UNIFORMLY CONVERGENT SCHEMES FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS BASED ON COLLOCATION METHODS

It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say σ which suffers from severe inaccuracies particularly in the boundary layer. What...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Mathematics and Mathematical Sciences Vol. 2000; no. 5; pp. a305 - 313-141
Main Author Konate, Dialla
Format Journal Article
LanguageEnglish
Published Hindawi Limiteds 01.01.2000
Wiley
Subjects
Online AccessGet full text
ISSN0161-1712
1687-0425
1687-0425
DOI10.1155/S0161171200000910

Cover

Abstract It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say σ which suffers from severe inaccuracies particularly in the boundary layer. What we say in the current paper is this: when one uses a grid which is not "too coarse" the resulted solution, even being nonuniformly convergent may be used in an iterated scheme to get a "good" approximation solution that is uniformly convergent over the whole geometric domain of study. In this paper, we use the collocation method as model of polynomial approximation. We start from a precise localization of the boundary layer then we decompose the domain of study, say Ω into the boundary layer, say Ω_∈ and its complementary Ω_0. Next we go to the heart of our work which is to make a repeated use of the collocation method. We show that the second generation of polynomial approximation is convergent and it yields an improved error bound compared to those usually appearing in the literature.
AbstractList It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say σ which suffers from severe inaccuracies particularly in the boundary layer. What we say in the current paper is this: when one uses a grid which is not too coarse the resulted solution, even being nonuniformly convergent may be used in an iterated scheme to get a good approximation solution that is uniformly convergent over the whole geometric domain of study.
It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say σ which suffers from severe inaccuracies particularly in the boundary layer. What we say in the current paper is this: when one uses a grid which is not "too coarse" the resulted solution, even being nonuniformly convergent may be used in an iterated scheme to get a "good" approximation solution that is uniformly convergent over the whole geometric domain of study. In this paper, we use the collocation method as model of polynomial approximation. We start from a precise localization of the boundary layer then we decompose the domain of study, say Ω into the boundary layer, say Ω_∈ and its complementary Ω_0. Next we go to the heart of our work which is to make a repeated use of the collocation method. We show that the second generation of polynomial approximation is convergent and it yields an improved error bound compared to those usually appearing in the literature.
It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say which suffers from severe inaccuracies particularly in the boundary layer. What we say in the current paper is this: when one uses a grid which is not too coarse the resulted solution, even being nonuniformly convergent may be used in an iterated scheme to get a good approximation solution that is uniformly convergent over the whole geometric domain of study. In this paper, we use the collocation method as model of polynomial approximation. We start from a precise localization of the boundary layer then we decompose the domain of study, say into the boundary layer, say and its complementary 0. Next we go to the heart of our work which is to make a repeated use of the collocation method. We show that the second generation of polynomial approximation is convergent and it yields an improved error bound compared to those usually appearing in the literature.
It is well known that a polynomial‐based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain of study. Such scheme results in a numerical solution, say σ which suffers from severe inaccuracies particularly in the boundary layer. What we say in the current paper is this: when one uses a grid which is not “too coarse” the resulted solution, even being nonuniformly convergent may be used in an iterated scheme to get a “good” approximation solution that is uniformly convergent over the whole geometric domain of study. In this paper, we use the collocation method as model of polynomial approximation. We start from a precise localization of the boundary layer then we decompose the domain of study, say Ω into the boundary layer, say Ω ϵ and its complementary Ω 0 . Next we go to the heart of our work which is to make a repeated use of the collocation method. We show that the second generation of polynomial approximation is convergent and it yields an improved error bound compared to those usually appearing in the literature.
Author DIALLA KONATE
Author_xml – sequence: 1
  givenname: Dialla
  surname: Konate
  fullname: Konate, Dialla
BookMark eNqNUsuOmzAURdVUambaD-iOVXe0vjYGs2QISZAIzPCo1JVl_KiImJBComr-vhCqajTtot5YPi9dnetb6-bYH7VlfQT0GYDSLyUCD8AHjOYTAHpjrcBjvoNcTG-s1Uw7M__Ouh3HA0LAMKYrq62zZJMX-_SbHeXZ17jYxllll9Eu3selPTF2mWTbOg2LSfEQF1Vd3Mdre51sNnExSZMwtePHOqySPCvt-7CcyDybstI0j66ovY-rXb4u31tvjehG_eH3fWfVm7iKdk6ab5MoTB2BmY8cqjABo7SnkGHGFY3yqAx84lFjWEMl1Q1mWmJisC-IHwQCC4kNMKJcYKwhd1ay5KpeHPhpaJ_E8Mx70fIr0A_fuRjOrew0p1ppJV1GJGEuBTfwG6WoFyhCtPR8M2XhJetyPInnn6Lr_gQC4nPxfHxd_GT6tJhOQ__josczf2pHqbtOHHV_GTlmDHvTav5D6CICwZwIi1AO_TgO2vw1RfmPKR4Xj2iH9tzyQ38ZjlPv_AHPWoTd6Q_wWQ-YXyEMFC3Yi4cgiHIChIML5BeyPK27
ContentType Journal Article
DBID 188
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
H8D
ADTOC
UNPAY
DOA
DOI 10.1155/S0161171200000910
DatabaseName Chinese Electronic Periodical Services (CEPS)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aerospace Database
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (selected full-text)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitleList

Computer and Information Systems Abstracts
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1687-0425
EndPage 313-141
ExternalDocumentID oai_doaj_org_article_5ededc483c38451497bdd569d33ec67f
10.1155/s0161171200000910
10_1155_S0161171200000910
P20161024001_200012_201612150001_201612150001_a305_313_141
GroupedDBID -~9
-~X
188
24P
29J
2UF
2WC
4.4
5GY
5VS
AAFWJ
AAJEY
ABCQX
ACGFO
ACIPV
ACIWK
ADBBV
AFPKN
AI.
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CNMHZ
CS3
CVCKV
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
H13
IAO
IEA
IL9
KQ8
L7B
LO0
M~E
OK1
P0W
P2P
REM
RHU
RHW
RHX
RNS
TR2
TWZ
UNMZH
UPT
UZ4
VH1
WH7
0R~
8FE
8FG
8R4
8R5
AAMMB
AAYXX
ABDBF
ABJCF
ABUWG
ACCMX
ACUHS
ADXHL
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
AMVHM
ARAPS
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
CWDGH
HCIFZ
IPNFZ
ITC
K6V
K7-
L6V
M7S
NHB
OVT
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RIG
TUS
~8M
7SC
8FD
JQ2
L7M
L~C
L~D
H8D
ADTOC
UNPAY
ID FETCH-LOGICAL-a2870-5d231fde6d0f8f4abd65c97365ff8b5c5eb28ec23f27a3799a2ac2f183d4188b3
IEDL.DBID DOA
ISSN 0161-1712
1687-0425
IngestDate Fri Oct 03 12:40:40 EDT 2025
Tue Aug 19 21:36:48 EDT 2025
Fri Sep 05 14:38:57 EDT 2025
Fri Sep 05 09:40:42 EDT 2025
Wed Oct 01 03:36:08 EDT 2025
Tue Oct 01 22:50:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords collocation method
stiff equation
polynomial approximation
Singular perturbation
boundary layer
domain decomposition
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2870-5d231fde6d0f8f4abd65c97365ff8b5c5eb28ec23f27a3799a2ac2f183d4188b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doaj.org/article/5ededc483c38451497bdd569d33ec67f
PQID 28403190
PQPubID 23500
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5ededc483c38451497bdd569d33ec67f
unpaywall_primary_10_1155_s0161171200000910
proquest_miscellaneous_28826687
proquest_miscellaneous_28403190
crossref_primary_10_1155_S0161171200000910
airiti_journals_P20161024001_200012_201612150001_201612150001_a305_313_141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20000101
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – month: 01
  year: 2000
  text: 20000101
  day: 01
PublicationDecade 2000
PublicationTitle International Journal of Mathematics and Mathematical Sciences
PublicationYear 2000
Publisher Hindawi Limiteds
Wiley
Publisher_xml – name: Hindawi Limiteds
– name: Wiley
SSID ssj0018225
Score 1.4843813
Snippet It is well known that a polynomial-based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain...
It is well known that a polynomial‐based approximation scheme applied to a singularly perturbed equation is not uniformly convergent over the geometric domain...
SourceID doaj
unpaywall
proquest
crossref
airiti
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage a305
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKFoly4F2xPH3gBMquE8dOInEpiKqq1KoHVioHZDl-lIXdZNnsqiq_npk4WXWphASnKM4ckvgbzze25zMhb5gxEkJHHOmE-ygVNo205i4SPsUrNyLFAueTU3k0SY_PxfkOed_XwliUiK-1bUbfMCe9nLajdfdfm_H0-3zejLG8ZByjLgobLay_RXalACY-ILuT07ODL0HOO47iLCx2SvAjxGa3qAkRdNygAT5vSXKB9bO39RRlhLbiUyvjv8U976yrhb661LPZtTB0eJ987T8g7D75MVqvypH59Ye24_9-4QNyr-On9CAA6iHZcdUjcvdkI-7aPCZT4KlIdWdXtN2zjuWbKwpZspu7hsITivMPuL0VLBZuCUGtdJb2R7HAkDKj7meQGG8ohlFL64oiIuswgUjDudbNEzI5_PT541HUndgAXQ2OHwkLdNFbJy3zOfR2aaUwRcal8D4vhRGQx-fOACySTPOsKHSiTeJhWLFpnOcl3yeDqq7cU0LTsvCZZp4lABfHilJqxq0WhQfSKqQfkuPQYar_deoswV5F0TYW4_GaEHtV2wS0hoW2azcaRjrFYw7JTzwkb_tOV4ug8qHa7EgI3P62DZUh-YCw2BiiQHfbUC8vVOfvSjjrrElzbnieAiktstJaIQvLuTMyg9d_3YNKgUPjKo2uXL1uFPAFrCxjf7OAnBBAPSTvNmi88do3EP7sn6yfk70gOoCTTS_IYLVcu5dAv1blq87LfgOeSSap
  priority: 102
  providerName: Unpaywall
Title UNIFORMLY CONVERGENT SCHEMES FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS BASED ON COLLOCATION METHODS
URI https://www.airitilibrary.com/Article/Detail/P20161024001-200012-201612150001-201612150001-a305-313-141
https://www.proquest.com/docview/28403190
https://www.proquest.com/docview/28826687
https://downloads.hindawi.com/journals/ijmms/2000/151950.pdf
https://doaj.org/article/5ededc483c38451497bdd569d33ec67f
UnpaywallVersion publishedVersion
Volume 2000
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-0425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018225
  issn: 1687-0425
  databaseCode: KQ8
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-0425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018225
  issn: 1687-0425
  databaseCode: DOA
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIHZ
  databaseName: EuDML: The European Digital Mathematics Library
  customDbUrl:
  eissn: 1687-0425
  dateEnd: 20111231
  omitProxy: true
  ssIdentifier: ssj0018225
  issn: 1687-0425
  databaseCode: LO0
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: https://eudml.org/journals
  providerName: EuDML: The European Digital Mathematics Library
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-0425
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0018225
  issn: 1687-0425
  databaseCode: 24P
  dateStart: 19780101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlLbQ5lD6p0zTVoacWE9l6WDompSGkJKS0C-lJyHpAYOvdxLuE_PvOWN5l00B76cXGYx2EZkbfjB7fEPKBea8AOqrS1TyVQgZROsdjKZPAN_dS4AXn0zN1PBEnF_Jio9QXngnL9MB54PZlDDF4obnnWgC6m6YNQSoTOI9eNQlnX6bNKpka9w8A9vLhRVWVVVPV434mgOf-dxSibIiPDV6dfeQukUHoDjQNDP53ws7Hy27ubm_cdLqBQEfPyNMxdKQHucvPyYPYvSDbp2ve1f4luYQQEqPQ6S0djpPjzcoFhQQ2_oo9hT8Ulwbw5Cm0mMdrwJs2BrqqkgLePqXxKrN_9xQRLtBZR9FYZnltj-aS0_0rMjn68uPzcTkWUwAtgE-WMkAkl0JUgSUNimiDkt40XMmUdCu9hBRbRw8aqxvHG2Nc7XydwOODqLRu-Wuy1c26-IZQ0ZrUOJZYDZqMzLTKMR6cNAniSalSQU7ygNrRH3p7XuOoI58aq7DyJcCiHUQQcbAs2_hwMAlZXnHIS6qCfFwpxc4zAYcdEhcp7T1VFuQQ1bZuiNzZgwAsyo4WZf9lUQV5v1K6BV_DDRTXxdmytwDleOmL_a0FpGtKNwX5tLaWe93u_-z2zv_o9lvyJNME4PLQLtlaXC_jOwiYFu3e4Bvw_PpN75GHk7Pzg5-_Ac9_DkQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKFoly4F2xPH3gBMquE8dOInEpiKqq1KoHVioHZDl-lIXdZNnsqiq_npk4WXWphASnKM4ckvgbzze25zMhb5gxEkJHHOmE-ygVNo205i4SPsUrNyLFAueTU3k0SY_PxfkOed_XwliUiK-1bUbfMCe9nLajdfdfm_H0-3zejLG8ZByjLgobLay_RXalACY-ILuT07ODL0HOO47iLCx2SvAjxGa3qAkRdNygAT5vSXKB9bO39RRlhLbiUyvjv8U976yrhb661LPZtTB0eJ987T8g7D75MVqvypH59Ye24_9-4QNyr-On9CAA6iHZcdUjcvdkI-7aPCZT4KlIdWdXtN2zjuWbKwpZspu7hsITivMPuL0VLBZuCUGtdJb2R7HAkDKj7meQGG8ohlFL64oiIuswgUjDudbNEzI5_PT541HUndgAXQ2OHwkLdNFbJy3zOfR2aaUwRcal8D4vhRGQx-fOACySTPOsKHSiTeJhWLFpnOcl3yeDqq7cU0LTsvCZZp4lABfHilJqxq0WhQfSKqQfkuPQYar_deoswV5F0TYW4_GaEHtV2wS0hoW2azcaRjrFYw7JTzwkb_tOV4ug8qHa7EgI3P62DZUh-YCw2BiiQHfbUC8vVOfvSjjrrElzbnieAiktstJaIQvLuTMyg9d_3YNKgUPjKo2uXL1uFPAFrCxjf7OAnBBAPSTvNmi88do3EP7sn6yfk70gOoCTTS_IYLVcu5dAv1blq87LfgOeSSap
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformly+convergent+schemes+for+singularly+perturbed+differential+equations+based+on+collocation+methods&rft.jtitle=International+journal+of+mathematics+and+mathematical+sciences&rft.au=Konate%2C+Dialla&rft.date=2000-01-01&rft.issn=0161-1712&rft.eissn=1687-0425&rft.volume=24&rft.issue=5&rft.spage=305&rft.epage=313&rft_id=info:doi/10.1155%2FS0161171200000910&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2FP20161024001-c.jpg