Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle
SUMMARY Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of...
        Saved in:
      
    
          | Published in | Geophysical journal international Vol. 233; no. 1; pp. 338 - 358 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Oxford University Press
    
        29.11.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0956-540X 1365-246X  | 
| DOI | 10.1093/gji/ggac455 | 
Cover
| Abstract | SUMMARY
Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere. | 
    
|---|---|
| AbstractList | SUMMARY
Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere. Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere.  | 
    
| Author | Neuharth, Derek Mittelstaedt, Eric  | 
    
| Author_xml | – sequence: 1 givenname: Derek orcidid: 0000-0003-3621-8186 surname: Neuharth fullname: Neuharth, Derek email: dneuharth@erdw.ethz.ch – sequence: 2 givenname: Eric surname: Mittelstaedt fullname: Mittelstaedt, Eric  | 
    
| BookMark | eNp9kEtLw0AUhQdRsK2u_AOzciOxM8lM0riT4gsKbip0F-48kk6ZZMJkIq2_3thmJejqwr3fOdxzpui8cY1G6IaSe0ryZF7tzLyqQDLOz9CEJimPYpZuztGE5DyNOCObSzTtuh0hlFG2mKDDWtet82DxJ3gDwbimw6bBre1rjUvb7x-w3IIHGbQ3X6apcNvbbgRL72ocjA1ajQrpGtWbcPQA7LfaWVcZCdYehlvdWr3HNTTB6it0UYLt9PU4Z-jj-Wm9fI1W7y9vy8dVBPEiC1GexDRTINJYMM5AMS3SRFHJmFgIIkqaZLykWTLkU0KBzJjMSwGcKaLTYZ3MED35Su-6zuuykCYc_w8ejC0oKX66K4buirG7QXP3S9N6U4M__EHfnmjXt_-C330BhZo | 
    
| CitedBy_id | crossref_primary_10_1360_SSTe_2024_0069 crossref_primary_10_1029_2023GL104146 crossref_primary_10_1029_2023GC011380 crossref_primary_10_1007_s11430_024_1431_4  | 
    
| Cites_doi | 10.1016/j.lithos.2016.11.007 10.1038/s41561-021-00762-9 10.1111/j.1365-246X.1982.tb04975.x 10.1029/2011GC003690 10.1111/j.1365-246X.1997.tb04075.x 10.1029/2008GL035079 10.1029/2004GL020002 10.1007/BF00648343 10.1111/J.1365-246X.2004.02475.X/2/M_160-1-344-EQ041.JPEG 10.1017/S002211208000225X 10.1029/96GL03311 10.1029/2019GC008419 10.1016/j.epsl.2016.12.028 10.1029/2007JB005510 10.1016/S0012-821X(97)00105-2 10.1016/J.EPSL.2021.117048 10.1093/gji/ggx195 10.1029/2021JB021726 10.1038/35050066 10.1038/ngeo2281 10.1016/j.pepi.2013.09.002 10.1029/2003JB002559 10.1111/j.1365-246X.2012.05609.x 10.1111/j.1365-246X.1975.tb05888.x 10.1038/ngeo1328 10.1038/230042a0 10.1029/JB094IB11P15671 10.1029/2002RG000117 10.1029/93JB02222 10.1111/j.1365-246X.2006.03131.x 10.1029/1999JB900398 10.1016/j.chemgeo.2007.01.014 10.1038/272499a0 10.1093/gji/ggv472 10.1086/160554 10.1029/97JB03212 10.1038/nature14876 10.1029/2010JB007504 10.2138/am-2001-0401 10.1007/s11001-009-9066-0 10.1016/0012-821X(94)90078-7 10.1029/138GM06 10.1029/2006GC001390 10.1016/j.epsl.2013.04.011 10.1111/j.1365-246X.2009.04413.x 10.1016/j.epsl.2005.07.006 10.1029/2002GC000433 10.1029/95JB00032 10.1016/j.epsl.2013.06.022 10.1016/J.EPSL.2020.116439 10.1029/JB090iB12p10291 10.1029/2022GC010568 10.1029/2010JB007768 10.1029/2011GC003808 10.1126/science.260.5109.771 10.1016/j.pepi.2010.07.001 10.1016/0040-1951(80)90022-0 10.1016/j.epsl.2007.10.003 10.1126/science.1249466 10.1038/ngeo2062 10.1111/j.1365-246X.1997.tb00939.x 10.1002/2017GC006944 10.1002/2014GL062993 10.1093/petrology/43.7.1121 10.1016/j.pepi.2013.02.004 10.1029/2003JB002438 10.1111/J.1365-246X.2010.04720.X 10.1029/2005GC000915 10.1016/j.epsl.2004.06.005 10.1016/j.pepi.2010.10.013 10.1002/2014GC005288 10.1029/2004GC000814 10.1126/SCIENCE.249.4974.1275 10.1029/JB094iB07p09523 10.1038/s41467-021-22323-9 10.1029/96JB01187  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022 | 
    
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1093/gji/ggac455 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1365-246X | 
    
| EndPage | 358 | 
    
| ExternalDocumentID | 10_1093_gji_ggac455 10.1093/gji/ggac455  | 
    
| GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ  | 
    
| ID | FETCH-LOGICAL-a287t-93217dab62b454ad4eb63d1c44b8b0bf1375f173956dbdac74c9fba54d0e67393 | 
    
| IEDL.DBID | TOX | 
    
| ISSN | 0956-540X | 
    
| IngestDate | Thu Apr 24 22:53:16 EDT 2025 Tue Jul 01 03:21:14 EDT 2025 Wed Aug 28 03:18:00 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Mantle processes Phase transitions Dynamics: convection currents, and mantle plumes  | 
    
| Language | English | 
    
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a287t-93217dab62b454ad4eb63d1c44b8b0bf1375f173956dbdac74c9fba54d0e67393 | 
    
| ORCID | 0000-0003-3621-8186 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | crossref_citationtrail_10_1093_gji_ggac455 crossref_primary_10_1093_gji_ggac455 oup_primary_10_1093_gji_ggac455  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-11-29 | 
    
| PublicationDateYYYYMMDD | 2023-11-29 | 
    
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-29 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Geophysical journal international | 
    
| PublicationYear | 2023 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Steinberger (2023112402260591200_bib68) 2000; 105 Flanagan (2023112402260591200_bib20) 1998; 103 Morgan (2023112402260591200_bib49) 1971; 230 Wessel (2023112402260591200_bib78) 2016; 204 Crameri (2023112402260591200_bib15) 2018 Dalton (2023112402260591200_bib16) 2014; 344 Stein (2023112402260591200_bib67) 1994; 99 Lambeck (2023112402260591200_bib41) 1998 Mitrovica (2023112402260591200_bib46) 2004; 225 Mériaux (2023112402260591200_bib45) 2011; 184 Celli (2023112402260591200_bib11) 2021; 569 Yamazaki (2023112402260591200_bib80) 2001; 86 van Hunen (2023112402260591200_bib29) 2005; 238 Herzberg (2023112402260591200_bib26) 2007; 8 Jarvis (2023112402260591200_bib32) 1980; 96 Kerr (2023112402260591200_bib37) 2008; 113 Courtier (2023112402260591200_bib14) 2007; 264 Dumoulin (2023112402260591200_bib18) 2005; 160 Ito (2023112402260591200_bib30) 1990; 249 Beier (2023112402260591200_bib9) 2012; 12 Coffin (2023112402260591200_bib13) 2002; 43 Nakakuki (2023112402260591200_bib51) 1994; 121 Scargle (2023112402260591200_bib58) 1982; 263 Ave Lallemant (2023112402260591200_bib6) 1980; 70 Sibrant (2023112402260591200_bib64) 2019; 20 Conrad (2023112402260591200_bib81_1670555954576) 1997; 129 Katsura (2023112402260591200_bib34) 2004; 109 Parnell-Turner (2023112402260591200_bib54) 2014; 7 Kumagai (2023112402260591200_bib40) 2008; 35 Faccenda (2023112402260591200_bib19) 2017; 268-271 Bossmann (2023112402260591200_bib10) 2013; 224 Putirka (2023112402260591200_bib55) 2005; 6 Steinberger (2023112402260591200_bib69) 2006; 167 Mittelstaedt (2023112402260591200_bib47) 2011; 116 O'Connor (2023112402260591200_bib52) 2000; 408 Olson (2023112402260591200_bib53) 1990 Schubert (2023112402260591200_bib60) 1995; 100 Arnould (2023112402260591200_bib5) 2020; 547 Houseman (2023112402260591200_bib28) 1997; 128 Dannberg (2023112402260591200_bib17) 2017; 18 Vidal (2023112402260591200_bib75) 2004; 109 Schlömer (2023112402260591200_bib59) 2017; 462 Adam (2023112402260591200_bib1) 2005; 6 Lomb (2023112402260591200_bib43) 1976; 39 Adam (2023112402260591200_bib82_1670556205951) 2022; 23 Maia (2023112402260591200_bib44) 2011; 116 Heister (2023112402260591200_bib25) 2017; 210 Sreejith (2023112402260591200_bib66) 2015; 42 Ball (2023112402260591200_bib7) 2021; 12 King (2023112402260591200_bib38) 2010; 180 French (2023112402260591200_bib21) 2015; 525 Katz (2023112402260591200_bib36) 2003; 4 Van Ark (2023112402260591200_bib4) 2004; 109 Ballmer (2023112402260591200_bib8) 2013; 376 Tosi (2023112402260591200_bib71) 2013; 217 Albers (2023112402260591200_bib3) 1996; 23 Happel (2023112402260591200_bib24) 1965 Shimojuku (2023112402260591200_bib63) 2004; 31 Akaogi (2023112402260591200_bib2) 1989; 94 Putirka (2023112402260591200_bib56) 2007; 241 Kronbichler (2023112402260591200_bib39) 2012; 191 Turcotte (2023112402260591200_bib73) 2013 Schubert (2023112402260591200_bib61) 1989; 94 Weis (2023112402260591200_bib77) 2011; 4 Ribe (2023112402260591200_bib57) 1996; 101 Skilbeck (2023112402260591200_bib65) 1978; 272 Hirth (2023112402260591200_bib27) 2004; 138 Ito (2023112402260591200_bib31) 2003; 41 Christensen (2023112402260591200_bib12) 1985; 90 Mjelde (2023112402260591200_bib48) 2009; 30 Vanderkluysen (2023112402260591200_bib74) 2014; 15 Katsura (2023112402260591200_bib35) 2010; 183 Ghosh (2023112402260591200_bib22) 2013; 371-372 Karato (2023112402260591200_bib33) 1993; 260 Schubert (2023112402260591200_bib62) 1975; 42 Morrow (2023112402260591200_bib50) 2021; 126 Hanan (2023112402260591200_bib23) 1997; 151 Whitehead (2023112402260591200_bib79) 1982; 70 Leahy (2023112402260591200_bib42) 2010; 183 Steinberger (2023112402260591200_bib70) 2012; 13 Tsekhmistrenko (2023112402260591200_bib72) 2021; 14 Villagómez (2023112402260591200_bib76) 2014; 7  | 
    
| References_xml | – volume: 268-271 start-page: 198 year: 2017 ident: 2023112402260591200_bib19 article-title: The role of solid–solid phase transitions in mantle convection publication-title: Lithos doi: 10.1016/j.lithos.2016.11.007 – volume: 14 start-page: 612 year: 2021 ident: 2023112402260591200_bib72 article-title: A tree of Indo-African mantle plumes imaged by seismic tomography publication-title: Nat. Geosci doi: 10.1038/s41561-021-00762-9 – volume: 70 start-page: 415 year: 1982 ident: 2023112402260591200_bib79 article-title: Instabilities of fluid conduits in a flowing earth—are plates lubricated by the asthenosphere? publication-title: Geophys. J. R. astr. Soc. doi: 10.1111/j.1365-246X.1982.tb04975.x – volume: 12 issue: 9 year: 2012 ident: 2023112402260591200_bib9 article-title: Lithospheric control on geochemical composition along the Louisville Seamount Chain publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2011GC003690 – volume: 128 start-page: 125 year: 1997 ident: 2023112402260591200_bib28 article-title: Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1997.tb04075.x – volume: 35 year: 2008 ident: 2023112402260591200_bib40 article-title: Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035079 – volume: 31 issue: 13 year: 2004 ident: 2023112402260591200_bib63 article-title: Silicon self-diffusion in wadsleyite: implications for rheology of the mantle transition zone and subducting plates publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020002 – volume: 39 start-page: 447 year: 1976 ident: 2023112402260591200_bib43 article-title: Least-squares frequency analysis of unequally spaced data publication-title: Astrophys. Space Sci. doi: 10.1007/BF00648343 – volume: 160 start-page: 345 year: 2005 ident: 2023112402260591200_bib18 article-title: Onset of small-scale instabilities at the base of the lithosphere: scaling laws and role of pre-existing lithospheric structures publication-title: Geophys. J. Int. doi: 10.1111/J.1365-246X.2004.02475.X/2/M_160-1-344-EQ041.JPEG – volume: 96 start-page: 515 year: 1980 ident: 2023112402260591200_bib32 article-title: Convection in a compressible fluid with infinite Prandtl number publication-title: J. Fluid Mech. doi: 10.1017/S002211208000225X – volume: 23 start-page: 3567 year: 1996 ident: 2023112402260591200_bib3 article-title: The excess temperature of plumes rising from the core-mantle boundary publication-title: Geophys. Res. Lett. doi: 10.1029/96GL03311 – volume: 20 start-page: 4635 year: 2019 ident: 2023112402260591200_bib64 article-title: Variable crustal production originating from mantle source heterogeneity beneath the South East Indian Ridge and Amsterdam - St. Paul Plateau publication-title: Geochem., Geophys., Geosyst. doi: 10.1029/2019GC008419 – volume: 462 start-page: 122 year: 2017 ident: 2023112402260591200_bib59 article-title: Hunting for the Tristan mantle plume – An upper mantle tomography around the volcanic island of Tristan da Cunha publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2016.12.028 – volume: 109 start-page: 1 year: 2004 ident: 2023112402260591200_bib4 article-title: Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain publication-title: J. geophys. Res. – volume: 113 year: 2008 ident: 2023112402260591200_bib37 article-title: Effect of thermal diffusion on the stability of strongly tilted mantle plume tails publication-title: J. geophys. Res. doi: 10.1029/2007JB005510 – volume: 151 start-page: 43 year: 1997 ident: 2023112402260591200_bib23 article-title: The dynamic evolution of the Iceland mantle plume: the lead isotope perspective publication-title: Earth planet. Sci. Lett. doi: 10.1016/S0012-821X(97)00105-2 – volume: 569 year: 2021 ident: 2023112402260591200_bib11 article-title: The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism publication-title: Earth planet. Sci. Lett. doi: 10.1016/J.EPSL.2021.117048 – volume: 210 start-page: 833 year: 2017 ident: 2023112402260591200_bib25 article-title: High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx195 – volume: 126 start-page: e2021JB021726 year: 2021 ident: 2023112402260591200_bib50 article-title: Quantifying periodic variations in hotspot melt production publication-title: J. geophys. Res. doi: 10.1029/2021JB021726 – volume: 408 start-page: 954 year: 2000 ident: 2023112402260591200_bib52 article-title: Evidence from episodic seamount volcanism for pulsing of the Iceland plume in the past 70 Myr publication-title: Nature doi: 10.1038/35050066 – volume: 7 start-page: 914 year: 2014 ident: 2023112402260591200_bib54 article-title: A continuous 55-million-year record of transient mantle plume activity beneath Iceland publication-title: Nat. Geosci. doi: 10.1038/ngeo2281 – volume: 224 start-page: 21 year: 2013 ident: 2023112402260591200_bib10 article-title: Dynamics of plumes in a compressible mantle with phase changes: implications for phase boundary topography publication-title: Phys. Earth planet. Inter. doi: 10.1016/j.pepi.2013.09.002 – volume: 109 issue: B3 year: 2004 ident: 2023112402260591200_bib75 article-title: Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate publication-title: J. geophys. Res. doi: 10.1029/2003JB002559 – volume: 191 start-page: 12 year: 2012 ident: 2023112402260591200_bib39 article-title: High accuracy mantle convection simulation through modern numerical methods publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2012.05609.x – volume: 42 start-page: 705 year: 1975 ident: 2023112402260591200_bib62 article-title: Role of phase transitions in a dynamic mantle publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1975.tb05888.x – volume: 4 start-page: 831 year: 2011 ident: 2023112402260591200_bib77 article-title: Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume publication-title: Nat. Geosci. doi: 10.1038/ngeo1328 – volume-title: The Viscosity of the Mantle: Evidence from Analyses of Glacial Rebound Phenomena year: 1998 ident: 2023112402260591200_bib41 – volume: 230 start-page: 42 year: 1971 ident: 2023112402260591200_bib49 article-title: Convection plumes in the lower mantle publication-title: Nature doi: 10.1038/230042a0 – volume: 94 start-page: 15 671 year: 1989 ident: 2023112402260591200_bib2 article-title: Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application publication-title: J. geophys. Res. doi: 10.1029/JB094IB11P15671 – volume: 41 issue: 4 year: 2003 ident: 2023112402260591200_bib31 article-title: Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction publication-title: Rev. Geophys. doi: 10.1029/2002RG000117 – volume: 99 start-page: 3081 year: 1994 ident: 2023112402260591200_bib67 article-title: Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow publication-title: J. geophys. Res. doi: 10.1029/93JB02222 – volume: 167 start-page: 1461 year: 2006 ident: 2023112402260591200_bib69 article-title: Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03131.x – volume: 105 start-page: 11 127 issue: B5 year: 2000 ident: 2023112402260591200_bib68 article-title: Plumes in a convecting mantle: models and observations for individual hotspots publication-title: J. geophys. Res. doi: 10.1029/1999JB900398 – volume: 241 start-page: 177 year: 2007 ident: 2023112402260591200_bib56 article-title: Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2007.01.014 – volume: 272 start-page: 499 year: 1978 ident: 2023112402260591200_bib65 article-title: Formation of discrete islands in linear island chains publication-title: Nature doi: 10.1038/272499a0 – volume: 204 start-page: 932 year: 2016 ident: 2023112402260591200_bib78 article-title: Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv472 – year: 2018 ident: 2023112402260591200_bib15 article-title: Scientific colour maps – volume: 263 start-page: 835 year: 1982 ident: 2023112402260591200_bib58 article-title: Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data publication-title: Astrophys. J. Suppl. Ser. doi: 10.1086/160554 – volume: 103 start-page: 2673 year: 1998 ident: 2023112402260591200_bib20 article-title: Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors publication-title: J. geophys. Res. doi: 10.1029/97JB03212 – volume: 525 start-page: 95 year: 2015 ident: 2023112402260591200_bib21 article-title: Broad plumes rooted at the base of the Earth's mantle beneath major hotspots publication-title: Nature doi: 10.1038/nature14876 – volume: 116 start-page: 1102 year: 2011 ident: 2023112402260591200_bib47 article-title: Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration publication-title: J. geophys. Res. doi: 10.1029/2010JB007504 – volume: 86 start-page: 385 year: 2001 ident: 2023112402260591200_bib80 article-title: Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle publication-title: Am. Mineral. doi: 10.2138/am-2001-0401 – volume: 30 start-page: 61 year: 2009 ident: 2023112402260591200_bib48 article-title: Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes? publication-title: Mar. Geophys. Res. doi: 10.1007/s11001-009-9066-0 – volume: 121 start-page: 369 year: 1994 ident: 2023112402260591200_bib51 article-title: Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: effects of temperature-dependent viscosity publication-title: Earth planet. Sci. Lett. doi: 10.1016/0012-821X(94)90078-7 – volume: 138 start-page: 83 year: 2004 ident: 2023112402260591200_bib27 article-title: Rheology of the upper mantle and the mantle wedge: a view from the experimentalists publication-title: Geophys. Monogr. Ser. doi: 10.1029/138GM06 – volume: 8 issue: 2 year: 2007 ident: 2023112402260591200_bib26 article-title: Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2006GC001390 – volume: 371-372 start-page: 103 year: 2013 ident: 2023112402260591200_bib22 article-title: Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2013.04.011 – volume: 180 start-page: 73 year: 2010 ident: 2023112402260591200_bib38 article-title: A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2009.04413.x – start-page: 33 year: 1990 ident: 2023112402260591200_bib53 article-title: Hot spots, swells and mantle plumes publication-title: Magma Transport and Storage – volume: 238 start-page: 146 year: 2005 ident: 2023112402260591200_bib29 article-title: New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2005.07.006 – volume: 4 year: 2003 ident: 2023112402260591200_bib36 article-title: A new parameterization of hydrous mantle melting publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2002GC000433 – volume: 100 start-page: 8245 year: 1995 ident: 2023112402260591200_bib60 article-title: Mantle plume interaction with an endothermic phase change publication-title: J. geophys. Res. doi: 10.1029/95JB00032 – volume-title: Geodynamics year: 2013 ident: 2023112402260591200_bib73 – volume: 376 start-page: 155 year: 2013 ident: 2023112402260591200_bib8 article-title: Double layering of a thermochemical plume in the upper mantle beneath Hawaii publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2013.06.022 – volume: 547 year: 2020 ident: 2023112402260591200_bib5 article-title: Plate tectonics and mantle controls on plume dynamics publication-title: Earth planet. Sci. Lett. doi: 10.1016/J.EPSL.2020.116439 – volume: 90 start-page: 10 291 year: 1985 ident: 2023112402260591200_bib12 article-title: Layered convection induced by phase transitions publication-title: J. geophys. Res. doi: 10.1029/JB090iB12p10291 – volume: 23 start-page: e2022GC010568 year: 2022 ident: 2023112402260591200_bib82_1670556205951 article-title: Temporal evolution of the swell and magmatic fluxes along the Louisville hotspot chain publication-title: Geochemistry, Geophysics, Geosystems doi: 10.1029/2022GC010568 – volume: 116 year: 2011 ident: 2023112402260591200_bib44 article-title: Building of the Amsterdam-Saint Paul plateau: a 10 Myr history of a ridge-hot spot interaction and variations in the strength of the hot spot source publication-title: J. geophys. Res. doi: 10.1029/2010JB007768 – volume: 13 issue: 1 year: 2012 ident: 2023112402260591200_bib70 article-title: A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2011GC003808 – volume-title: Low Reynolds Number Hydrodynamics year: 1965 ident: 2023112402260591200_bib24 – volume: 260 start-page: 771 year: 1993 ident: 2023112402260591200_bib33 article-title: Rheology of the upper mantle: a synthesis publication-title: Science doi: 10.1126/science.260.5109.771 – volume: 183 start-page: 212 year: 2010 ident: 2023112402260591200_bib35 article-title: Adiabatic temperature profile in the mantle publication-title: Phys. Earth planet. Inter. doi: 10.1016/j.pepi.2010.07.001 – volume: 70 start-page: 85 year: 1980 ident: 2023112402260591200_bib6 article-title: Rheology of the upper mantle: inferences from peridotite xenoliths publication-title: Tectonophysics doi: 10.1016/0040-1951(80)90022-0 – volume: 264 start-page: 308 year: 2007 ident: 2023112402260591200_bib14 article-title: Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2007.10.003 – volume: 344 start-page: 80 year: 2014 ident: 2023112402260591200_bib16 article-title: Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges publication-title: Science doi: 10.1126/science.1249466 – volume: 7 start-page: 151 year: 2014 ident: 2023112402260591200_bib76 article-title: Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging publication-title: Nat. Geosci. doi: 10.1038/ngeo2062 – volume: 129 start-page: 95 issue: 1 year: 1997 ident: 2023112402260591200_bib81_1670555954576 article-title: The growth of Rayleigh—Taylor-type instabilities in the lithosphere for various rheological and density structures publication-title: Geophysical Journal International doi: 10.1111/j.1365-246X.1997.tb00939.x – volume: 18 start-page: 3034 year: 2017 ident: 2023112402260591200_bib17 article-title: The importance of grain size to mantle dynamics and seismological observations publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2017GC006944 – volume: 42 start-page: 1105 year: 2015 ident: 2023112402260591200_bib66 article-title: Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL062993 – volume: 43 start-page: 1121 year: 2002 ident: 2023112402260591200_bib13 article-title: Kerguelen hotspot magma output since 130 Ma publication-title: J. Petrol. doi: 10.1093/petrology/43.7.1121 – volume: 217 start-page: 48 year: 2013 ident: 2023112402260591200_bib71 article-title: Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity publication-title: Phys. Earth planet. Inter. doi: 10.1016/j.pepi.2013.02.004 – volume: 109 year: 2004 ident: 2023112402260591200_bib34 article-title: Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4 publication-title: J. geophys. Res. doi: 10.1029/2003JB002438 – volume: 183 start-page: 313 year: 2010 ident: 2023112402260591200_bib42 article-title: Underplating of the Hawaiian Swell: evidence from teleseismic receiver functions publication-title: Geophys. J. Int. doi: 10.1111/J.1365-246X.2010.04720.X – volume: 6 issue: 5 year: 2005 ident: 2023112402260591200_bib55 article-title: Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2005GC000915 – volume: 225 start-page: 177 year: 2004 ident: 2023112402260591200_bib46 article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data publication-title: Earth planet. Sci. Lett. doi: 10.1016/j.epsl.2004.06.005 – volume: 184 start-page: 63 year: 2011 ident: 2023112402260591200_bib45 article-title: On the rise of strongly tilted mantle plume tails publication-title: Phys. Earth planet. Inter. doi: 10.1016/j.pepi.2010.10.013 – volume: 15 start-page: 2380 year: 2014 ident: 2023112402260591200_bib74 article-title: Louisville Seamount Chain: petrogenetic processes and geochemical evolution of the mantle source publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2014GC005288 – volume: 6 issue: 1 year: 2005 ident: 2023112402260591200_bib1 article-title: MiFil: a method to characterize seafloor swells with application to the south central Pacific publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2004GC000814 – volume: 249 start-page: 1275 year: 1990 ident: 2023112402260591200_bib30 article-title: Negative pressure-temperature slopes for reactions formign MgSiO3 perovskite from calorimetry publication-title: Science doi: 10.1126/SCIENCE.249.4974.1275 – volume: 94 start-page: 9523 year: 1989 ident: 2023112402260591200_bib61 article-title: Solitary waves in mantle plumes publication-title: J. geophys. Res. doi: 10.1029/JB094iB07p09523 – volume: 12 year: 2021 ident: 2023112402260591200_bib7 article-title: Global influence of mantle temperature and plate thickness on intraplate volcanism publication-title: Nat. Commun. doi: 10.1038/s41467-021-22323-9 – volume: 101 start-page: 16 195 year: 1996 ident: 2023112402260591200_bib57 article-title: The dynamics of plume-ridge interaction: 2. Off-ridge plumes publication-title: J. geophys. Res. doi: 10.1029/96JB01187  | 
    
| SSID | ssj0014148 | 
    
| Score | 2.4447827 | 
    
| Snippet | SUMMARY
Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing... Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates...  | 
    
| SourceID | crossref oup  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 338 | 
    
| Title | Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle | 
    
| Volume | 233 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 0956-540X databaseCode: KQ8 dateStart: 19580301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 0956-540X databaseCode: TOX dateStart: 19880101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EHwRP_Fz5mFPQlm7Jlnrm4hjKCjCBn0rvSSdk1rH1srmX--lzYbK0PdLHu7C_e5yd78jpMU4B6mlcjpMBw7iseuAJ4QTAOjA1YK5qmqQfRT9IbuPeGQbZGdrSvih3x69jtujUSLxWnS1CL9mUcHgKVoVC5hXLcmqKPUwAInsGN6vsz-AxwyzfcOR3i7ZsQEgvakttkc2dL5PtqpGTDk7IItBzRWV0Q_MYuvvNDrO6cQ4EZpm5fyayhXJ8icCD52UmW3JoWZYhBbjDMNIewLTXVWOi-qOhE5f9NLZZQtatZPrOX1D7Wb6kAx7d4PbvmPXIzgJpjmFg5GX11UJiA4wzhLFNAhfeZIxCMCF1PO7PPVMIU4oUInsMhmmkHCm0AaGCO-INPL3XB8TqiTzlQscfAhZmEDocnSEfhBIVyDIyxNytdRdLC13uFlhkcV1DduPUdGxVfQJaa2EJzVlxnqxSzTCXxKn_0qckW2z_t3MBnbCc9IopqW-wCChgCbZfHgOmtVD-QI5-L8O | 
    
| linkProvider | Oxford University Press | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+variations+in+plume+flux%3A+characterizing+pulsations+from+tilted+plume+conduits+in+a+rheologically+complex+mantle&rft.jtitle=Geophysical+journal+international&rft.au=Neuharth%2C+Derek&rft.au=Mittelstaedt%2C+Eric&rft.date=2023-11-29&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=233&rft.issue=1&rft.spage=338&rft.epage=358&rft_id=info:doi/10.1093%2Fgji%2Fggac455&rft.externalDocID=10.1093%2Fgji%2Fggac455 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |