Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder

SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 228; no. 2; pp. 1150 - 1170
Main Authors Jun, Hyunggu, Cho, Yongchae
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.02.2022
Subjects
Online AccessGet full text
ISSN0956-540X
1365-246X
DOI10.1093/gji/ggab397

Cover

Abstract SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes.
AbstractList In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes.
SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable discrepancies are generated because of various reasons. Therefore, proper time-lapse processing techniques are required to improve the repeatability of time-lapse seismic data and to capture accurate seismic information to analyse target changes. In this study, we propose a machine learning-based time-lapse seismic data processing method improving repeatability. A training data construction method, training strategy and machine learning network architecture based on a convolutional autoencoder are proposed. Uniform manifold approximation and projection are applied to the training and target data to analyse the features corresponding to each data point. When the feature distribution of the training data is different from the target data, we implement data augmentation to enhance the diversity of the training data. The method is verified through numerical experiments using both synthetic and field time-lapse seismic data, and the results are analysed with several methods, including a comparison of repeatability metrics. From the results of the numerical experiments, we can conclude that the proposed convolutional autoencoder can enhance the repeatability of the time-lapse seismic data and increase the accuracy of observed variations in seismic signals generated from target changes.
Author Jun, Hyunggu
Cho, Yongchae
Author_xml – sequence: 1
  givenname: Hyunggu
  surname: Jun
  fullname: Jun, Hyunggu
– sequence: 2
  givenname: Yongchae
  orcidid: 0000-0001-6623-1694
  surname: Cho
  fullname: Cho, Yongchae
  email: Yongchae.Cho@shell.com
BookMark eNp9kMFKw0AQhhepYFs9-QJ78iKxu8kmmxylaBUKglToLUw2k7gl2Q3ZTaFvb0J7EvQ0w8z3D8O3IDNjDRJyz9kTZ1m0qg96VddQRJm8InMeJXEQimQ_I3OWxUkQC7a_IQvnDoxxwUU6J7tP7BA8FLrR_kTRfINR2KLx1FbU6xaDBjqH1KF2rVa0HGF61ECBKmuOthm8tgYaCoO3aJQtsb8l1xU0Du8udUm-Xl9267dg-7F5Xz9vAwhT6YNUprEQscKKZRyZKgvkpWJJNi5UIaOEh2kJ4TjDUIhQ8owXLImYlJWUU7ck_HxX9da5HqtcaQ_TP74H3eSc5ZOWfNSSX7SMmcdfma7XLfSnP-iHM22H7l_wB0Q6dhw
CitedBy_id crossref_primary_10_1190_geo2021_0754_1
crossref_primary_10_1109_TGRS_2023_3308966
crossref_primary_10_1109_TGRS_2023_3295355
crossref_primary_10_1109_TGRS_2024_3460767
crossref_primary_10_1190_geo2021_0487_1
crossref_primary_10_1007_s11600_024_01405_4
crossref_primary_10_1111_1365_2478_13600
crossref_primary_10_2113_2024_lithosphere_2024_118
crossref_primary_10_1190_geo2023_0608_1
crossref_primary_10_1111_1365_2478_13449
crossref_primary_10_1093_gji_ggae169
crossref_primary_10_9719_EEG_2024_57_1_51
crossref_primary_10_1109_TGRS_2024_3524572
Cites_doi 10.1111/1365-2478.12933
10.1190/geo2018-0786.1
10.1109/TGRS.2019.2928715
10.1007/978-3-642-34481-7_42
10.1190/geo2019-0468.1
10.1145/2835776.2835837
10.1016/j.petrol.2020.108333
10.1190/1.1444921
10.1190/segam2018-2997085.1
10.1190/1.1438594
10.1190/segam2020-3424773.1
10.1016/j.ijggc.2016.02.022
10.1111/j.1365-246X.2007.03614.x
10.1190/1.1497316
10.1016/j.jmarsys.2019.05.006
10.1007/s12303-014-0054-2
10.5194/os-16-1367-2020
10.1111/j.1365-2478.2012.01045.x
10.1190/tle35100828.1
10.1190/tle38120934.1
10.1190/1.1487049
10.1190/INT-2017-0136.1
10.1190/geo2017-0524.1
10.1109/LGRS.2019.2909218
10.1016/j.egypro.2017.03.1523
10.1109/ICDMW.2016.0041
10.1111/1365-2478.12176
10.1038/s41467-020-15351-4
10.1190/tle38110872a1.1
10.1190/geo2018-0099.1
10.1016/j.egypro.2014.11.458
10.1190/geo2017-0595.1
10.1126/science.1127647
10.1190/geo2018-0646.1
10.1190/INT-2018-0249.1
10.4236/ijg.2012.325093
10.1111/1365-2478.12174
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2021
DBID AAYXX
CITATION
DOI 10.1093/gji/ggab397
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 1170
ExternalDocumentID 10_1093_gji_ggab397
10.1093/gji/ggab397
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-a287t-8785445cef091e0cdbe1dc069878cb736128da21dce24427191b063077f77b063
IEDL.DBID TOX
ISSN 0956-540X
IngestDate Tue Jul 01 03:21:11 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Wed Aug 28 03:19:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Image processing
Seismic noise
Neural networks, fuzzy logic
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a287t-8785445cef091e0cdbe1dc069878cb736128da21dce24427191b063077f77b063
ORCID 0000-0001-6623-1694
PageCount 21
ParticipantIDs crossref_citationtrail_10_1093_gji_ggab397
crossref_primary_10_1093_gji_ggab397
oup_primary_10_1093_gji_ggab397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Furre (2021111813123092400_bib13) 2019
Waage (2021111813123092400_bib43) 2019; 84
Furre (2021111813123092400_bib14) 2017; 114
Alali (2021111813123092400_bib2) 2020
Nguyen (2021111813123092400_bib33) 2015; 19
Wu (2021111813123092400_bib44) 2016
Wu (2021111813123092400_bib45) 2019; 84
Dilokthanakul (2021111813123092400_bib10) 2016
Ioffe (2021111813123092400_bib19) 2015
Koster (2021111813123092400_bib24) 2000; 19
Ronneberger (2021111813123092400_bib37) 2015
Rickett (2021111813123092400_bib36) 2001; 66
Lumley (2021111813123092400_bib26) 2001; 66
Cho (2021111813123092400_bib7) 2018; 6
Mousavi (2021111813123092400_bib31) 2019; 16
Glubokovskikh (2021111813123092400_bib15) 2016; 49
Yuan (2021111813123092400_bib48) 2020; 220
McInnes (2021111813123092400_bib30) 2018
Qian (2021111813123092400_bib35) 2018; 83
Jun (2021111813123092400_bib22) 2020; 16
Song (2021111813123092400_bib40) 2013
Xie (2021111813123092400_bib47) 2012
Ivanova (2021111813123092400_bib20) 2012; 60
Cho (2021111813123092400_bib9) 2021; 200
Spetzler (2021111813123092400_bib41) 2008; 172
Hinton (2021111813123092400_bib18) 2006; 313
Asnaashari (2021111813123092400_bib5) 2015; 63
Maaten (2021111813123092400_bib28) 2008; 9
Maas (2021111813123092400_bib27) 2013; 30
Vincent (2021111813123092400_bib42) 2010; 11
Zhao (2021111813123092400_bib51) 2018
Gondara (2021111813123092400_bib16) 2016
O'Donovan (2021111813123092400_bib34) 2000
Kamei (2021111813123092400_bib23) 2017; 209
Masci (2021111813123092400_bib29) 2011
Zhao (2021111813123092400_bib52) 2019; 38
Shulakova (2021111813123092400_bib39) 2015; 63
Wrona (2021111813123092400_bib46) 2018; 83
Cho (2021111813123092400_bib8) 2020; 68
Alali (2021111813123092400_bib1) 2020
Kragh (2021111813123092400_bib25) 2002; 21
Saad (2021111813123092400_bib38) 2020; 85
Araya-Polo (2021111813123092400_bib4) 2019; 38
Gutierrez (2021111813123092400_bib17) 2012; 3
Jun (2021111813123092400_bib21) 2019; 197
Zoeppritz (2021111813123092400_bib53) 1919; 1
Alaudah (2021111813123092400_bib3) 2019; 7
Fabien-Ouellet (2021111813123092400_bib12) 2020; 85
Nasser (2021111813123092400_bib32) 2016; 35
Chadwick (2021111813123092400_bib6) 2014; 63
Zhang (2021111813123092400_bib50) 2019; 57
Dorrity (2021111813123092400_bib11) 2020; 11
Zeiler (2021111813123092400_bib49) 2012
References_xml – year: 2018
  ident: 2021111813123092400_bib30
  article-title: Umap: uniform manifold approximation and projection for dimension reduction
  publication-title: arXiv:1802.03426
– volume: 68
  start-page: 1456
  issue: 5
  year: 2020
  ident: 2021111813123092400_bib8
  article-title: Semi-auto horizon tracking guided by strata histograms generated with transdimensional Markov-chain Monte Carlo
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12933
– volume: 85
  start-page: U21
  issue: 1
  year: 2020
  ident: 2021111813123092400_bib12
  article-title: Seismic velocity estimation: a deep recurrent neural-network approach
  publication-title: Geophysics
  doi: 10.1190/geo2018-0786.1
– volume: 57
  start-page: 9709
  issue: 12
  year: 2019
  ident: 2021111813123092400_bib50
  article-title: Seismic noise attenuation using unsupervised sparse feature learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2928715
– start-page: 341
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 2021111813123092400_bib47
  article-title: Image denoising and inpainting with deep neural networks
  doi: 10.1007/978-3-642-34481-7_42
– start-page: 448
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: 2021111813123092400_bib19
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 85
  start-page: V367
  issue: 4
  year: 2020
  ident: 2021111813123092400_bib38
  article-title: Deep denoising autoencoder for seismic random noise attenuation
  publication-title: Geophysics
  doi: 10.1190/geo2019-0468.1
– start-page: 153
  volume-title: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining
  year: 2016
  ident: 2021111813123092400_bib44
  article-title: Collaborative denoising auto-encoders for top-n recommender systems
  doi: 10.1145/2835776.2835837
– volume: 200
  start-page: 108333
  year: 2021
  ident: 2021111813123092400_bib9
  article-title: Estimation and uncertainty analysis of the CO2 storage volume in the Sleipner field via 4D reversible-jump Markov-chain Monte Carlo
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108333
– volume: 11
  start-page: 3371
  year: 2010
  ident: 2021111813123092400_bib42
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: 82nd EAGE Annual Conference & Exhibition
  year: 2020
  ident: 2021111813123092400_bib1
  article-title: Time-lapse Cross-equalization by deep learning
– volume: 66
  start-page: 50
  issue: 1
  year: 2001
  ident: 2021111813123092400_bib26
  article-title: Time-lapse seismic reservoir monitoring
  publication-title: Geophysics
  doi: 10.1190/1.1444921
– start-page: 2046
  volume-title: SEG Technical Program Expanded Abstracts 2018
  year: 2018
  ident: 2021111813123092400_bib51
  article-title: Seismic facies classification using different deep convolutional neural networks
  doi: 10.1190/segam2018-2997085.1
– volume: 19
  start-page: 286
  issue: 3
  year: 2000
  ident: 2021111813123092400_bib24
  article-title: Time-lapse seismic surveys in the North Sea and their business impact
  publication-title: Leading Edge
  doi: 10.1190/1.1438594
– start-page: 1506
  volume-title: SEG Technical Program Expanded Abstracts 2020
  year: 2020
  ident: 2021111813123092400_bib2
  article-title: Cross-equalization of time-lapse seismic data using recurrent neural networks
  doi: 10.1190/segam2020-3424773.1
– volume: 209
  start-page: 1239
  issue: 2
  year: 2017
  ident: 2021111813123092400_bib23
  article-title: Full waveform inversion of repeating seismic events to estimate time-lapse velocity changes
  publication-title: Geophys. J. Int.
– volume: 49
  start-page: 201
  year: 2016
  ident: 2021111813123092400_bib15
  article-title: Seismic monitoring of CO2 geosequestration: CO2CRC Otway case study using full 4D FDTD approach
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.02.022
– start-page: 234
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2015
  ident: 2021111813123092400_bib37
  article-title: U-net: convolutional net- works for biomedical image segmentation
– volume: 172
  start-page: 214
  issue: 1
  year: 2008
  ident: 2021111813123092400_bib41
  article-title: Case story: time-lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03614.x
– volume: 21
  start-page: 640
  issue: 7
  year: 2002
  ident: 2021111813123092400_bib25
  article-title: Seismic repeatability, normalized rms, and predictability
  publication-title: Leading Edge
  doi: 10.1190/1.1497316
– volume: 197
  start-page: 103180
  year: 2019
  ident: 2021111813123092400_bib21
  article-title: Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature: application to Yellow Sea multichannel seismic data
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2019.05.006
– volume: 19
  start-page: 375
  issue: 2
  year: 2015
  ident: 2021111813123092400_bib33
  article-title: A review on time-lapse seismic data processing and interpretation
  publication-title: Geosci. J.
  doi: 10.1007/s12303-014-0054-2
– volume: 16
  start-page: 1367
  issue: 6
  year: 2020
  ident: 2021111813123092400_bib22
  article-title: Random noise attenuation of sparker seismic oceanography data with machine learning
  publication-title: Ocean Sci.
  doi: 10.5194/os-16-1367-2020
– volume: 60
  start-page: 957
  issue: 5
  year: 2012
  ident: 2021111813123092400_bib20
  article-title: Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany
  publication-title: Geophys. Prospect.
  doi: 10.1111/j.1365-2478.2012.01045.x
– volume: 35
  start-page: 828
  issue: 10
  year: 2016
  ident: 2021111813123092400_bib32
  article-title: Introduction to this special section: 4D seismic
  publication-title: Leading Edge
  doi: 10.1190/tle35100828.1
– volume: 38
  start-page: 934
  issue: 12
  year: 2019
  ident: 2021111813123092400_bib52
  article-title: Swell-noise attenuation: a deep learning approach
  publication-title: Leading Edge
  doi: 10.1190/tle38120934.1
– volume: 66
  start-page: 1015
  issue: 4
  year: 2001
  ident: 2021111813123092400_bib36
  article-title: Cross-equalization data processing for time-lapse seismic reservoir monitoring: a case study from the Gulf of Mexico
  publication-title: Geophysics
  doi: 10.1190/1.1487049
– volume: 6
  start-page: T613
  issue: 3
  year: 2018
  ident: 2021111813123092400_bib7
  article-title: Quasi 3D transdimensional Markov-chain Monte Carlo for seismic impedance inversion and uncertainty analysis
  publication-title: Interpretation
  doi: 10.1190/INT-2017-0136.1
– volume: 83
  start-page: A39
  issue: 3
  year: 2018
  ident: 2021111813123092400_bib35
  article-title: Unsupervised seismic facies analysis via deep convolutional autoencoders
  publication-title: Geophysics
  doi: 10.1190/geo2017-0524.1
– volume: 16
  start-page: 1693
  issue: 11
  year: 2019
  ident: 2021111813123092400_bib31
  article-title: Unsupervised clustering of seismic signals using deep convolutional autoencoders
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2909218
– volume: 114
  start-page: 3916
  year: 2017
  ident: 2021111813123092400_bib14
  article-title: 20 Years of Monitoring CO2-injection at Sleipner
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.03.1523
– year: 2016
  ident: 2021111813123092400_bib10
  article-title: Deep unsupervised clustering with gaussian mixture variational autoencoders
  publication-title: arXiv:1611.02648
– start-page: 241
  volume-title: IEEE 16th International Conference on Data Mining Workshops (ICDMW)
  year: 2016
  ident: 2021111813123092400_bib16
  article-title: Medical image denoising using convolutional denoising autoencoders
  doi: 10.1109/ICDMW.2016.0041
– start-page: SPE
  volume-title: SPE Annual Technical Conference and Exhibition
  year: 2000
  ident: 2021111813123092400_bib34
  article-title: Foinaven 4D seismic dynamic reservoir parameters and reservoir management
– volume: 63
  start-page: 78
  issue: 1
  year: 2015
  ident: 2021111813123092400_bib5
  article-title: Time-lapse seismic imaging using regularized full wave- form inversion with a prior model: which strategy
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12176
– volume-title: Sleipner 4D Seismic Dataset
  year: 2019
  ident: 2021111813123092400_bib13
  article-title: Overview of data released from the Sleipner CO2 injection
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 2021111813123092400_bib11
  article-title: Dimensionality reduction by UMAP to visualize physical and genetic interactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15351-4
– volume: 38
  start-page: 872a1
  issue: 11
  year: 2019
  ident: 2021111813123092400_bib4
  article-title: Deep learning-driven velocity model building workflow
  publication-title: Leading Edge
  doi: 10.1190/tle38110872a1.1
– volume: 84
  start-page: B75
  issue: 1
  year: 2019
  ident: 2021111813123092400_bib43
  article-title: Repeatability of high-resolution 3D seismic data
  publication-title: Geophysics
  doi: 10.1190/geo2018-0099.1
– volume: 220
  start-page: 1228
  issue: 2
  year: 2020
  ident: 2021111813123092400_bib48
  article-title: Time-lapse velocity imaging via deep learning
  publication-title: Geophys. J. Int.
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2021111813123092400_bib28
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 63
  start-page: 4224
  year: 2014
  ident: 2021111813123092400_bib6
  article-title: CO2 storage monitoring: leakage detection and measurement in subsurface volumes from 3D seismic data at Sleipner
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2014.11.458
– start-page: 117
  volume-title: Iberoamerican Congress on Pattern Recognition
  year: 2013
  ident: 2021111813123092400_bib40
  article-title: Auto-encoder based data clustering
– volume: 83
  start-page: O83
  issue: 5
  year: 2018
  ident: 2021111813123092400_bib46
  article-title: Seismic facies analysis using machine learning
  publication-title: Geophysics
  doi: 10.1190/geo2017-0595.1
– start-page: 52
  volume-title: International Conference on Artificial Neural Networks
  year: 2011
  ident: 2021111813123092400_bib29
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– year: 2012
  ident: 2021111813123092400_bib49
  article-title: Adadelta: an adaptive learning rate method
  publication-title: arXiv:1212.5701).
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 2021111813123092400_bib18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 84
  start-page: IM35
  issue: 3
  year: 2019
  ident: 2021111813123092400_bib45
  article-title: FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation
  publication-title: Geophysics
  doi: 10.1190/geo2018-0646.1
– volume: 7
  start-page: SE175
  issue: 3
  year: 2019
  ident: 2021111813123092400_bib3
  article-title: A machine-learning benchmark for facies classification
  publication-title: Interpretation
  doi: 10.1190/INT-2018-0249.1
– volume: 30
  start-page: 3
  issue: 1
  year: 2013
  ident: 2021111813123092400_bib27
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc. Icml
– volume: 1
  start-page: 66
  year: 1919
  ident: 2021111813123092400_bib53
  article-title: Erdbebenwellen viii b, uber reflexion and durchgang seismischer wellen durch unstetigkeisflachen
  publication-title: Gottinger Nachr
– volume: 3
  start-page: 908
  issue: 5
  year: 2012
  ident: 2021111813123092400_bib17
  article-title: Effects of CO2 injection on the seismic velocity of sandstone saturated with saline water
  publication-title: Int. J. Geosci.
  doi: 10.4236/ijg.2012.325093
– volume: 63
  start-page: 55
  issue: 1
  year: 2015
  ident: 2021111813123092400_bib39
  article-title: Burying receivers for improved time-lapse seismic repeatability: CO2CRC Otway field experiment
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12174
SSID ssj0014148
Score 2.4542024
Snippet SUMMARY In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however,...
In an ideal case, the time-lapse differences in 4-D seismic data should only reflect the changes of the subsurface geology. Practically, however, undesirable...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 1150
Title Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: KQ8
  dateStart: 19580301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-246X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014148
  issn: 0956-540X
  databaseCode: TOX
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwED50IPgi_sRNnXnYk1C2tV2TPoo4hqIibNC3kqTXWZndWDvB_95LG4fK0LfSXlq4HPm-NHffAXRCP1WJlCEF70A7PnraCQnlHTFQAomQSD8wxckPj8Fo4t9Fg8gmyBYbjvBDrzt9zbrTqVSEnLTU9onfUtiOn6L1YYHfr5pkVZJ6REAiW4b3a-wP4DHFbN9wZLgPe5YAsut6xg5gC_ND2KkSMXVxBGNixLQ81urZHwzzFzMt5hcem6fMdIJ3ZnJRICswK94yzUyKJ3vPJJPMZJDbSKIvyFU5NyqVCS6PYTK8Hd-MHNv5wJG0gylpiRJGJEdjSnCOPZ0o7Ce6F4T0QCvuES0RiXTpHhI8u5w2XcqIZ3Gecm6uTqCRz3M8BYZuz_M92haJgPuJpDcJU2zLMcSAuCE24erLLbG2suCmO8Usro-nvZh8GFsfNqGzNl7UahibzS7Jv39ZtP61OINd11QaVAnS59Aolyu8IPwvVRu2759Fu4qBT_lWr5s
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Repeatability+enhancement+of+time-lapse+seismic+data+via+a+convolutional+autoencoder&rft.jtitle=Geophysical+journal+international&rft.au=Jun%2C+Hyunggu&rft.au=Cho%2C+Yongchae&rft.date=2022-02-01&rft.pub=Oxford+University+Press&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=228&rft.issue=2&rft.spage=1150&rft.epage=1170&rft_id=info:doi/10.1093%2Fgji%2Fggab397&rft.externalDocID=10.1093%2Fgji%2Fggab397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon