3‐D magnetic imaging using conjugate gradients publication-title: Geophysics – volume: 179 start-page: 2311 year: 2022 end-page: 2325 article-title: Efficient 2D modeling of magnetic anomalies using NUFFT in the Fourier domain publication-title: Pure and Applied Geophysics – volume: 166 start-page: 76 year: 2006 end-page: 90 article-title: Magnetic forward modelling and inversion for high susceptibility publication-title: Geophysical Journal International – volume: 85 start-page: G93 year: 2020 end-page: G107 article-title: Improving the use of the randomized singular value decomposition for the inversion of gravity and magnetic data publication-title: Geophysics – volume: 271 start-page: 27 year: 2004 end-page: 38 article-title: On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part II: numerical approach publication-title: Journal of Magnetism and Magnetic Materials – volume: 205 start-page: 160 year: 2016 end-page: 178 article-title: Efficient modelling of gravity effects due to topographic masses using the Gauss‐FFT method publication-title: Geophysical Journal International – volume: 62 start-page: 521 year: 1988 end-page: 540 article-title: FFT evaluation and applications of gravity field convolution integrals with mean and point data publication-title: Bulletin of Geodesy – volume: 117 start-page: 1 year: 2012 end-page: 12 article-title: 3‐D focused inversion of near‐seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand publication-title: Journal of Geophysical Research – volume: 65 start-page: 1107 issue: 3 year: 2022 end-page: 1124 article-title: Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix (in Chinese) publication-title: Chinese Journal of Geophysics – volume: 78 start-page: G25 year: 2013 end-page: G39 article-title: Minimum‐structure borehole gravity inversion for mineral exploration: a synthetic modeling study publication-title: Geophysics – volume: 64 start-page: 874 year: 1999 end-page: 887 article-title: Focusing geophysical inversion images publication-title: Geophysics – year: 2007 – volume: 263 start-page: L1 year: 2003 end-page: L9 article-title: On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach publication-title: Journal of Magnetism and Magnetic Materials – volume: 79 start-page: G37 year: 2014 end-page: G47 article-title: 3D inversion of airborne gravity‐gradiometry data using cokriging publication-title: Geophysics – volume: 74 start-page: L7 year: 2009 end-page: L15 article-title: 3‐D magnetic data‐space inversion with sparseness constraints publication-title: Geophysics – volume: 110 start-page: 90 year: 2014 end-page: 97 article-title: Inversion of potential fields on nodes for large grids publication-title: Journal of Applied Geophysics – year: 1996 – volume: 48 start-page: 308 year: 2012 end-page: 315 article-title: Rapid interactive modeling of 3D magnetic anomalies publication-title: Computers & Geosciences – volume: 15 start-page: 513 issue: 3 year: 2019 end-page: 523 article-title: Three‐dimensional numerical modeling of gravity anomalies based on Poisson equation in space‐wavenumber mixed domain publication-title: Applied Geophysics – volume: 110 start-page: 485 year: 1990 end-page: 514 article-title: The use of FFT techniques in physical geodesy publication-title: Geophysical Journal International – volume: 114 start-page: 1 year: 2009 end-page: 17 article-title: Rapid 3‐D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy) publication-title: Journal of Geophysical Research – volume: 63 start-page: 109 year: 1998 end-page: 119 article-title: 3‐D inversion of gravity data publication-title: Geophysics – volume: 87 start-page: G83 issue: 3 year: 2022 end-page: G96 article-title: The forward modeling of 3D gravity and magnetic potential fields in space‐wavenumber domains on an integral method publication-title: Geophysics – volume: 86 start-page: G1 year: 2021 end-page: G11 article-title: Disjoint interval bound constraints using the alternating direction method of multipliers for geologically constrained inversion: application to gravity data publication-title: Geophysics – volume: 203 start-page: 243 year: 2018 end-page: 256 article-title: BTTB‐based numerical schemes for three‐dimensional gravity field inversion publication-title: Geophysical Journal International – volume: 49 start-page: 265 year: 2001 end-page: 280 article-title: Constraints in 3D gravity inversion publication-title: Geophysical Prospecting – volume: 126 start-page: 1 issue: 10 year: 2021 end-page: 38 article-title: Modified Parker's method for gravitational forward and inverse modeling using general polyhedral models publication-title: Journal of Geophysical Research: Solid Earth – volume: 85 start-page: G115 issue: 6 year: 2020 end-page: G127 article-title: Fourier‐domain modeling of gravity effects caused by a vertical polyhedral prism, with application to a water reservoir storage process publication-title: Geophysics – volume: 218 start-page: 666 year: 2019 end-page: 688 article-title: Sensitivity of constrained joint inversions to geological and petrophysical input data uncertainties with posterior geological analysis publication-title: Geophysical Journal International – volume: 144 start-page: 1 year: 2020 end-page: 13 article-title: A tutorial and open source software for the efficient evaluation of gravity and magnetic kernels publication-title: Computers and Geosciences – volume: 24 start-page: 633 year: 1976 end-page: 649 article-title: A fast Fourier transform method for rapid computation of gravity and magnetic anomalies due to arbitrary bodies publication-title: Geophysical Prospecting – volume: 68 start-page: 949 issue: 3 year: 2003 end-page: 959 article-title: A versatile algorithm for joint 3D inversion of gravity and magnetic data publication-title: Geophysics – volume: 15 start-page: 513 issue: 3 year: 2019 ident: e_1_2_8_11_1 article-title: Three‐dimensional numerical modeling of gravity anomalies based on Poisson equation in space‐wavenumber mixed domain publication-title: Applied Geophysics – ident: e_1_2_8_17_1 doi: 10.1093/gji/ggz152 – ident: e_1_2_8_22_1 doi: 10.1023/A:1006554408567 – ident: e_1_2_8_23_1 doi: 10.1190/1.1443968 – ident: e_1_2_8_14_1 doi: 10.1093/gji/ggaa240 – ident: e_1_2_8_19_1 doi: 10.1016/j.cageo.2020.104575 – ident: e_1_2_8_35_1 doi: 10.1190/1.1444596 – ident: e_1_2_8_25_1 doi: 10.1046/j.1365-246X.2003.01766.x – ident: e_1_2_8_33_1 doi: 10.1190/1.1444214 – ident: e_1_2_8_43_1 doi: 10.1016/j.cageo.2012.01.006 – ident: e_1_2_8_4_1 doi: 10.1190/1.1439658 – ident: e_1_2_8_48_1 doi: 10.1093/gji/ggw010 – ident: e_1_2_8_34_1 doi: 10.1190/1.3026538 – ident: e_1_2_8_9_1 doi: 10.1093/gji/ggy480 – ident: e_1_2_8_36_1 doi: 10.1111/j.1365-246X.1990.tb00701.x – ident: e_1_2_8_40_1 doi: 10.1016/j.jmmm.2003.09.010 – ident: e_1_2_8_31_1 doi: 10.1093/gji/ggt313 – ident: e_1_2_8_45_1 doi: 10.1190/geo2019-0603.1 – ident: e_1_2_8_56_1 doi: 10.1093/gji/ggv301 – ident: e_1_2_8_52_1 doi: 10.1190/geo2014-0559.1 – ident: e_1_2_8_13_1 doi: 10.1190/1.1444550 – ident: e_1_2_8_15_1 doi: 10.1190/1.1581067 – volume-title: Analysis of geophysical potential fields– A digital signal processing approach year: 1998 ident: e_1_2_8_28_1 – ident: e_1_2_8_6_1 doi: 10.1111/j.1365-2478.1976.tb01562.x – ident: e_1_2_8_58_1 doi: 10.1190/geo2020-0077.1 – volume: 114 start-page: 1 year: 2009 ident: e_1_2_8_41_1 article-title: Rapid 3‐D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy) publication-title: Journal of Geophysical Research – volume: 117 start-page: 1 year: 2012 ident: e_1_2_8_42_1 article-title: 3‐D focused inversion of near‐seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand publication-title: Journal of Geophysical Research – ident: e_1_2_8_3_1 doi: 10.1016/S0304-8853(03)00238-5 – ident: e_1_2_8_16_1 doi: 10.1190/geo2013-0393.1 – ident: e_1_2_8_53_1 doi: 10.1190/geo2014-0039.1 – ident: e_1_2_8_57_1 doi: 10.1016/j.jappgeo.2018.01.002 – ident: e_1_2_8_10_1 doi: 10.1190/geo2020-0694.1 – volume: 85 start-page: G143 issue: 5 year: 2014 ident: e_1_2_8_46_1 article-title: Self‐constrained inversion of potential fields through a 3D depth weightings publication-title: Geophysics – ident: e_1_2_8_2_1 doi: 10.1093/gji/ggz389 – ident: e_1_2_8_47_1 doi: 10.1007/s00024-022-03031-x – ident: e_1_2_8_37_1 doi: 10.1016/j.jappgeo.2011.02.005 – ident: e_1_2_8_49_1 doi: 10.1007/s10712-018-9461-7 – ident: e_1_2_8_54_1 doi: 10.1007/s00190-019-01294-2 – ident: e_1_2_8_21_1 doi: 10.1007/s11770-018-0690-9 – ident: e_1_2_8_8_1 doi: 10.1046/j.1365-2478.2001.00254.x – ident: e_1_2_8_12_1 doi: 10.1016/j.jappgeo.2009.03.007 – ident: e_1_2_8_50_1 doi: 10.1007/s00190-018-1187-2 – volume-title: Table of integrals, series and products year: 2007 ident: e_1_2_8_18_1 – ident: e_1_2_8_24_1 doi: 10.1190/1.1444302 – ident: e_1_2_8_20_1 doi: 10.1111/j.1365-246X.2006.02964.x – volume: 65 start-page: 1107 issue: 3 year: 2022 ident: e_1_2_8_55_1 article-title: Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix (in Chinese) publication-title: Chinese Journal of Geophysics – ident: e_1_2_8_26_1 doi: 10.1016/j.jappgeo.2014.09.003 – ident: e_1_2_8_29_1 doi: 10.1190/1.1442532 – ident: e_1_2_8_30_1 doi: 10.1190/geo2019-0633.1 – ident: e_1_2_8_32_1 doi: 10.1111/j.1365-246X.1973.tb06513.x – ident: e_1_2_8_44_1 doi: 10.1190/geo2011-0388.1 – ident: e_1_2_8_5_1 doi: 10.1190/1.1439767 – ident: e_1_2_8_27_1 doi: 10.1190/geo2012-0373.1 – volume-title: Potential Theory in gravity and magnetic applications year: 1996 ident: e_1_2_8_7_1 – ident: e_1_2_8_38_1 doi: 10.1007/BF02520242 – ident: e_1_2_8_51_1 doi: 10.1029/2021JB022553 – ident: e_1_2_8_39_1 doi: 10.1190/geo2015-0457.1 |
SSID | ssj0030554 ssj0017384 |
Score | 2.362596 |
Snippet | ABSTRACT
Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged... Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 809 |
SubjectTerms | Algorithms Boreholes Components Computation Dipoles Exact solutions fast Fourier transform Fast Fourier transformations Fourier transforms gravity Gravity data Interfaces Interpolation Magnetic field Magnetic fields magnetics Modelling Potential fields three‐dimensional modelling Two dimensional analysis Wavelengths |
Title | 2D fast Fourier transform analytical solutions in all space for all gravity and magnetic components |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13427 https://www.proquest.com/docview/2919990095 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA4yEPTgj6k4nZKDBy8dS9I2zVGc2xAUGQ68lfxoRNQqrjvoX29e0s7pRcRbU5q0TfKS74XvfQ-hk8R5HVzrfpSlIolioXWk0oJFcaatyKwwiY_wvrpOx9P48i5p2IQQCxP0IRYHbmAZfr0GA5dqtmTkgZ8V86xHWEwhntzdAfX8wWQhIEU4gzDMUABtqyDKTECDlya10g8Qe3409n2T-kKey_jVb0DDTaSaTw-8k8fevFI9_fFD1fFf_7aFNmp4is_CfNpGK0XZRutLooVttDryyYDfd5CmA2zlrMLDkPgOVw0KxhK0TvwxOV5MbvxQYvnkbjg3vcDuMV-C_EfOE3A1DH6W9yUEVWIgur-UwPHYRdPhxe35OKqTNkSSCsojYR3A0IZIyo1hlFjnkBFjtZQOeiolNCWptDa2hSaZUkQS3qcy4wXjHLJUsD3UKt0b9hF2DXK3wBQyM_3YONwlNFMaNNasYSqlHXTajFL-GrQ58sangR7MoQdz34Md1G1GMa-NdJZTARoMADI7KAzHb83ko5uJvzj4a4VDtEYdHAp87y5qVW_z4sjBmUod-xn7Capu5yQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74iFEPvo3rk4MHL90s9EE5GnVdnzFGE28Nj2KMWo3Wg_56GdiuqxdjvJWmUAoMfDOd-QZgO3VaB9e6E-WZSKNEaB2prIyjJNdW5FaY1Ed4n51nvevk-Ca9GYqFCfwQA4MbSobfr1HA0SA9JOXBQSvheZvGCeOjMO7_0iEwuhxQSFEeYyBmKCC7VaBlpsjCy9I-1w-69vxo7fsx9YU9hxGsP4K6s6CbzgfPk_v2W63a-uMHr-P_vm4OZvoIleyGJTUPI2W1ANNDvIULMHHo8wG_L4Jm-8TK15p0Q-47UjdAmEikO_GWcjJY3-SuIvLB3XCaekncY76EKZCcMuBqGPIobyuMqyTo6_5UoZvHElx3D672elE_b0MkmWA8EtZhDG2oZNyYmFHrdDJqrJbSoU-lhGY0k9YmttQ0V4pKyjtM5ryMOcdEFfEyjFXuDStAXIPc7TGlzE0nMQ56CR0rjTRr1sQqYy3YaaapeA70HEWj1uAIFjiChR_BFqw301j05fS1YAJpGBBntiDMx2_NFIcXl_5i9a8VtmCyd3V2WpwenZ-swRRz6Ci4f6_DWP3yVm44dFOrTb98PwE-tetC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xCAQFN2I5XVDQZLV2DsclApYbIQQSXeQjRggIKwgFfD0ee7MsNAjRxVHsJLbHfmO9eQOwnTqvg2vdifJMpFEitI5UVsZRkmsrcitM6iO8zy-yo5vk5DZt2IQYCxP0IQYHbmgZfr1GA-8ZO2TkgZ-V8LxN44TxURhPMrdZIi66GihIUR5jHGYooLhVUGWmKMLL0r7UDzJ7frT2fZf6gp7DANbvQN1ZUM23B-LJQ_utVm398UPW8V8_NwczfXxKdsOEmoeRslqA6SHVwgWYOPTZgN8XQbN9YuVrTboh8x2pGxhMJIqd-HNyMpjd5L4i8tHdcH56SdxjvoQJkJwr4GoY8iTvKoyqJMh0f66Q5LEEN92D672jqJ-1IZJMMB4J6xCGNlQybkzMqHUeGTVWS-mwp1JCM5pJaxNbaporRSXlHSZzXsacY5qKeBnGKveGFSCuQe5WmFLmppMYB7yEjpVGkTVrYpWxFuw0o1T0gjhH0Tg12IMF9mDhe7AF680oFn0rfS2YQBEGRJktCMPxWzPF4eWVv1j9a4UtmLzc7xZnxxenazDFHDQK3O91GKtf3soNB21qtekn7yeAkenx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+fast+Fourier+transform+analytical+solutions+in+all+space+for+all+gravity+and+magnetic+components&rft.jtitle=Geophysical+Prospecting&rft.au=Boulanger%2C+Olivier&rft.date=2024-02-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=72&rft.issue=2&rft.spage=809&rft.epage=832&rft_id=info:doi/10.1111%2F1365-2478.13427&rft.externalDBID=10.1111%252F1365-2478.13427&rft.externalDocID=GPR13427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon |