Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder
SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the...
Saved in:
Published in | Geophysical journal international Vol. 228; no. 2; pp. 1150 - 1170 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-540X 1365-246X |
DOI | 10.1093/gji/ggab397 |
Cover
Abstract | SUMMARY
In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes. |
---|---|
AbstractList | In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes. SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes. |
Author | Jun, Hyunggu Cho, Yongchae |
Author_xml | – sequence: 1 givenname: Hyunggu surname: Jun fullname: Jun, Hyunggu – sequence: 2 givenname: Yongchae orcidid: 0000-0001-6623-1694 surname: Cho fullname: Cho, Yongchae email: Yongchae.Cho@shell.com |
BookMark | eNp9kMFKw0AQhhepYFs9-QJ78iKxu8kmmxylaBUKglToLUw2k7gl2Q3ZTaFvb0J7EvQ0w8z3D8O3IDNjDRJyz9kTZ1m0qg96VddQRJm8InMeJXEQimQ_I3OWxUkQC7a_IQvnDoxxwUU6J7tP7BA8FLrR_kTRfINR2KLx1FbU6xaDBjqH1KF2rVa0HGF61ECBKmuOthm8tgYaCoO3aJQtsb8l1xU0Du8udUm-Xl9267dg-7F5Xz9vAwhT6YNUprEQscKKZRyZKgvkpWJJNi5UIaOEh2kJ4TjDUIhQ8owXLImYlJWUU7ck_HxX9da5HqtcaQ_TP74H3eSc5ZOWfNSSX7SMmcdfma7XLfSnP-iHM22H7l_wB0Q6dhw |
CitedBy_id | crossref_primary_10_1190_geo2021_0754_1 crossref_primary_10_1109_TGRS_2023_3308966 crossref_primary_10_1109_TGRS_2023_3295355 crossref_primary_10_1109_TGRS_2024_3460767 crossref_primary_10_1190_geo2021_0487_1 crossref_primary_10_1007_s11600_024_01405_4 crossref_primary_10_1111_1365_2478_13600 crossref_primary_10_2113_2024_lithosphere_2024_118 crossref_primary_10_1190_geo2023_0608_1 crossref_primary_10_1111_1365_2478_13449 crossref_primary_10_1093_gji_ggae169 crossref_primary_10_9719_EEG_2024_57_1_51 crossref_primary_10_1109_TGRS_2024_3524572 |
Cites_doi | 10.1111/1365-2478.12933 10.1190/geo2018-0786.1 10.1109/TGRS.2019.2928715 10.1007/978-3-642-34481-7_42 10.1190/geo2019-0468.1 10.1145/2835776.2835837 10.1016/j.petrol.2020.108333 10.1190/1.1444921 10.1190/segam2018-2997085.1 10.1190/1.1438594 10.1190/segam2020-3424773.1 10.1016/j.ijggc.2016.02.022 10.1111/j.1365-246X.2007.03614.x 10.1190/1.1497316 10.1016/j.jmarsys.2019.05.006 10.1007/s12303-014-0054-2 10.5194/os-16-1367-2020 10.1111/j.1365-2478.2012.01045.x 10.1190/tle35100828.1 10.1190/tle38120934.1 10.1190/1.1487049 10.1190/INT-2017-0136.1 10.1190/geo2017-0524.1 10.1109/LGRS.2019.2909218 10.1016/j.egypro.2017.03.1523 10.1109/ICDMW.2016.0041 10.1111/1365-2478.12176 10.1038/s41467-020-15351-4 10.1190/tle38110872a1.1 10.1190/geo2018-0099.1 10.1016/j.egypro.2014.11.458 10.1190/geo2017-0595.1 10.1126/science.1127647 10.1190/geo2018-0646.1 10.1190/INT-2018-0249.1 10.4236/ijg.2012.325093 10.1111/1365-2478.12174 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021 |
DBID | AAYXX CITATION |
DOI | 10.1093/gji/ggab397 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1365-246X |
EndPage | 1170 |
ExternalDocumentID | 10_1093_gji_ggab397 10.1093/gji/ggab397 |
GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-a287t-8785445cef091e0cdbe1dc069878cb736128da21dce24427191b063077f77b063 |
IEDL.DBID | TOX |
ISSN | 0956-540X |
IngestDate | Tue Jul 01 03:21:11 EDT 2025 Thu Apr 24 22:51:48 EDT 2025 Wed Aug 28 03:19:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Image processing Seismic noise Neural networks, fuzzy logic |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a287t-8785445cef091e0cdbe1dc069878cb736128da21dce24427191b063077f77b063 |
ORCID | 0000-0001-6623-1694 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1093_gji_ggab397 crossref_primary_10_1093_gji_ggab397 oup_primary_10_1093_gji_ggab397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical journal international |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Furre (2021111813123092400_bib13) 2019 Waage (2021111813123092400_bib43) 2019; 84 Furre (2021111813123092400_bib14) 2017; 114 Alali (2021111813123092400_bib2) 2020 Nguyen (2021111813123092400_bib33) 2015; 19 Wu (2021111813123092400_bib44) 2016 Wu (2021111813123092400_bib45) 2019; 84 Dilokthanakul (2021111813123092400_bib10) 2016 Ioffe (2021111813123092400_bib19) 2015 Koster (2021111813123092400_bib24) 2000; 19 Ronneberger (2021111813123092400_bib37) 2015 Rickett (2021111813123092400_bib36) 2001; 66 Lumley (2021111813123092400_bib26) 2001; 66 Cho (2021111813123092400_bib7) 2018; 6 Mousavi (2021111813123092400_bib31) 2019; 16 Glubokovskikh (2021111813123092400_bib15) 2016; 49 Yuan (2021111813123092400_bib48) 2020; 220 McInnes (2021111813123092400_bib30) 2018 Qian (2021111813123092400_bib35) 2018; 83 Jun (2021111813123092400_bib22) 2020; 16 Song (2021111813123092400_bib40) 2013 Xie (2021111813123092400_bib47) 2012 Ivanova (2021111813123092400_bib20) 2012; 60 Cho (2021111813123092400_bib9) 2021; 200 Spetzler (2021111813123092400_bib41) 2008; 172 Hinton (2021111813123092400_bib18) 2006; 313 Asnaashari (2021111813123092400_bib5) 2015; 63 Maaten (2021111813123092400_bib28) 2008; 9 Maas (2021111813123092400_bib27) 2013; 30 Vincent (2021111813123092400_bib42) 2010; 11 Zhao (2021111813123092400_bib51) 2018 Gondara (2021111813123092400_bib16) 2016 O'Donovan (2021111813123092400_bib34) 2000 Kamei (2021111813123092400_bib23) 2017; 209 Masci (2021111813123092400_bib29) 2011 Zhao (2021111813123092400_bib52) 2019; 38 Shulakova (2021111813123092400_bib39) 2015; 63 Wrona (2021111813123092400_bib46) 2018; 83 Cho (2021111813123092400_bib8) 2020; 68 Alali (2021111813123092400_bib1) 2020 Kragh (2021111813123092400_bib25) 2002; 21 Saad (2021111813123092400_bib38) 2020; 85 Araya-Polo (2021111813123092400_bib4) 2019; 38 Gutierrez (2021111813123092400_bib17) 2012; 3 Jun (2021111813123092400_bib21) 2019; 197 Zoeppritz (2021111813123092400_bib53) 1919; 1 Alaudah (2021111813123092400_bib3) 2019; 7 Fabien-Ouellet (2021111813123092400_bib12) 2020; 85 Nasser (2021111813123092400_bib32) 2016; 35 Chadwick (2021111813123092400_bib6) 2014; 63 Zhang (2021111813123092400_bib50) 2019; 57 Dorrity (2021111813123092400_bib11) 2020; 11 Zeiler (2021111813123092400_bib49) 2012 |
References_xml | – year: 2018 ident: 2021111813123092400_bib30 article-title: Umap: uniform manifold approximation and projection for dimension reduction publication-title: arXiv:1802.03426 – volume: 68 start-page: 1456 issue: 5 year: 2020 ident: 2021111813123092400_bib8 article-title: Semi-auto horizon tracking guided by strata histograms generated with transdimensional Markov-chain Monte Carlo publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12933 – volume: 85 start-page: U21 issue: 1 year: 2020 ident: 2021111813123092400_bib12 article-title: Seismic velocity estimation: a deep recurrent neural-network approach publication-title: Geophysics doi: 10.1190/geo2018-0786.1 – volume: 57 start-page: 9709 issue: 12 year: 2019 ident: 2021111813123092400_bib50 article-title: Seismic noise attenuation using unsupervised sparse feature learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2928715 – start-page: 341 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 2021111813123092400_bib47 article-title: Image denoising and inpainting with deep neural networks doi: 10.1007/978-3-642-34481-7_42 – start-page: 448 volume-title: International Conference on Machine Learning year: 2015 ident: 2021111813123092400_bib19 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – volume: 85 start-page: V367 issue: 4 year: 2020 ident: 2021111813123092400_bib38 article-title: Deep denoising autoencoder for seismic random noise attenuation publication-title: Geophysics doi: 10.1190/geo2019-0468.1 – start-page: 153 volume-title: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining year: 2016 ident: 2021111813123092400_bib44 article-title: Collaborative denoising auto-encoders for top-n recommender systems doi: 10.1145/2835776.2835837 – volume: 200 start-page: 108333 year: 2021 ident: 2021111813123092400_bib9 article-title: Estimation and uncertainty analysis of the CO2 storage volume in the Sleipner field via 4D reversible-jump Markov-chain Monte Carlo publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2020.108333 – volume: 11 start-page: 3371 year: 2010 ident: 2021111813123092400_bib42 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – start-page: 1 volume-title: 82nd EAGE Annual Conference & Exhibition year: 2020 ident: 2021111813123092400_bib1 article-title: Time-lapse Cross-equalization by deep learning – volume: 66 start-page: 50 issue: 1 year: 2001 ident: 2021111813123092400_bib26 article-title: Time-lapse seismic reservoir monitoring publication-title: Geophysics doi: 10.1190/1.1444921 – start-page: 2046 volume-title: SEG Technical Program Expanded Abstracts 2018 year: 2018 ident: 2021111813123092400_bib51 article-title: Seismic facies classification using different deep convolutional neural networks doi: 10.1190/segam2018-2997085.1 – volume: 19 start-page: 286 issue: 3 year: 2000 ident: 2021111813123092400_bib24 article-title: Time-lapse seismic surveys in the North Sea and their business impact publication-title: Leading Edge doi: 10.1190/1.1438594 – start-page: 1506 volume-title: SEG Technical Program Expanded Abstracts 2020 year: 2020 ident: 2021111813123092400_bib2 article-title: Cross-equalization of time-lapse seismic data using recurrent neural networks doi: 10.1190/segam2020-3424773.1 – volume: 209 start-page: 1239 issue: 2 year: 2017 ident: 2021111813123092400_bib23 article-title: Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes publication-title: Geophys. J. Int. – volume: 49 start-page: 201 year: 2016 ident: 2021111813123092400_bib15 article-title: Seismic monitoring of CO2 geosequestration: CO2CRC Otway case study using full 4D FDTD approach publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.02.022 – start-page: 234 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2015 ident: 2021111813123092400_bib37 article-title: U-net: convolutional net- works for biomedical image segmentation – volume: 172 start-page: 214 issue: 1 year: 2008 ident: 2021111813123092400_bib41 article-title: Case story: time-lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03614.x – volume: 21 start-page: 640 issue: 7 year: 2002 ident: 2021111813123092400_bib25 article-title: Seismic repeatability, normalized rms, and predictability publication-title: Leading Edge doi: 10.1190/1.1497316 – volume: 197 start-page: 103180 year: 2019 ident: 2021111813123092400_bib21 article-title: Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature: application to Yellow Sea multichannel seismic data publication-title: J. Mar. Syst. doi: 10.1016/j.jmarsys.2019.05.006 – volume: 19 start-page: 375 issue: 2 year: 2015 ident: 2021111813123092400_bib33 article-title: A review on time-lapse seismic data processing and interpretation publication-title: Geosci. J. doi: 10.1007/s12303-014-0054-2 – volume: 16 start-page: 1367 issue: 6 year: 2020 ident: 2021111813123092400_bib22 article-title: Random noise attenuation of sparker seismic oceanography data with machine learning publication-title: Ocean Sci. doi: 10.5194/os-16-1367-2020 – volume: 60 start-page: 957 issue: 5 year: 2012 ident: 2021111813123092400_bib20 article-title: Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany publication-title: Geophys. Prospect. doi: 10.1111/j.1365-2478.2012.01045.x – volume: 35 start-page: 828 issue: 10 year: 2016 ident: 2021111813123092400_bib32 article-title: Introduction to this special section: 4D seismic publication-title: Leading Edge doi: 10.1190/tle35100828.1 – volume: 38 start-page: 934 issue: 12 year: 2019 ident: 2021111813123092400_bib52 article-title: Swell-noise attenuation: a deep learning approach publication-title: Leading Edge doi: 10.1190/tle38120934.1 – volume: 66 start-page: 1015 issue: 4 year: 2001 ident: 2021111813123092400_bib36 article-title: Cross-equalization data processing for time-lapse seismic reservoir monitoring: a case study from the Gulf of Mexico publication-title: Geophysics doi: 10.1190/1.1487049 – volume: 6 start-page: T613 issue: 3 year: 2018 ident: 2021111813123092400_bib7 article-title: Quasi 3D transdimensional Markov-chain Monte Carlo for seismic impedance inversion and uncertainty analysis publication-title: Interpretation doi: 10.1190/INT-2017-0136.1 – volume: 83 start-page: A39 issue: 3 year: 2018 ident: 2021111813123092400_bib35 article-title: Unsupervised seismic facies analysis via deep convolutional autoencoders publication-title: Geophysics doi: 10.1190/geo2017-0524.1 – volume: 16 start-page: 1693 issue: 11 year: 2019 ident: 2021111813123092400_bib31 article-title: Unsupervised clustering of seismic signals using deep convolutional autoencoders publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2909218 – volume: 114 start-page: 3916 year: 2017 ident: 2021111813123092400_bib14 article-title: 20 Years of Monitoring CO2-injection at Sleipner publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.03.1523 – year: 2016 ident: 2021111813123092400_bib10 article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders publication-title: arXiv:1611.02648 – start-page: 241 volume-title: IEEE 16th International Conference on Data Mining Workshops (ICDMW) year: 2016 ident: 2021111813123092400_bib16 article-title: Medical image denoising using convolutional denoising autoencoders doi: 10.1109/ICDMW.2016.0041 – start-page: SPE volume-title: SPE Annual Technical Conference and Exhibition year: 2000 ident: 2021111813123092400_bib34 article-title: Foinaven 4D seismic dynamic reservoir parameters and reservoir management – volume: 63 start-page: 78 issue: 1 year: 2015 ident: 2021111813123092400_bib5 article-title: Time-lapse seismic imaging using regularized full wave- form inversion with a prior model: which strategy publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12176 – volume-title: Sleipner 4D Seismic Dataset year: 2019 ident: 2021111813123092400_bib13 article-title: Overview of data released from the Sleipner CO2 injection – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 2021111813123092400_bib11 article-title: Dimensionality reduction by UMAP to visualize physical and genetic interactions publication-title: Nat. Commun. doi: 10.1038/s41467-020-15351-4 – volume: 38 start-page: 872a1 issue: 11 year: 2019 ident: 2021111813123092400_bib4 article-title: Deep learning-driven velocity model building workflow publication-title: Leading Edge doi: 10.1190/tle38110872a1.1 – volume: 84 start-page: B75 issue: 1 year: 2019 ident: 2021111813123092400_bib43 article-title: Repeatability of high-resolution 3D seismic data publication-title: Geophysics doi: 10.1190/geo2018-0099.1 – volume: 220 start-page: 1228 issue: 2 year: 2020 ident: 2021111813123092400_bib48 article-title: Time-lapse velocity imaging via deep learning publication-title: Geophys. J. Int. – volume: 9 start-page: 2579 year: 2008 ident: 2021111813123092400_bib28 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 63 start-page: 4224 year: 2014 ident: 2021111813123092400_bib6 article-title: CO2 storage monitoring: leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner publication-title: Energy Proc. doi: 10.1016/j.egypro.2014.11.458 – start-page: 117 volume-title: Iberoamerican Congress on Pattern Recognition year: 2013 ident: 2021111813123092400_bib40 article-title: Auto-encoder based data clustering – volume: 83 start-page: O83 issue: 5 year: 2018 ident: 2021111813123092400_bib46 article-title: Seismic facies analysis using machine learning publication-title: Geophysics doi: 10.1190/geo2017-0595.1 – start-page: 52 volume-title: International Conference on Artificial Neural Networks year: 2011 ident: 2021111813123092400_bib29 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – year: 2012 ident: 2021111813123092400_bib49 article-title: Adadelta: an adaptive learning rate method publication-title: arXiv:1212.5701). – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 2021111813123092400_bib18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 84 start-page: IM35 issue: 3 year: 2019 ident: 2021111813123092400_bib45 article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation publication-title: Geophysics doi: 10.1190/geo2018-0646.1 – volume: 7 start-page: SE175 issue: 3 year: 2019 ident: 2021111813123092400_bib3 article-title: A machine-learning benchmark for facies classification publication-title: Interpretation doi: 10.1190/INT-2018-0249.1 – volume: 30 start-page: 3 issue: 1 year: 2013 ident: 2021111813123092400_bib27 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc. Icml – volume: 1 start-page: 66 year: 1919 ident: 2021111813123092400_bib53 article-title: Erdbebenwellen viii b, uber reflexion and durchgang seismischer wellen durch unstetigkeisflachen publication-title: Gottinger Nachr – volume: 3 start-page: 908 issue: 5 year: 2012 ident: 2021111813123092400_bib17 article-title: Effects of CO2 injection on the seismic velocity of sandstone saturated with saline water publication-title: Int. J. Geosci. doi: 10.4236/ijg.2012.325093 – volume: 63 start-page: 55 issue: 1 year: 2015 ident: 2021111813123092400_bib39 article-title: Burying receivers for improved time-lapse seismic repeatability: CO2CRC Otway field experiment publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12174 |
SSID | ssj0014148 |
Score | 2.4542024 |
Snippet | SUMMARY
In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however,... In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1150 |
Title | Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 0956-540X databaseCode: KQ8 dateStart: 19580301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-246X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014148 issn: 0956-540X databaseCode: TOX dateStart: 19880101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwED50IPgi_sRNnXnYk1C2tV2TPoo4hqIibNC3kqTXWZndWDvB_95LG4fK0LfSXlq4HPm-NHffAXRCP1WJlCEF70A7PnraCQnlHTFQAomQSD8wxckPj8Fo4t9Fg8gmyBYbjvBDrzt9zbrTqVSEnLTU9onfUtiOn6L1YYHfr5pkVZJ6REAiW4b3a-wP4DHFbN9wZLgPe5YAsut6xg5gC_ND2KkSMXVxBGNixLQ81urZHwzzFzMt5hcem6fMdIJ3ZnJRICswK94yzUyKJ3vPJJPMZJDbSKIvyFU5NyqVCS6PYTK8Hd-MHNv5wJG0gylpiRJGJEdjSnCOPZ0o7Ce6F4T0QCvuES0RiXTpHhI8u5w2XcqIZ3Gecm6uTqCRz3M8BYZuz_M92haJgPuJpDcJU2zLMcSAuCE24erLLbG2suCmO8Usro-nvZh8GFsfNqGzNl7UahibzS7Jv39ZtP61OINd11QaVAnS59Aolyu8IPwvVRu2759Fu4qBT_lWr5s |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeatability+enhancement+of+time-lapse+seismic+data+via+a+convolutional+autoencoder&rft.jtitle=Geophysical+journal+international&rft.au=Jun%2C+Hyunggu&rft.au=Cho%2C+Yongchae&rft.date=2022-02-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=228&rft.issue=2&rft.spage=1150&rft.epage=1170&rft_id=info:doi/10.1093%2Fgji%2Fggab397&rft.externalDocID=10.1093%2Fgji%2Fggab397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |