AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs
Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications. This paper proposes AdaGL, a highly scalable end-to-end framework for rapid distributed GNN training....
Saved in:
| Published in | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
09.07.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/DAC56929.2023.10248003 |
Cover
| Abstract | Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications. This paper proposes AdaGL, a highly scalable end-to-end framework for rapid distributed GNN training. AdaGL novelty lies upon our adaptive-learning based graph-allocation engine as well as utilizing multi-resolution coarse representation of dense graphs. As a result, AdaGL achieves an unprecedented level of balanced server computation while minimizing the communication overhead. Extensive proof-of-concept evaluations on billion-scale graphs show AdaGL attains ∼30−40% faster convergence compared with prior arts. |
|---|---|
| AbstractList | Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an explosion of inter-server communications. This paper proposes AdaGL, a highly scalable end-to-end framework for rapid distributed GNN training. AdaGL novelty lies upon our adaptive-learning based graph-allocation engine as well as utilizing multi-resolution coarse representation of dense graphs. As a result, AdaGL achieves an unprecedented level of balanced server computation while minimizing the communication overhead. Extensive proof-of-concept evaluations on billion-scale graphs show AdaGL attains ∼30−40% faster convergence compared with prior arts. |
| Author | Koushanfar, Farinaz Zhang, Ruisi Ghodsi, Zahra Bleiweiss, Amit Javaheripi, Mojan |
| Author_xml | – sequence: 1 givenname: Ruisi surname: Zhang fullname: Zhang, Ruisi email: ruz032@ucsd.edu organization: University of California,San Diego – sequence: 2 givenname: Mojan surname: Javaheripi fullname: Javaheripi, Mojan email: mojan@ucsd.edu organization: University of California,San Diego – sequence: 3 givenname: Zahra surname: Ghodsi fullname: Ghodsi, Zahra email: zahra@purdue.edu organization: Purdue University – sequence: 4 givenname: Amit surname: Bleiweiss fullname: Bleiweiss, Amit email: amit.bleiweiss@intel.com organization: Intel Lab – sequence: 5 givenname: Farinaz surname: Koushanfar fullname: Koushanfar, Farinaz email: farinaz@ucsd.edu organization: University of California,San Diego |
| BookMark | eNo1j81KxDAURiMoqGPfQCQv0HqTm5_GXZnRjlDGTfdDOr0pgbEd0ir49g7-rM7ig8N3btnlOI3E2IOAQghwj5tqrY2TrpAgsRAgVQmAFyxz1pWoASWqUlyzbJ5jBwZ0qcCoG7atel83T_yM0xI_iTfk0xjHgYcp8WqIR-KbOC8pdh8L9bxNPv7MU-B1HPy4xAOvd7v5jl0Ff5wp--OKtS_P7XqbN2_167pqci8dLHmwmqDTlhR0AlHL8zXhtZAheBeEVYhABh2R7zyZEnqrJFphO6OVP-CK3f9qIxHtTym--_S1_-_FbwkgS9I |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC56929.2023.10248003 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350323481 |
| EndPage | 6 |
| ExternalDocumentID | 10248003 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH ACM ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a290t-f75e0b57e40b133525031a512ffa9f174330e639eeabae680d7423717b654ac3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:50:59 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a290t-f75e0b57e40b133525031a512ffa9f174330e639eeabae680d7423717b654ac3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10248003 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-9 |
| PublicationDateYYYYMMDD | 2023-07-09 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 60th ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib060584064 |
| Score | 2.227539 |
| Snippet | Distributed GNN training on contemporary massive and densely connected graphs requires information aggregation from all neighboring nodes, which leads to an... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive learning Design automation Explosions Linear programming Servers Training |
| Title | AdaGL: Adaptive Learning for Agile Distributed Training of Gigantic GNNs |
| URI | https://ieeexplore.ieee.org/document/10248003 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6-tWZukjbcx3YZo8TBht_GSvo4hbEO7i3-9L1mrKAieWgqh5b0k30vf-77H2DWAkVVpZJSlDiKp0iSCqoKIZhdFr9DTZaBHPxV6_CIfpmrakNUDFwYRQ_EZxv425PLLldv4X2W0whOZB23P3SzXW7JWO3l8eo_ASTYs4J4wN3f9gdIE_7FvER63g3-0UQkoMtxnRfv-bfHIa7ypbew-fkkz_vsDD1j3m7DHn7-g6JDt4PKIjfsljB5vOV3WflPjjZbqnFOgyvtz2g_4ndfN9S2vsOSTplsEX1V8tJiTyReOj4rivcsmw_vJYBw1jRMiSIyooypTKKzKUArb86QqRUsXCNrJC6byZ5BUIIUmiGABdS5Kn6-lg53VSoJLj1lnuVriCeMiAyllUMnxwm_WlJg4BUrn4ARgesq63gqz9VYaY9Ya4OyP5-dszzsj1LuaC9ap3zZ4Sahe26vgzU-kd57F |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6iBz2pOPG3OXhNzdqkXb2Nza3qVjxU2G28Nq9jCNvQ7uJf70vWKgqCp5ZCILyX5Hvpe9_3GLsBiFVpYiWioAChdOALKEsQtLooeoV2aBw9epyGyYt6nOhJTVZ3XBhEdMVn6NlXl8s3y2Jtf5XRDvdVx2l77millN7QtZrlYxN8BE-q5gG3ZXzb7_Z0SAGAZ5uEe83wH41UHI4M9lnazGBTPvLqravcKz5-iTP-e4oHrPVN2ePPX2B0yLZwccSSroHh6I7TY2WPNV6rqc44haq8O6MTgfetcq5teoWGZ3W_CL4s-XA-I6PPCz5M0_cWywb3WS8RdesEAX4sK1FGGmWuI1Qyb1talabNCwTu5Ie4tLeQQCIFJ4iQA4YdaWzGlq52eagVFMEx214sF3jCuIyATO10cqz0Wx4b9AsNOuxAIQGDU9ayVpiuNuIY08YAZ398v2a7STYeTUcP6dM527OOcdWv8QXbrt7WeEkYX-VXzrOfKmmiEg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+60th+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=AdaGL%3A+Adaptive+Learning+for+Agile+Distributed+Training+of+Gigantic+GNNs&rft.au=Zhang%2C+Ruisi&rft.au=Javaheripi%2C+Mojan&rft.au=Ghodsi%2C+Zahra&rft.au=Bleiweiss%2C+Amit&rft.date=2023-07-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC56929.2023.10248003&rft.externalDocID=10248003 |