Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle

SUMMARY Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 233; no. 1; pp. 338 - 358
Main Authors Neuharth, Derek, Mittelstaedt, Eric
Format Journal Article
LanguageEnglish
Published Oxford University Press 29.11.2023
Subjects
Online AccessGet full text
ISSN0956-540X
1365-246X
DOI10.1093/gji/ggac455

Cover

Abstract SUMMARY Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere.
AbstractList SUMMARY Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere.
Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates at a range of hotspots finds that these rates vary regularly at periods of a few to several tens of millions of years, indicative of changing melt production within underlying mantle plumes. Many hotspots exhibit at least one period between ∼2 and 10 Myr, consistent with several proposed mechanisms for changing near-surface plume flux, and thus melting rate, such as small-scale convection, solitary waves and instability formation in tilted plume conduits. Here, we focus on quantifying instability growth within plumes tilted by overlying plate motion. Previous studies using fluids with constant or temperature-dependent viscosity suggest that such instabilities should not form under mantle conditions. To test this assertion, we use a modified version of the finite element code ASPECT to simulate 400 Myr of evolution of a whole-depth mantle plume rising through the transition zone and spreading beneath a moving plate. In a 2-D spherical shell geometry, ASPECT solves the conservation equations for a compressible mantle with a thermodynamically consistent treatment of phase changes in the mantle transition zone and subject to either a temperature- and depth-dependent linear rheology or a temperature-, depth- and strain-rate dependent non-linear rheology. Additionally, we examine plume evolution in a mantle subject to a range of Clapeyron slopes for the 410 km (1–4 MPa K–1) phase transitions. Results suggest that plume conduits tilted by >67° become unstable and develop instabilities that lead to initial pulses in the transition zone followed by repeated plume pulsing in the uppermost mantle. In these cases, pulse size and frequency depend strongly on the viscosity ratio between the plume and ambient upper mantle. Based upon our results and comparison with other studies, we find that the range of statistically significant periods of plume pulsing in our models (∼2–7 Myr), the predicted increase in melt flux due to each pulse (3.8–26 × 10−5 km3 km−1 yr−1), and the time estimated for a plume to tilt beyond 67° in the upper mantle (10–50 Myr) are consistent with observations at numerous hotspot tracks across the globe. We suggest that pulsing due to destabilization of tilted plume conduits may be one of several mechanisms responsible for modulating the melting rate of mantle plumes as they spread beneath the moving lithosphere.
Author Neuharth, Derek
Mittelstaedt, Eric
Author_xml – sequence: 1
  givenname: Derek
  orcidid: 0000-0003-3621-8186
  surname: Neuharth
  fullname: Neuharth, Derek
  email: dneuharth@erdw.ethz.ch
– sequence: 2
  givenname: Eric
  surname: Mittelstaedt
  fullname: Mittelstaedt, Eric
BookMark eNp9kEtLw0AUhQdRsK2u_AOzciOxM8lM0riT4gsKbip0F-48kk6ZZMJkIq2_3thmJejqwr3fOdxzpui8cY1G6IaSe0ryZF7tzLyqQDLOz9CEJimPYpZuztGE5DyNOCObSzTtuh0hlFG2mKDDWtet82DxJ3gDwbimw6bBre1rjUvb7x-w3IIHGbQ3X6apcNvbbgRL72ocjA1ajQrpGtWbcPQA7LfaWVcZCdYehlvdWr3HNTTB6it0UYLt9PU4Z-jj-Wm9fI1W7y9vy8dVBPEiC1GexDRTINJYMM5AMS3SRFHJmFgIIkqaZLykWTLkU0KBzJjMSwGcKaLTYZ3MED35Su-6zuuykCYc_w8ejC0oKX66K4buirG7QXP3S9N6U4M__EHfnmjXt_-C330BhZo
CitedBy_id crossref_primary_10_1360_SSTe_2024_0069
crossref_primary_10_1029_2023GL104146
crossref_primary_10_1029_2023GC011380
crossref_primary_10_1007_s11430_024_1431_4
Cites_doi 10.1016/j.lithos.2016.11.007
10.1038/s41561-021-00762-9
10.1111/j.1365-246X.1982.tb04975.x
10.1029/2011GC003690
10.1111/j.1365-246X.1997.tb04075.x
10.1029/2008GL035079
10.1029/2004GL020002
10.1007/BF00648343
10.1111/J.1365-246X.2004.02475.X/2/M_160-1-344-EQ041.JPEG
10.1017/S002211208000225X
10.1029/96GL03311
10.1029/2019GC008419
10.1016/j.epsl.2016.12.028
10.1029/2007JB005510
10.1016/S0012-821X(97)00105-2
10.1016/J.EPSL.2021.117048
10.1093/gji/ggx195
10.1029/2021JB021726
10.1038/35050066
10.1038/ngeo2281
10.1016/j.pepi.2013.09.002
10.1029/2003JB002559
10.1111/j.1365-246X.2012.05609.x
10.1111/j.1365-246X.1975.tb05888.x
10.1038/ngeo1328
10.1038/230042a0
10.1029/JB094IB11P15671
10.1029/2002RG000117
10.1029/93JB02222
10.1111/j.1365-246X.2006.03131.x
10.1029/1999JB900398
10.1016/j.chemgeo.2007.01.014
10.1038/272499a0
10.1093/gji/ggv472
10.1086/160554
10.1029/97JB03212
10.1038/nature14876
10.1029/2010JB007504
10.2138/am-2001-0401
10.1007/s11001-009-9066-0
10.1016/0012-821X(94)90078-7
10.1029/138GM06
10.1029/2006GC001390
10.1016/j.epsl.2013.04.011
10.1111/j.1365-246X.2009.04413.x
10.1016/j.epsl.2005.07.006
10.1029/2002GC000433
10.1029/95JB00032
10.1016/j.epsl.2013.06.022
10.1016/J.EPSL.2020.116439
10.1029/JB090iB12p10291
10.1029/2022GC010568
10.1029/2010JB007768
10.1029/2011GC003808
10.1126/science.260.5109.771
10.1016/j.pepi.2010.07.001
10.1016/0040-1951(80)90022-0
10.1016/j.epsl.2007.10.003
10.1126/science.1249466
10.1038/ngeo2062
10.1111/j.1365-246X.1997.tb00939.x
10.1002/2017GC006944
10.1002/2014GL062993
10.1093/petrology/43.7.1121
10.1016/j.pepi.2013.02.004
10.1029/2003JB002438
10.1111/J.1365-246X.2010.04720.X
10.1029/2005GC000915
10.1016/j.epsl.2004.06.005
10.1016/j.pepi.2010.10.013
10.1002/2014GC005288
10.1029/2004GC000814
10.1126/SCIENCE.249.4974.1275
10.1029/JB094iB07p09523
10.1038/s41467-021-22323-9
10.1029/96JB01187
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Royal Astronomical Society 2022
DBID AAYXX
CITATION
DOI 10.1093/gji/ggac455
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 358
ExternalDocumentID 10_1093_gji_ggac455
10.1093/gji/ggac455
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-a287t-93217dab62b454ad4eb63d1c44b8b0bf1375f173956dbdac74c9fba54d0e67393
IEDL.DBID TOX
ISSN 0956-540X
IngestDate Thu Apr 24 22:53:16 EDT 2025
Tue Jul 01 03:21:14 EDT 2025
Wed Aug 28 03:18:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mantle processes
Phase transitions
Dynamics: convection currents, and mantle plumes
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-93217dab62b454ad4eb63d1c44b8b0bf1375f173956dbdac74c9fba54d0e67393
ORCID 0000-0003-3621-8186
PageCount 21
ParticipantIDs crossref_citationtrail_10_1093_gji_ggac455
crossref_primary_10_1093_gji_ggac455
oup_primary_10_1093_gji_ggac455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-29
PublicationDateYYYYMMDD 2023-11-29
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-29
  day: 29
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Steinberger (2023112402260591200_bib68) 2000; 105
Flanagan (2023112402260591200_bib20) 1998; 103
Morgan (2023112402260591200_bib49) 1971; 230
Wessel (2023112402260591200_bib78) 2016; 204
Crameri (2023112402260591200_bib15) 2018
Dalton (2023112402260591200_bib16) 2014; 344
Stein (2023112402260591200_bib67) 1994; 99
Lambeck (2023112402260591200_bib41) 1998
Mitrovica (2023112402260591200_bib46) 2004; 225
Mériaux (2023112402260591200_bib45) 2011; 184
Celli (2023112402260591200_bib11) 2021; 569
Yamazaki (2023112402260591200_bib80) 2001; 86
van Hunen (2023112402260591200_bib29) 2005; 238
Herzberg (2023112402260591200_bib26) 2007; 8
Jarvis (2023112402260591200_bib32) 1980; 96
Kerr (2023112402260591200_bib37) 2008; 113
Courtier (2023112402260591200_bib14) 2007; 264
Dumoulin (2023112402260591200_bib18) 2005; 160
Ito (2023112402260591200_bib30) 1990; 249
Beier (2023112402260591200_bib9) 2012; 12
Coffin (2023112402260591200_bib13) 2002; 43
Nakakuki (2023112402260591200_bib51) 1994; 121
Scargle (2023112402260591200_bib58) 1982; 263
Ave Lallemant (2023112402260591200_bib6) 1980; 70
Sibrant (2023112402260591200_bib64) 2019; 20
Conrad (2023112402260591200_bib81_1670555954576) 1997; 129
Katsura (2023112402260591200_bib34) 2004; 109
Parnell-Turner (2023112402260591200_bib54) 2014; 7
Kumagai (2023112402260591200_bib40) 2008; 35
Faccenda (2023112402260591200_bib19) 2017; 268-271
Bossmann (2023112402260591200_bib10) 2013; 224
Putirka (2023112402260591200_bib55) 2005; 6
Steinberger (2023112402260591200_bib69) 2006; 167
Mittelstaedt (2023112402260591200_bib47) 2011; 116
O'Connor (2023112402260591200_bib52) 2000; 408
Olson (2023112402260591200_bib53) 1990
Schubert (2023112402260591200_bib60) 1995; 100
Arnould (2023112402260591200_bib5) 2020; 547
Houseman (2023112402260591200_bib28) 1997; 128
Dannberg (2023112402260591200_bib17) 2017; 18
Vidal (2023112402260591200_bib75) 2004; 109
Schlömer (2023112402260591200_bib59) 2017; 462
Adam (2023112402260591200_bib1) 2005; 6
Lomb (2023112402260591200_bib43) 1976; 39
Adam (2023112402260591200_bib82_1670556205951) 2022; 23
Maia (2023112402260591200_bib44) 2011; 116
Heister (2023112402260591200_bib25) 2017; 210
Sreejith (2023112402260591200_bib66) 2015; 42
Ball (2023112402260591200_bib7) 2021; 12
King (2023112402260591200_bib38) 2010; 180
French (2023112402260591200_bib21) 2015; 525
Katz (2023112402260591200_bib36) 2003; 4
Van Ark (2023112402260591200_bib4) 2004; 109
Ballmer (2023112402260591200_bib8) 2013; 376
Tosi (2023112402260591200_bib71) 2013; 217
Albers (2023112402260591200_bib3) 1996; 23
Happel (2023112402260591200_bib24) 1965
Shimojuku (2023112402260591200_bib63) 2004; 31
Akaogi (2023112402260591200_bib2) 1989; 94
Putirka (2023112402260591200_bib56) 2007; 241
Kronbichler (2023112402260591200_bib39) 2012; 191
Turcotte (2023112402260591200_bib73) 2013
Schubert (2023112402260591200_bib61) 1989; 94
Weis (2023112402260591200_bib77) 2011; 4
Ribe (2023112402260591200_bib57) 1996; 101
Skilbeck (2023112402260591200_bib65) 1978; 272
Hirth (2023112402260591200_bib27) 2004; 138
Ito (2023112402260591200_bib31) 2003; 41
Christensen (2023112402260591200_bib12) 1985; 90
Mjelde (2023112402260591200_bib48) 2009; 30
Vanderkluysen (2023112402260591200_bib74) 2014; 15
Katsura (2023112402260591200_bib35) 2010; 183
Ghosh (2023112402260591200_bib22) 2013; 371-372
Karato (2023112402260591200_bib33) 1993; 260
Schubert (2023112402260591200_bib62) 1975; 42
Morrow (2023112402260591200_bib50) 2021; 126
Hanan (2023112402260591200_bib23) 1997; 151
Whitehead (2023112402260591200_bib79) 1982; 70
Leahy (2023112402260591200_bib42) 2010; 183
Steinberger (2023112402260591200_bib70) 2012; 13
Tsekhmistrenko (2023112402260591200_bib72) 2021; 14
Villagómez (2023112402260591200_bib76) 2014; 7
References_xml – volume: 268-271
  start-page: 198
  year: 2017
  ident: 2023112402260591200_bib19
  article-title: The role of solid–solid phase transitions in mantle convection
  publication-title: Lithos
  doi: 10.1016/j.lithos.2016.11.007
– volume: 14
  start-page: 612
  year: 2021
  ident: 2023112402260591200_bib72
  article-title: A tree of Indo-African mantle plumes imaged by seismic tomography
  publication-title: Nat. Geosci
  doi: 10.1038/s41561-021-00762-9
– volume: 70
  start-page: 415
  year: 1982
  ident: 2023112402260591200_bib79
  article-title: Instabilities of fluid conduits in a flowing earth—are plates lubricated by the asthenosphere?
  publication-title: Geophys. J. R. astr. Soc.
  doi: 10.1111/j.1365-246X.1982.tb04975.x
– volume: 12
  issue: 9
  year: 2012
  ident: 2023112402260591200_bib9
  article-title: Lithospheric control on geochemical composition along the Louisville Seamount Chain
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2011GC003690
– volume: 128
  start-page: 125
  year: 1997
  ident: 2023112402260591200_bib28
  article-title: Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1997.tb04075.x
– volume: 35
  year: 2008
  ident: 2023112402260591200_bib40
  article-title: Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035079
– volume: 31
  issue: 13
  year: 2004
  ident: 2023112402260591200_bib63
  article-title: Silicon self-diffusion in wadsleyite: implications for rheology of the mantle transition zone and subducting plates
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020002
– volume: 39
  start-page: 447
  year: 1976
  ident: 2023112402260591200_bib43
  article-title: Least-squares frequency analysis of unequally spaced data
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/BF00648343
– volume: 160
  start-page: 345
  year: 2005
  ident: 2023112402260591200_bib18
  article-title: Onset of small-scale instabilities at the base of the lithosphere: scaling laws and role of pre-existing lithospheric structures
  publication-title: Geophys. J. Int.
  doi: 10.1111/J.1365-246X.2004.02475.X/2/M_160-1-344-EQ041.JPEG
– volume: 96
  start-page: 515
  year: 1980
  ident: 2023112402260591200_bib32
  article-title: Convection in a compressible fluid with infinite Prandtl number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208000225X
– volume: 23
  start-page: 3567
  year: 1996
  ident: 2023112402260591200_bib3
  article-title: The excess temperature of plumes rising from the core-mantle boundary
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/96GL03311
– volume: 20
  start-page: 4635
  year: 2019
  ident: 2023112402260591200_bib64
  article-title: Variable crustal production originating from mantle source heterogeneity beneath the South East Indian Ridge and Amsterdam - St. Paul Plateau
  publication-title: Geochem., Geophys., Geosyst.
  doi: 10.1029/2019GC008419
– volume: 462
  start-page: 122
  year: 2017
  ident: 2023112402260591200_bib59
  article-title: Hunting for the Tristan mantle plume – An upper mantle tomography around the volcanic island of Tristan da Cunha
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2016.12.028
– volume: 109
  start-page: 1
  year: 2004
  ident: 2023112402260591200_bib4
  article-title: Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain
  publication-title: J. geophys. Res.
– volume: 113
  year: 2008
  ident: 2023112402260591200_bib37
  article-title: Effect of thermal diffusion on the stability of strongly tilted mantle plume tails
  publication-title: J. geophys. Res.
  doi: 10.1029/2007JB005510
– volume: 151
  start-page: 43
  year: 1997
  ident: 2023112402260591200_bib23
  article-title: The dynamic evolution of the Iceland mantle plume: the lead isotope perspective
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/S0012-821X(97)00105-2
– volume: 569
  year: 2021
  ident: 2023112402260591200_bib11
  article-title: The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/J.EPSL.2021.117048
– volume: 210
  start-page: 833
  year: 2017
  ident: 2023112402260591200_bib25
  article-title: High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx195
– volume: 126
  start-page: e2021JB021726
  year: 2021
  ident: 2023112402260591200_bib50
  article-title: Quantifying periodic variations in hotspot melt production
  publication-title: J. geophys. Res.
  doi: 10.1029/2021JB021726
– volume: 408
  start-page: 954
  year: 2000
  ident: 2023112402260591200_bib52
  article-title: Evidence from episodic seamount volcanism for pulsing of the Iceland plume in the past 70 Myr
  publication-title: Nature
  doi: 10.1038/35050066
– volume: 7
  start-page: 914
  year: 2014
  ident: 2023112402260591200_bib54
  article-title: A continuous 55-million-year record of transient mantle plume activity beneath Iceland
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2281
– volume: 224
  start-page: 21
  year: 2013
  ident: 2023112402260591200_bib10
  article-title: Dynamics of plumes in a compressible mantle with phase changes: implications for phase boundary topography
  publication-title: Phys. Earth planet. Inter.
  doi: 10.1016/j.pepi.2013.09.002
– volume: 109
  issue: B3
  year: 2004
  ident: 2023112402260591200_bib75
  article-title: Variations of the Hawaiian hot spot activity revealed by variations in the magma production rate
  publication-title: J. geophys. Res.
  doi: 10.1029/2003JB002559
– volume: 191
  start-page: 12
  year: 2012
  ident: 2023112402260591200_bib39
  article-title: High accuracy mantle convection simulation through modern numerical methods
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2012.05609.x
– volume: 42
  start-page: 705
  year: 1975
  ident: 2023112402260591200_bib62
  article-title: Role of phase transitions in a dynamic mantle
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1975.tb05888.x
– volume: 4
  start-page: 831
  year: 2011
  ident: 2023112402260591200_bib77
  article-title: Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1328
– volume-title: The Viscosity of the Mantle: Evidence from Analyses of Glacial Rebound Phenomena
  year: 1998
  ident: 2023112402260591200_bib41
– volume: 230
  start-page: 42
  year: 1971
  ident: 2023112402260591200_bib49
  article-title: Convection plumes in the lower mantle
  publication-title: Nature
  doi: 10.1038/230042a0
– volume: 94
  start-page: 15 671
  year: 1989
  ident: 2023112402260591200_bib2
  article-title: Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application
  publication-title: J. geophys. Res.
  doi: 10.1029/JB094IB11P15671
– volume: 41
  issue: 4
  year: 2003
  ident: 2023112402260591200_bib31
  article-title: Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction
  publication-title: Rev. Geophys.
  doi: 10.1029/2002RG000117
– volume: 99
  start-page: 3081
  year: 1994
  ident: 2023112402260591200_bib67
  article-title: Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow
  publication-title: J. geophys. Res.
  doi: 10.1029/93JB02222
– volume: 167
  start-page: 1461
  year: 2006
  ident: 2023112402260591200_bib69
  article-title: Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03131.x
– volume: 105
  start-page: 11 127
  issue: B5
  year: 2000
  ident: 2023112402260591200_bib68
  article-title: Plumes in a convecting mantle: models and observations for individual hotspots
  publication-title: J. geophys. Res.
  doi: 10.1029/1999JB900398
– volume: 241
  start-page: 177
  year: 2007
  ident: 2023112402260591200_bib56
  article-title: Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2007.01.014
– volume: 272
  start-page: 499
  year: 1978
  ident: 2023112402260591200_bib65
  article-title: Formation of discrete islands in linear island chains
  publication-title: Nature
  doi: 10.1038/272499a0
– volume: 204
  start-page: 932
  year: 2016
  ident: 2023112402260591200_bib78
  article-title: Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv472
– year: 2018
  ident: 2023112402260591200_bib15
  article-title: Scientific colour maps
– volume: 263
  start-page: 835
  year: 1982
  ident: 2023112402260591200_bib58
  article-title: Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/160554
– volume: 103
  start-page: 2673
  year: 1998
  ident: 2023112402260591200_bib20
  article-title: Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors
  publication-title: J. geophys. Res.
  doi: 10.1029/97JB03212
– volume: 525
  start-page: 95
  year: 2015
  ident: 2023112402260591200_bib21
  article-title: Broad plumes rooted at the base of the Earth's mantle beneath major hotspots
  publication-title: Nature
  doi: 10.1038/nature14876
– volume: 116
  start-page: 1102
  year: 2011
  ident: 2023112402260591200_bib47
  article-title: Repeat ridge jumps associated with plume-ridge interaction, melt transport, and ridge migration
  publication-title: J. geophys. Res.
  doi: 10.1029/2010JB007504
– volume: 86
  start-page: 385
  year: 2001
  ident: 2023112402260591200_bib80
  article-title: Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle
  publication-title: Am. Mineral.
  doi: 10.2138/am-2001-0401
– volume: 30
  start-page: 61
  year: 2009
  ident: 2023112402260591200_bib48
  article-title: Variation of Icelandic and Hawaiian magmatism: evidence for co-pulsation of mantle plumes?
  publication-title: Mar. Geophys. Res.
  doi: 10.1007/s11001-009-9066-0
– volume: 121
  start-page: 369
  year: 1994
  ident: 2023112402260591200_bib51
  article-title: Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: effects of temperature-dependent viscosity
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/0012-821X(94)90078-7
– volume: 138
  start-page: 83
  year: 2004
  ident: 2023112402260591200_bib27
  article-title: Rheology of the upper mantle and the mantle wedge: a view from the experimentalists
  publication-title: Geophys. Monogr. Ser.
  doi: 10.1029/138GM06
– volume: 8
  issue: 2
  year: 2007
  ident: 2023112402260591200_bib26
  article-title: Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2006GC001390
– volume: 371-372
  start-page: 103
  year: 2013
  ident: 2023112402260591200_bib22
  article-title: Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.04.011
– volume: 180
  start-page: 73
  year: 2010
  ident: 2023112402260591200_bib38
  article-title: A community benchmark for 2-D Cartesian compressible convection in the Earth's mantle
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04413.x
– start-page: 33
  year: 1990
  ident: 2023112402260591200_bib53
  article-title: Hot spots, swells and mantle plumes
  publication-title: Magma Transport and Storage
– volume: 238
  start-page: 146
  year: 2005
  ident: 2023112402260591200_bib29
  article-title: New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2005.07.006
– volume: 4
  year: 2003
  ident: 2023112402260591200_bib36
  article-title: A new parameterization of hydrous mantle melting
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2002GC000433
– volume: 100
  start-page: 8245
  year: 1995
  ident: 2023112402260591200_bib60
  article-title: Mantle plume interaction with an endothermic phase change
  publication-title: J. geophys. Res.
  doi: 10.1029/95JB00032
– volume-title: Geodynamics
  year: 2013
  ident: 2023112402260591200_bib73
– volume: 376
  start-page: 155
  year: 2013
  ident: 2023112402260591200_bib8
  article-title: Double layering of a thermochemical plume in the upper mantle beneath Hawaii
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.06.022
– volume: 547
  year: 2020
  ident: 2023112402260591200_bib5
  article-title: Plate tectonics and mantle controls on plume dynamics
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/J.EPSL.2020.116439
– volume: 90
  start-page: 10 291
  year: 1985
  ident: 2023112402260591200_bib12
  article-title: Layered convection induced by phase transitions
  publication-title: J. geophys. Res.
  doi: 10.1029/JB090iB12p10291
– volume: 23
  start-page: e2022GC010568
  year: 2022
  ident: 2023112402260591200_bib82_1670556205951
  article-title: Temporal evolution of the swell and magmatic fluxes along the Louisville hotspot chain
  publication-title: Geochemistry, Geophysics, Geosystems
  doi: 10.1029/2022GC010568
– volume: 116
  year: 2011
  ident: 2023112402260591200_bib44
  article-title: Building of the Amsterdam-Saint Paul plateau: a 10 Myr history of a ridge-hot spot interaction and variations in the strength of the hot spot source
  publication-title: J. geophys. Res.
  doi: 10.1029/2010JB007768
– volume: 13
  issue: 1
  year: 2012
  ident: 2023112402260591200_bib70
  article-title: A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2011GC003808
– volume-title: Low Reynolds Number Hydrodynamics
  year: 1965
  ident: 2023112402260591200_bib24
– volume: 260
  start-page: 771
  year: 1993
  ident: 2023112402260591200_bib33
  article-title: Rheology of the upper mantle: a synthesis
  publication-title: Science
  doi: 10.1126/science.260.5109.771
– volume: 183
  start-page: 212
  year: 2010
  ident: 2023112402260591200_bib35
  article-title: Adiabatic temperature profile in the mantle
  publication-title: Phys. Earth planet. Inter.
  doi: 10.1016/j.pepi.2010.07.001
– volume: 70
  start-page: 85
  year: 1980
  ident: 2023112402260591200_bib6
  article-title: Rheology of the upper mantle: inferences from peridotite xenoliths
  publication-title: Tectonophysics
  doi: 10.1016/0040-1951(80)90022-0
– volume: 264
  start-page: 308
  year: 2007
  ident: 2023112402260591200_bib14
  article-title: Correlation of seismic and petrologic thermometers suggests deep thermal anomalies beneath hotspots
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2007.10.003
– volume: 344
  start-page: 80
  year: 2014
  ident: 2023112402260591200_bib16
  article-title: Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges
  publication-title: Science
  doi: 10.1126/science.1249466
– volume: 7
  start-page: 151
  year: 2014
  ident: 2023112402260591200_bib76
  article-title: Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2062
– volume: 129
  start-page: 95
  issue: 1
  year: 1997
  ident: 2023112402260591200_bib81_1670555954576
  article-title: The growth of Rayleigh—Taylor-type instabilities in the lithosphere for various rheological and density structures
  publication-title: Geophysical Journal International
  doi: 10.1111/j.1365-246X.1997.tb00939.x
– volume: 18
  start-page: 3034
  year: 2017
  ident: 2023112402260591200_bib17
  article-title: The importance of grain size to mantle dynamics and seismological observations
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2017GC006944
– volume: 42
  start-page: 1105
  year: 2015
  ident: 2023112402260591200_bib66
  article-title: Magma production rate along the Ninetyeast Ridge and its relationship to Indian plate motion and Kerguelen hot spot activity
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL062993
– volume: 43
  start-page: 1121
  year: 2002
  ident: 2023112402260591200_bib13
  article-title: Kerguelen hotspot magma output since 130 Ma
  publication-title: J. Petrol.
  doi: 10.1093/petrology/43.7.1121
– volume: 217
  start-page: 48
  year: 2013
  ident: 2023112402260591200_bib71
  article-title: Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity
  publication-title: Phys. Earth planet. Inter.
  doi: 10.1016/j.pepi.2013.02.004
– volume: 109
  year: 2004
  ident: 2023112402260591200_bib34
  article-title: Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4
  publication-title: J. geophys. Res.
  doi: 10.1029/2003JB002438
– volume: 183
  start-page: 313
  year: 2010
  ident: 2023112402260591200_bib42
  article-title: Underplating of the Hawaiian Swell: evidence from teleseismic receiver functions
  publication-title: Geophys. J. Int.
  doi: 10.1111/J.1365-246X.2010.04720.X
– volume: 6
  issue: 5
  year: 2005
  ident: 2023112402260591200_bib55
  article-title: Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2005GC000915
– volume: 225
  start-page: 177
  year: 2004
  ident: 2023112402260591200_bib46
  article-title: A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data
  publication-title: Earth planet. Sci. Lett.
  doi: 10.1016/j.epsl.2004.06.005
– volume: 184
  start-page: 63
  year: 2011
  ident: 2023112402260591200_bib45
  article-title: On the rise of strongly tilted mantle plume tails
  publication-title: Phys. Earth planet. Inter.
  doi: 10.1016/j.pepi.2010.10.013
– volume: 15
  start-page: 2380
  year: 2014
  ident: 2023112402260591200_bib74
  article-title: Louisville Seamount Chain: petrogenetic processes and geochemical evolution of the mantle source
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2014GC005288
– volume: 6
  issue: 1
  year: 2005
  ident: 2023112402260591200_bib1
  article-title: MiFil: a method to characterize seafloor swells with application to the south central Pacific
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1029/2004GC000814
– volume: 249
  start-page: 1275
  year: 1990
  ident: 2023112402260591200_bib30
  article-title: Negative pressure-temperature slopes for reactions formign MgSiO3 perovskite from calorimetry
  publication-title: Science
  doi: 10.1126/SCIENCE.249.4974.1275
– volume: 94
  start-page: 9523
  year: 1989
  ident: 2023112402260591200_bib61
  article-title: Solitary waves in mantle plumes
  publication-title: J. geophys. Res.
  doi: 10.1029/JB094iB07p09523
– volume: 12
  year: 2021
  ident: 2023112402260591200_bib7
  article-title: Global influence of mantle temperature and plate thickness on intraplate volcanism
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22323-9
– volume: 101
  start-page: 16 195
  year: 1996
  ident: 2023112402260591200_bib57
  article-title: The dynamics of plume-ridge interaction: 2. Off-ridge plumes
  publication-title: J. geophys. Res.
  doi: 10.1029/96JB01187
SSID ssj0014148
Score 2.4447827
Snippet SUMMARY Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing...
Along age-progressive hotspot volcano chains, the emplacement rate of igneous material varies through time. Time-series analysis of changing emplacement rates...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 338
Title Temporal variations in plume flux: characterizing pulsations from tilted plume conduits in a rheologically complex mantle
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: KQ8
  dateStart: 19580301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA86EHwRP_Fz5mFPQlm7Jlnrm4hjKCjCBn0rvSSdk1rH1srmX--lzYbK0PdLHu7C_e5yd78jpMU4B6mlcjpMBw7iseuAJ4QTAOjA1YK5qmqQfRT9IbuPeGQbZGdrSvih3x69jtujUSLxWnS1CL9mUcHgKVoVC5hXLcmqKPUwAInsGN6vsz-AxwyzfcOR3i7ZsQEgvakttkc2dL5PtqpGTDk7IItBzRWV0Q_MYuvvNDrO6cQ4EZpm5fyayhXJ8icCD52UmW3JoWZYhBbjDMNIewLTXVWOi-qOhE5f9NLZZQtatZPrOX1D7Wb6kAx7d4PbvmPXIzgJpjmFg5GX11UJiA4wzhLFNAhfeZIxCMCF1PO7PPVMIU4oUInsMhmmkHCm0AaGCO-INPL3XB8TqiTzlQscfAhZmEDocnSEfhBIVyDIyxNytdRdLC13uFlhkcV1DduPUdGxVfQJaa2EJzVlxnqxSzTCXxKn_0qckW2z_t3MBnbCc9IopqW-wCChgCbZfHgOmtVD-QI5-L8O
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+variations+in+plume+flux%3A+characterizing+pulsations+from+tilted+plume+conduits+in+a+rheologically+complex+mantle&rft.jtitle=Geophysical+journal+international&rft.au=Neuharth%2C+Derek&rft.au=Mittelstaedt%2C+Eric&rft.date=2023-11-29&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=233&rft.issue=1&rft.spage=338&rft.epage=358&rft_id=info:doi/10.1093%2Fgji%2Fggac455&rft.externalDocID=10.1093%2Fgji%2Fggac455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon