Ever more optimized simulations of fermionic systems on a quantum computer
Despite using a novel model of computation, quantum computers break down programs into elementary gates. Among such gates, entangling gates are the most expensive. In the context of fermionic simulations, we develop a suite of compilation and optimization techniques that massively reduce the entangl...
Saved in:
| Published in | 2023 60th ACM/IEEE Design Automation Conference (DAC) pp. 1 - 6 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
09.07.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/DAC56929.2023.10247693 |
Cover
| Summary: | Despite using a novel model of computation, quantum computers break down programs into elementary gates. Among such gates, entangling gates are the most expensive. In the context of fermionic simulations, we develop a suite of compilation and optimization techniques that massively reduce the entangling-gate counts. We exploit the well-studied non-quantum optimization algorithms to achieve up to 24% savings over the state of the art for several small-molecule simulations, with no loss of accuracy or hidden costs. Our methodologies straightforwardly generalize to wider classes of near-term simulations of the ground state of a fermionic system or real-time simulations probing dynamical properties of a fermionic system. |
|---|---|
| DOI: | 10.1109/DAC56929.2023.10247693 |