2D fast Fourier transform analytical solutions in all space for all gravity and magnetic components

ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods com...

Full description

Saved in:
Bibliographic Details
Published inGeophysical Prospecting Vol. 72; no. 2; pp. 809 - 832
Main Author Boulanger, Olivier
Format Journal Article
LanguageEnglish
Published Houten Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text
ISSN0016-8025
1365-2478
DOI10.1111/1365-2478.13427

Cover

Abstract ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada).
AbstractList Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada).
ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada).
Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain or borehole data. Two‐dimensional fast Fourier transform modelling with a prism or a dipole is one of the most efficient methods compared to the forward modelling in the space domain. However, the exact solution of a prismatic source is limited to the case of a half‐space with the computation of data on a horizontal datum above the topography. Starting from the three‐dimensional Fourier forward modelling analytical formulation for a prism, an integration according to the wavenumber w is accomplished which allowed to find a two‐dimensional Fourier exact analytical formulation outside, at the interfaces of, and inside a prism for all potential field components. This new formulation requires the calculation of only four integrals. The gravity and magnetic fields are computed with this two‐dimensional fast Fourier transform formulation in the entire domain and compared with the analytical space domain and the three‐dimensional fast Fourier transform formulations. From the three‐dimensional calculated field, each component can be interpolated with the tri‐linear interpolation method along a borehole or on a drape surface simulating an airborne survey. Based on experiments demonstrated in this work, the two‐dimensional formulation in the Fourier domain gave accurate results with greater speed of execution in comparison to modelling in the space domain. The forward modelling method is tested on real gravity data from the north of Alberta (Canada).
Author Boulanger, Olivier
Author_xml – sequence: 1
  givenname: Olivier
  orcidid: 0000-0002-6076-6521
  surname: Boulanger
  fullname: Boulanger, Olivier
  email: Olivier.Boulanger@NRCan-RNCan.gc.ca
  organization: Geological Survey of Canada
BookMark eNqFkM1LAzEQxYNUsK2evQY8b5vJbja7R6m2CgVF9Bxms0nZsl8mW6X_vWlXvDqXYR7vN8y8GZm0XWsIuQW2gFBLiFMR8URmC4gTLi_I9E-ZkCljkEYZ4-KKzLzfMxYzIZIp0fyBWvQDXXcHVxlHB4ett51rKLZYH4dKY019Vx-Gqms9rVqKdRB61IYG23naOfyqhmMgStrgrjWBorpr-nBhO_hrcmmx9ubmt8_Jx_rxffUUbV82z6v7bYQ85zLKLQOhS0AuyzLmYCWkUFqNCIIVRa45pGhtYo2GrCgAQTKOmTSxlEzEPJ6Tu3Fv77rPg_GD2oenwhde8RzyPGcsF8G1HF3add47Y1XvqgbdUQFTpyTVKTd1yk2dkwyEGInvqjbH_-xq8_o2cj9E-Xel
Cites_doi 10.1093/gji/ggz152
10.1023/A:1006554408567
10.1190/1.1443968
10.1093/gji/ggaa240
10.1016/j.cageo.2020.104575
10.1190/1.1444596
10.1046/j.1365-246X.2003.01766.x
10.1190/1.1444214
10.1016/j.cageo.2012.01.006
10.1190/1.1439658
10.1093/gji/ggw010
10.1190/1.3026538
10.1093/gji/ggy480
10.1111/j.1365-246X.1990.tb00701.x
10.1016/j.jmmm.2003.09.010
10.1093/gji/ggt313
10.1190/geo2019-0603.1
10.1093/gji/ggv301
10.1190/geo2014-0559.1
10.1190/1.1444550
10.1190/1.1581067
10.1111/j.1365-2478.1976.tb01562.x
10.1190/geo2020-0077.1
10.1016/S0304-8853(03)00238-5
10.1190/geo2013-0393.1
10.1190/geo2014-0039.1
10.1016/j.jappgeo.2018.01.002
10.1190/geo2020-0694.1
10.1093/gji/ggz389
10.1007/s00024-022-03031-x
10.1016/j.jappgeo.2011.02.005
10.1007/s10712-018-9461-7
10.1007/s00190-019-01294-2
10.1007/s11770-018-0690-9
10.1046/j.1365-2478.2001.00254.x
10.1016/j.jappgeo.2009.03.007
10.1007/s00190-018-1187-2
10.1190/1.1444302
10.1111/j.1365-246X.2006.02964.x
10.1016/j.jappgeo.2014.09.003
10.1190/1.1442532
10.1190/geo2019-0633.1
10.1111/j.1365-246X.1973.tb06513.x
10.1190/geo2011-0388.1
10.1190/1.1439767
10.1190/geo2012-0373.1
10.1007/BF02520242
10.1029/2021JB022553
10.1190/geo2015-0457.1
ContentType Journal Article
Copyright 2023 His Majesty the King in Right of Canada. © 2023 European Association of Geoscientists & Engineers. Reproduced with the permission of the Minister of Natural Resources Canada.
2024 European Association of Geoscientists & Engineers.
Copyright_xml – notice: 2023 His Majesty the King in Right of Canada. © 2023 European Association of Geoscientists & Engineers. Reproduced with the permission of the Minister of Natural Resources Canada.
– notice: 2024 European Association of Geoscientists & Engineers.
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.13427
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 832
ExternalDocumentID 10_1111_1365_2478_13427
GPR13427
Genre article
GrantInformation_xml – fundername: Geological Survey of Canada
  funderid: 20220084
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-a2927-9f015cd1a27dd321f7161dfcaa150bb9c216aff4fec18bb1a1702a87e37705323
IEDL.DBID DR2
ISSN 0016-8025
IngestDate Tue Jul 01 09:23:25 EDT 2025
Tue Jul 01 01:43:28 EDT 2025
Sat Aug 24 00:56:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2927-9f015cd1a27dd321f7161dfcaa150bb9c216aff4fec18bb1a1702a87e37705323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6076-6521
PQID 2919990095
PQPubID 1066348
PageCount 24
ParticipantIDs proquest_journals_2919990095
crossref_primary_10_1111_1365_2478_13427
wiley_primary_10_1111_1365_2478_13427_GPR13427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 93
1976; 24
2021; 126
2019; 15
2018; 203
2001; 49
2003; 19
2022; 65
2009; 114
2022; 179
2018; 39
1998; 19
2011; 73
1996; 61
2021; 195
2016; 81
2006; 166
1965; 30
2009; 68
1997; 62
2021; 86
2020; 85
1998
1996
2007
1999; 64
2020; 222
2020; 144
2016; 205
2022; 87
1988; 53
1998; 63
2014; 110
2014; 85
2012; 77
1966; 31
2009; 74
2018; 150
2013; 78
2004; 271
2003; 68
2016; 63
2014; 79
2019; 218
2019; 219
1972; 31
1988; 62
2019; 216
2012; 48
1990; 110
2012; 117
2018; 15
2003; 263
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Gradshteyn I. (e_1_2_8_18_1) 2007
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Blakely R. (e_1_2_8_7_1) 1996
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Naidu P.S. (e_1_2_8_28_1) 1998
e_1_2_8_32_1
Tontini F. (e_1_2_8_42_1) 2012; 117
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
Vitale A. (e_1_2_8_46_1) 2014; 85
Yuan Y. (e_1_2_8_55_1) 2022; 65
e_1_2_8_2_1
Tontini F. (e_1_2_8_41_1) 2009; 114
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Dai S.‐K. (e_1_2_8_11_1) 2019; 15
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 64
  start-page: 452
  year: 1999
  end-page: 460
  article-title: 3‐D inversion of gravity and magnetic data with depth resolution
  publication-title: Geophysics
– volume: 222
  start-page: 1898
  year: 2020
  end-page: 1908
  article-title: Speed and accuracy improvements in standard algorithm for prismatic gravitational field
  publication-title: Geophysical Journal International
– volume: 150
  start-page: 294
  year: 2018
  end-page: 303
  article-title: High‐accuracy 3D Fourier forward modeling of gravity field based on the Gauss‐FFT technique
  publication-title: Journal of Applied Geophysics
– volume: 31
  start-page: 97
  issue: 1
  year: 1966
  end-page: 121
  article-title: Continuous spectrum of the total‐magnetic‐field anomaly due to a rectangular prismatic body
  publication-title: Geophysics
– volume: 15
  start-page: 500
  issue: 3
  year: 2018
  end-page: 512
  article-title: Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface
  publication-title: Applied Geophysics
– volume: 53
  start-page: 957
  issue: 7
  year: 1988
  end-page: 966
  article-title: Calculation of magnetic gradient tensor from total field gradient measurements and its application to geophysical interpretation
  publication-title: Geophysics
– volume: 61
  start-page: 394
  year: 1996
  end-page: 408
  article-title: 3‐D inversion of magnetic data
  publication-title: Geophysics
– volume: 216
  start-page: 1062
  year: 2019
  end-page: 1071
  article-title: Fast and accurate forward modelling of gravity field using prismatic grids
  publication-title: Geophysical Journal International
– volume: 73
  start-page: 336
  year: 2011
  end-page: 347
  article-title: 3D stochastic inversion of magnetic data
  publication-title: Journal of Applied Geophysics
– volume: 63
  start-page: ID37
  year: 2016
  end-page: ID57
  article-title: Joint inversion of multiple geophysical data using guided fuzzy c‐means clustering
  publication-title: Geophysics
– volume: 79
  start-page: G59
  issue: 5
  year: 2014
  end-page: G68
  article-title: High‐precision Fourier forward modeling of potential fields
  publication-title: Geophysics
– year: 1998
– volume: 195
  start-page: 854
  year: 2021
  end-page: 869
  article-title: Self‐constrained inversion of potential fields
  publication-title: Geophysical Journal International
– volume: 68
  start-page: 417
  year: 2009
  end-page: 422
  article-title: Three‐dimensional modelling of gravity data using finite differences
  publication-title: Journal of Applied Geophysics
– volume: 81
  start-page: G13
  issue: 1
  year: 2016
  end-page: G26
  article-title: Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrast
  publication-title: Geophysics
– volume: 219
  start-page: 989
  year: 2019
  end-page: 2012
  article-title: A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior
  publication-title: Geophysical Journal International
– volume: 19
  start-page: 251
  year: 2003
  end-page: 265
  article-title: Fast inversion of large‐scale magnetic data using wavelet transformsand a logarithmic barrier method
  publication-title: Geophysical Journal International
– volume: 30
  start-page: 829
  issue: 5
  year: 1965
  end-page: 857
  article-title: Two‐dimensional harmonic analysis as a tool for magnetic interpretation
  publication-title: Geophysics
– volume: 31
  start-page: 447
  year: 1972
  end-page: 455
  article-title: The rapid calculation of potential anomalies
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 93
  start-page: 635
  year: 2019
  end-page: 653
  article-title: Fourier‐domain modeling of gravity effects caused by polyhedral bodies
  publication-title: Journal of Geodesy
– volume: 39
  start-page: 401
  year: 2018
  end-page: 434
  article-title: Efficient modeling of gravity fields caused by sources with arbitrary geometry and arbitrary density distribution
  publication-title: Survey in Geophysics
– volume: 93
  start-page: 1963
  year: 2019
  end-page: 1984
  article-title: Improved Fourier modeling of gravity fields caused by polyhedral bodies with applications to asteroid Bennu and comet 67P/Churyumov‐Gerasimenko
  publication-title: Journal of Geodesy
– volume: 85
  start-page: G143
  issue: 5
  year: 2014
  end-page: G156
  article-title: Self‐constrained inversion of potential fields through a 3D depth weightings
  publication-title: Geophysics
– volume: 77
  start-page: G55
  year: 2012
  end-page: G66
  article-title: Robust 3D gravity gradient inversion by planting anomalous densities
  publication-title: Geophysics
– volume: 19
  start-page: 339
  year: 1998
  end-page: 368
  article-title: Three‐dimensional gravity modelling in all space
  publication-title: Surveys in Geophysics
– volume: 62
  start-page: 1132
  year: 1997
  end-page: 1142
  article-title: 3‐D magnetic imaging using conjugate gradients
  publication-title: Geophysics
– volume: 179
  start-page: 2311
  year: 2022
  end-page: 2325
  article-title: Efficient 2D modeling of magnetic anomalies using NUFFT in the Fourier domain
  publication-title: Pure and Applied Geophysics
– volume: 166
  start-page: 76
  year: 2006
  end-page: 90
  article-title: Magnetic forward modelling and inversion for high susceptibility
  publication-title: Geophysical Journal International
– volume: 85
  start-page: G93
  year: 2020
  end-page: G107
  article-title: Improving the use of the randomized singular value decomposition for the inversion of gravity and magnetic data
  publication-title: Geophysics
– volume: 271
  start-page: 27
  year: 2004
  end-page: 38
  article-title: On the computation of the demagnetization tensor for uniformly magnetized particles of arbitrary shape. Part II: numerical approach
  publication-title: Journal of Magnetism and Magnetic Materials
– volume: 205
  start-page: 160
  year: 2016
  end-page: 178
  article-title: Efficient modelling of gravity effects due to topographic masses using the Gauss‐FFT method
  publication-title: Geophysical Journal International
– volume: 62
  start-page: 521
  year: 1988
  end-page: 540
  article-title: FFT evaluation and applications of gravity field convolution integrals with mean and point data
  publication-title: Bulletin of Geodesy
– volume: 117
  start-page: 1
  year: 2012
  end-page: 12
  article-title: 3‐D focused inversion of near‐seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand
  publication-title: Journal of Geophysical Research
– volume: 65
  start-page: 1107
  issue: 3
  year: 2022
  end-page: 1124
  article-title: Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix (in Chinese)
  publication-title: Chinese Journal of Geophysics
– volume: 78
  start-page: G25
  year: 2013
  end-page: G39
  article-title: Minimum‐structure borehole gravity inversion for mineral exploration: a synthetic modeling study
  publication-title: Geophysics
– volume: 64
  start-page: 874
  year: 1999
  end-page: 887
  article-title: Focusing geophysical inversion images
  publication-title: Geophysics
– year: 2007
– volume: 263
  start-page: L1
  year: 2003
  end-page: L9
  article-title: On the computation of the demagnetization tensor field for an arbitrary particle shape using a Fourier space approach
  publication-title: Journal of Magnetism and Magnetic Materials
– volume: 79
  start-page: G37
  year: 2014
  end-page: G47
  article-title: 3D inversion of airborne gravity‐gradiometry data using cokriging
  publication-title: Geophysics
– volume: 74
  start-page: L7
  year: 2009
  end-page: L15
  article-title: 3‐D magnetic data‐space inversion with sparseness constraints
  publication-title: Geophysics
– volume: 110
  start-page: 90
  year: 2014
  end-page: 97
  article-title: Inversion of potential fields on nodes for large grids
  publication-title: Journal of Applied Geophysics
– year: 1996
– volume: 48
  start-page: 308
  year: 2012
  end-page: 315
  article-title: Rapid interactive modeling of 3D magnetic anomalies
  publication-title: Computers & Geosciences
– volume: 15
  start-page: 513
  issue: 3
  year: 2019
  end-page: 523
  article-title: Three‐dimensional numerical modeling of gravity anomalies based on Poisson equation in space‐wavenumber mixed domain
  publication-title: Applied Geophysics
– volume: 110
  start-page: 485
  year: 1990
  end-page: 514
  article-title: The use of FFT techniques in physical geodesy
  publication-title: Geophysical Journal International
– volume: 114
  start-page: 1
  year: 2009
  end-page: 17
  article-title: Rapid 3‐D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy)
  publication-title: Journal of Geophysical Research
– volume: 63
  start-page: 109
  year: 1998
  end-page: 119
  article-title: 3‐D inversion of gravity data
  publication-title: Geophysics
– volume: 87
  start-page: G83
  issue: 3
  year: 2022
  end-page: G96
  article-title: The forward modeling of 3D gravity and magnetic potential fields in space‐wavenumber domains on an integral method
  publication-title: Geophysics
– volume: 86
  start-page: G1
  year: 2021
  end-page: G11
  article-title: Disjoint interval bound constraints using the alternating direction method of multipliers for geologically constrained inversion: application to gravity data
  publication-title: Geophysics
– volume: 203
  start-page: 243
  year: 2018
  end-page: 256
  article-title: BTTB‐based numerical schemes for three‐dimensional gravity field inversion
  publication-title: Geophysical Journal International
– volume: 49
  start-page: 265
  year: 2001
  end-page: 280
  article-title: Constraints in 3D gravity inversion
  publication-title: Geophysical Prospecting
– volume: 126
  start-page: 1
  issue: 10
  year: 2021
  end-page: 38
  article-title: Modified Parker's method for gravitational forward and inverse modeling using general polyhedral models
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 85
  start-page: G115
  issue: 6
  year: 2020
  end-page: G127
  article-title: Fourier‐domain modeling of gravity effects caused by a vertical polyhedral prism, with application to a water reservoir storage process
  publication-title: Geophysics
– volume: 218
  start-page: 666
  year: 2019
  end-page: 688
  article-title: Sensitivity of constrained joint inversions to geological and petrophysical input data uncertainties with posterior geological analysis
  publication-title: Geophysical Journal International
– volume: 144
  start-page: 1
  year: 2020
  end-page: 13
  article-title: A tutorial and open source software for the efficient evaluation of gravity and magnetic kernels
  publication-title: Computers and Geosciences
– volume: 24
  start-page: 633
  year: 1976
  end-page: 649
  article-title: A fast Fourier transform method for rapid computation of gravity and magnetic anomalies due to arbitrary bodies
  publication-title: Geophysical Prospecting
– volume: 68
  start-page: 949
  issue: 3
  year: 2003
  end-page: 959
  article-title: A versatile algorithm for joint 3D inversion of gravity and magnetic data
  publication-title: Geophysics
– volume: 15
  start-page: 513
  issue: 3
  year: 2019
  ident: e_1_2_8_11_1
  article-title: Three‐dimensional numerical modeling of gravity anomalies based on Poisson equation in space‐wavenumber mixed domain
  publication-title: Applied Geophysics
– ident: e_1_2_8_17_1
  doi: 10.1093/gji/ggz152
– ident: e_1_2_8_22_1
  doi: 10.1023/A:1006554408567
– ident: e_1_2_8_23_1
  doi: 10.1190/1.1443968
– ident: e_1_2_8_14_1
  doi: 10.1093/gji/ggaa240
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cageo.2020.104575
– ident: e_1_2_8_35_1
  doi: 10.1190/1.1444596
– ident: e_1_2_8_25_1
  doi: 10.1046/j.1365-246X.2003.01766.x
– ident: e_1_2_8_33_1
  doi: 10.1190/1.1444214
– ident: e_1_2_8_43_1
  doi: 10.1016/j.cageo.2012.01.006
– ident: e_1_2_8_4_1
  doi: 10.1190/1.1439658
– ident: e_1_2_8_48_1
  doi: 10.1093/gji/ggw010
– ident: e_1_2_8_34_1
  doi: 10.1190/1.3026538
– ident: e_1_2_8_9_1
  doi: 10.1093/gji/ggy480
– ident: e_1_2_8_36_1
  doi: 10.1111/j.1365-246X.1990.tb00701.x
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jmmm.2003.09.010
– ident: e_1_2_8_31_1
  doi: 10.1093/gji/ggt313
– ident: e_1_2_8_45_1
  doi: 10.1190/geo2019-0603.1
– ident: e_1_2_8_56_1
  doi: 10.1093/gji/ggv301
– ident: e_1_2_8_52_1
  doi: 10.1190/geo2014-0559.1
– ident: e_1_2_8_13_1
  doi: 10.1190/1.1444550
– ident: e_1_2_8_15_1
  doi: 10.1190/1.1581067
– volume-title: Analysis of geophysical potential fields– A digital signal processing approach
  year: 1998
  ident: e_1_2_8_28_1
– ident: e_1_2_8_6_1
  doi: 10.1111/j.1365-2478.1976.tb01562.x
– ident: e_1_2_8_58_1
  doi: 10.1190/geo2020-0077.1
– volume: 114
  start-page: 1
  year: 2009
  ident: e_1_2_8_41_1
  article-title: Rapid 3‐D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy)
  publication-title: Journal of Geophysical Research
– volume: 117
  start-page: 1
  year: 2012
  ident: e_1_2_8_42_1
  article-title: 3‐D focused inversion of near‐seafloor magnetic data with application to the Brothers volcano hydrothermal system, Southern Pacific Ocean, New Zealand
  publication-title: Journal of Geophysical Research
– ident: e_1_2_8_3_1
  doi: 10.1016/S0304-8853(03)00238-5
– ident: e_1_2_8_16_1
  doi: 10.1190/geo2013-0393.1
– ident: e_1_2_8_53_1
  doi: 10.1190/geo2014-0039.1
– ident: e_1_2_8_57_1
  doi: 10.1016/j.jappgeo.2018.01.002
– ident: e_1_2_8_10_1
  doi: 10.1190/geo2020-0694.1
– volume: 85
  start-page: G143
  issue: 5
  year: 2014
  ident: e_1_2_8_46_1
  article-title: Self‐constrained inversion of potential fields through a 3D depth weightings
  publication-title: Geophysics
– ident: e_1_2_8_2_1
  doi: 10.1093/gji/ggz389
– ident: e_1_2_8_47_1
  doi: 10.1007/s00024-022-03031-x
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jappgeo.2011.02.005
– ident: e_1_2_8_49_1
  doi: 10.1007/s10712-018-9461-7
– ident: e_1_2_8_54_1
  doi: 10.1007/s00190-019-01294-2
– ident: e_1_2_8_21_1
  doi: 10.1007/s11770-018-0690-9
– ident: e_1_2_8_8_1
  doi: 10.1046/j.1365-2478.2001.00254.x
– ident: e_1_2_8_12_1
  doi: 10.1016/j.jappgeo.2009.03.007
– ident: e_1_2_8_50_1
  doi: 10.1007/s00190-018-1187-2
– volume-title: Table of integrals, series and products
  year: 2007
  ident: e_1_2_8_18_1
– ident: e_1_2_8_24_1
  doi: 10.1190/1.1444302
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1365-246X.2006.02964.x
– volume: 65
  start-page: 1107
  issue: 3
  year: 2022
  ident: e_1_2_8_55_1
  article-title: Fast and high accuracy 3D magnetic anomaly forward modeling based on BTTB matrix (in Chinese)
  publication-title: Chinese Journal of Geophysics
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jappgeo.2014.09.003
– ident: e_1_2_8_29_1
  doi: 10.1190/1.1442532
– ident: e_1_2_8_30_1
  doi: 10.1190/geo2019-0633.1
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1365-246X.1973.tb06513.x
– ident: e_1_2_8_44_1
  doi: 10.1190/geo2011-0388.1
– ident: e_1_2_8_5_1
  doi: 10.1190/1.1439767
– ident: e_1_2_8_27_1
  doi: 10.1190/geo2012-0373.1
– volume-title: Potential Theory in gravity and magnetic applications
  year: 1996
  ident: e_1_2_8_7_1
– ident: e_1_2_8_38_1
  doi: 10.1007/BF02520242
– ident: e_1_2_8_51_1
  doi: 10.1029/2021JB022553
– ident: e_1_2_8_39_1
  doi: 10.1190/geo2015-0457.1
SSID ssj0030554
ssj0017384
Score 2.362596
Snippet ABSTRACT Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged...
Forward modelling of potential field data is an important part of optimization algorithms used to invert large datasets such as those involving rugged terrain...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 809
SubjectTerms Algorithms
Boreholes
Components
Computation
Dipoles
Exact solutions
fast Fourier transform
Fast Fourier transformations
Fourier transforms
gravity
Gravity data
Interfaces
Interpolation
Magnetic field
Magnetic fields
magnetics
Modelling
Potential fields
three‐dimensional modelling
Two dimensional analysis
Wavelengths
Title 2D fast Fourier transform analytical solutions in all space for all gravity and magnetic components
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13427
https://www.proquest.com/docview/2919990095
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA4yEPTgj6k4nZKDBy8dS9I2zVGc2xAUGQ68lfxoRNQqrjvoX29e0s7pRcRbU5q0TfKS74XvfQ-hk8R5HVzrfpSlIolioXWk0oJFcaatyKwwiY_wvrpOx9P48i5p2IQQCxP0IRYHbmAZfr0GA5dqtmTkgZ8V86xHWEwhntzdAfX8wWQhIEU4gzDMUABtqyDKTECDlya10g8Qe3409n2T-kKey_jVb0DDTaSaTw-8k8fevFI9_fFD1fFf_7aFNmp4is_CfNpGK0XZRutLooVttDryyYDfd5CmA2zlrMLDkPgOVw0KxhK0TvwxOV5MbvxQYvnkbjg3vcDuMV-C_EfOE3A1DH6W9yUEVWIgur-UwPHYRdPhxe35OKqTNkSSCsojYR3A0IZIyo1hlFjnkBFjtZQOeiolNCWptDa2hSaZUkQS3qcy4wXjHLJUsD3UKt0b9hF2DXK3wBQyM_3YONwlNFMaNNasYSqlHXTajFL-GrQ58sangR7MoQdz34Md1G1GMa-NdJZTARoMADI7KAzHb83ko5uJvzj4a4VDtEYdHAp87y5qVW_z4sjBmUod-xn7Capu5yQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8QgEJ74iFEPvo3rk4MHL90s9EE5GnVdnzFGE28Nj2KMWo3Wg_56GdiuqxdjvJWmUAoMfDOd-QZgO3VaB9e6E-WZSKNEaB2prIyjJNdW5FaY1Ed4n51nvevk-Ca9GYqFCfwQA4MbSobfr1HA0SA9JOXBQSvheZvGCeOjMO7_0iEwuhxQSFEeYyBmKCC7VaBlpsjCy9I-1w-69vxo7fsx9YU9hxGsP4K6s6CbzgfPk_v2W63a-uMHr-P_vm4OZvoIleyGJTUPI2W1ANNDvIULMHHo8wG_L4Jm-8TK15p0Q-47UjdAmEikO_GWcjJY3-SuIvLB3XCaekncY76EKZCcMuBqGPIobyuMqyTo6_5UoZvHElx3D672elE_b0MkmWA8EtZhDG2oZNyYmFHrdDJqrJbSoU-lhGY0k9YmttQ0V4pKyjtM5ryMOcdEFfEyjFXuDStAXIPc7TGlzE0nMQ56CR0rjTRr1sQqYy3YaaapeA70HEWj1uAIFjiChR_BFqw301j05fS1YAJpGBBntiDMx2_NFIcXl_5i9a8VtmCyd3V2WpwenZ-swRRz6Ci4f6_DWP3yVm44dFOrTb98PwE-tetC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xCAQFN2I5XVDQZLV2DsclApYbIQQSXeQjRggIKwgFfD0ee7MsNAjRxVHsJLbHfmO9eQOwnTqvg2vdifJMpFEitI5UVsZRkmsrcitM6iO8zy-yo5vk5DZt2IQYCxP0IQYHbmgZfr1GA-8ZO2TkgZ-V8LxN44TxURhPMrdZIi66GihIUR5jHGYooLhVUGWmKMLL0r7UDzJ7frT2fZf6gp7DANbvQN1ZUM23B-LJQ_utVm398UPW8V8_NwczfXxKdsOEmoeRslqA6SHVwgWYOPTZgN8XQbN9YuVrTboh8x2pGxhMJIqd-HNyMpjd5L4i8tHdcH56SdxjvoQJkJwr4GoY8iTvKoyqJMh0f66Q5LEEN92D672jqJ-1IZJMMB4J6xCGNlQybkzMqHUeGTVWS-mwp1JCM5pJaxNbaporRSXlHSZzXsacY5qKeBnGKveGFSCuQe5WmFLmppMYB7yEjpVGkTVrYpWxFuw0o1T0gjhH0Tg12IMF9mDhe7AF680oFn0rfS2YQBEGRJktCMPxWzPF4eWVv1j9a4UtmLzc7xZnxxenazDFHDQK3O91GKtf3soNB21qtekn7yeAkenx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+fast+Fourier+transform+analytical+solutions+in+all+space+for+all+gravity+and+magnetic+components&rft.jtitle=Geophysical+Prospecting&rft.au=Boulanger%2C+Olivier&rft.date=2024-02-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=72&rft.issue=2&rft.spage=809&rft.epage=832&rft_id=info:doi/10.1111%2F1365-2478.13427&rft.externalDBID=10.1111%252F1365-2478.13427&rft.externalDocID=GPR13427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon